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1. Introduction
The abstract theory of positive compact operators (acting in a partially

ordered Banach space) has proved to be particularly useful in the theory of
integral equations. In a recent paper (2) it was shown that many of the now
classical theorems for positive compact operators can be extended to certain
classes of non-compact operators. One result, proved in (2, Theorem 5), was
a fixed point theorem for compressive A>set contractions (k<l). The main
result of this paper (Theorem 3.3) shows that some of the hypotheses of (2,
Theorem 5) are unnecessary. We use techniques based on those used by M. A.
Krasnoselskii in the proof of Theorem 4.12 in (4), which is the classical fixed
point theorem for compressive compact operators, to obtain a complete
generalisation of this classical result to the k-set contractions (k< 1). It should
be remarked that J. D. Hamilton has extended the same result to ^4-proper
mappings (3, Theorem 1). However apparently it is not known, even in the
case when we are dealing with a Ilj-space, whether A>set contractions are A-
proper or not.

In an attempt to justify our efforts we give a simple application of our
result to prove the existence of a positive solution to an integral equation.

2. Preliminaries
For the sake of completeness we now define what we mean by a " A>set

contraction ". This involves the notion of the measure of non-compactness
of a set.

Definition 2.1. Let A be a bounded subset of a metric space Y. Then the
measure of non-compactness of A, aY(A), is defined by

aY(A) = inf {e>0: A may be covered by finitely many sets of diameter g e}.

It should be noted that OLY{A) is independent of Y in the following sense.
If Z and Y are metric spaces and A £ Z s Y (the metric on Z being that
induced from Y) then az(A) = aY(A). With this in mind no confusion will
result if the subscript of aY(A) is omitted. We will write a(A) for aY(A). The
following proposition lists the main properties of the measure of non-compact-
ness of a set. The proof can be found in (5, Chapter 1).
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Proposition 2.2. Let A and B be subsets of the metric space Y. Then

(i) A £ B implies a(A) ^ a(5);

(ii) <X(AKJB) = max {<x(A), a(5)};

(iii) a(A) = *{A).

If Y is a Banach space, then

(iv) a(co(/0) = OL(A);

(v) a(

(vi) «(

(vii) A is precompact implies a(/4) = 0.

Note. Here and throughout the rest of the paper the following notation
is used. If A is a subset of a Banach space then A and co(A) are the closure and
convex hull of A respectively;

XA = {Xa: aeA} and A +B = {a + b: aeA,beB}.

We now give the definition of k-set contractions.

Definition 2.3. An operator T: Z—> Y (Z and Y metric spaces) is said to be
a k-set contraction if T is continuous and oc(T(A)) ^ ka(A) for all bounded
subsets A of Z.

The following proposition follows easily from this definition.

Proposition 2.4. Let Y{ (i = 1, 2, 3) be metric spaces and suppose

T,: Y1^Y2andT2: Y2-*Y3

are ku k2-set contractions respectively. Then T2Tl: Yt->Y3 is a ktk2-set
contraction. If St: Y1-*X and S2: Yt-*X {where X is a Banach space), then
Sy + S2: Yt-*Xis a (k± + k2)-set contraction.

There are many examples of A>set contractions. For instance operators
of the form H+ C, where H is a ^-contraction operating in a Banach space
(i.e. || Hx~Hy || ^ k || x—y || for all x, y in the domain of H) and C is a
compact operator (i.e. continuous and maps bounded sets into compact sets),
are k-set contractions. In particular a compact operator is a O-set contraction.

The next proposition, which is the basis of the proof of the main theorem
of this paper, was proved originally by Darbo (1).

Proposition 2.5. (The fixed point theorem for k-set contractions (A:<1)).
Let C be a closed, convex, bounded subset of a Banach space X and suppose
T: Cc X-+ C is a k-set contraction, k < 1. Then there exists an x e C such that
Tx = x.

Note. We have used the notation T: CcX-*C to imply that the metric
on C is that induced by the norm of X. In the rest of this paper the metric
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on a subset of a Banach space will always be assumed to be the one induced
by the norm.

Before we proceed with the proof of our main theorem we give two simple
lemmas.

Lemma 2.6. Let D and D' be closed subsets of a metric space Y. Suppose
T: Dcz Y-> Y and 7": £>'<= Y-> Y are k-set contractions such that T = 7" on
DnD'. Define T": DvD'^-Yby

T"r= \Tx if x e D ;

[T'x if xeD'.
Then T" is a k-set contraction.

Proof. The continuity of T" follows from a well-known lemma. The
remainder of the proof follows directly from Proposition 2.2, (ii).

Lemma 2.7. Let X be a Banach space, T: DczX-*X a k-set contraction
and X: £>->R+ a continuous function such that sup{A(x): xe £>} = /<oo.
Define 7": D<= X^X by T\x) = X(x)Tx for all xeD. Then T is a kl-set
contraction.

Proof. 7" is continuous. Let A be a bounded subset of D. Then

T'(A) c co({0}u/TC4)).

By 2.2 (i), (ii), (iv) and (vi) we see that

a(T(A)) ^ lku(A).
This proves the lemma.

3. The fixed point theorem
Throughout this section C denotes a non-trivial cone in a Banach space X.

(A subset C of X is a cone if C is closed and

(i) x, yeC implies ax+fiy e C for all a, /? e R+.

(ii) axe C and — <xx e C if and only if x = 0.)

The cone C induces a partial order on X in the following manner. We say
x ^ y if and only if y—xe C. It is not difficult to verify that g induces a
partial ordering on X. Note that x < y means y — x $ C.

It will be convenient to use the following notation. For 0<r<R let

Br ={xeC: || x || g r};

S, ={xeC: | |x | | = r}.

The next lemma is crucial in the proof of our theorem.

Lemma 3.1. Suppose T: Sr->C is a k-set contraction and let 7":
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be defined by
->x _ |(H x II/OWII x \\)x) ifx * 0;X - l0 ,/x = 0.

Then T' is a k'-set contraction for k' as near k as we please.

Proof. We first show that T' is continuous. Suppose the sequence (xn)cBr

issuchthat;cn->Oas/!->oo and || xn ||>0forn = 1,2, .... LetA(x) = (|| x \\/r).
Then

| |Tx| | : xeSr}
->0 as «->oo

as T(Sr) is bounded. It follows that T' is continuous at zero and thus it is not
difficult to see that T' is continuous on all of Br.

Let A be a subset of Br. If <x(A) = 0 then A is compact by Proposition 2.2,
(vii), and so T'(A) is compact. Hence a(T(A)) = 0 and a.(T{A)) g ka.(A)
trivially. Suppose a(A) # 0. Choose d>0 such that

(1)
(we may assume &>0; if not replace k by k+k' for any k'>0). Since T' is
continuous there exists 5 > 0 such that

T'(AnBd)czBd. (2)

For any positive integer n define s > 0 by 5 = en. Also define

Am = An{x: || x || e [me, (m+l)e]} for m = 0, 1, 2, ....
Thus

( N \A = ( inBj )u [) A, for some finite integer N.
\m = n J

Therefore
= a ( T ((AnBJv ( \J A,

^ max {a(TXAnBJ, «{T\An% ...} (3)

Let Dm = Brr\Am. Then it follows from Lemma 2.7 that

T': Dm-*X is a (((m + l)/r)s(r/me)fc)-set contraction,

i.e. T': Dm-+X is a /c(l+(l/m))-set contraction. (4)

Using (1), (2), (3) and (4) and Proposition 2.2,

oc(T'(A)) ^ max {*{Bd),

But we may choose n as large as we please so the result follows.
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Definition 3.2. An operator T: FrR-*C is said to be a compression of the
cone C if

T x § x for all x e C with || x || = r; (5)
and for all £ > 0

Tx § (1+e)x for aDxeC with || x || = J?. (6)

Remark. This is precisely the definition used byrKrasnoselskii in Chapter 4
of (4). It is more general than the definition used in (2).

We now give the promised fixed point theorem.

Theorem 3.3. Let T: FrR-*Cbea k-set contraction (k<\), which compresses
the cone C. Then T has at least one nonzero fixed point in C.

Proof. We consider the operator T': C-+C defined by

(Sh if || x || = 0;
(II x ||/r)T((r/|| x \\)x) + dh if 0<|| x || =g r-S;

(d| x ||/r)T((r/|| x \\)x) + h(r-\\ x ||) if r-8 =g || x || g r;
Tx if r £ | | x | | £ K ;

I T ( W | | X | | ) X ) if H ̂  II x II;

where 0<«5<r, he C and

|| h ||

T'x =

(recall that 5, = {y e C: \\ y \\ = r}).
Let R' = sup {|| T'x \\: xe BR) then T: BR,,-+BR,, where /{" = max {R, R).

It follows from 2.4, 2.6, 2.7, 3.1 that T is a fc'-set contraction for A:' as near k
as we please; in particular we may choose k'<\. As BR,, is closed, convex
and bounded, we may apply 2.5 and deduce that there exists x* e C such that

x* = T'x*.

We now show that r ^ || x* || ^ iJ. It is impossible that x* = 0 so we
assume

(i) 0<| |x*|] gr-8.
If (i) holds then

x* = (||x*||/r)r((r/||x*||)x*) + 5A.

Thus h = (l/5)[>*-(|| x* ||/r)7X(r/|| x* ||)x*)]. Hence

|| A || £ (l/-5)[(/-<5) + ((/-<5)/r)sup{|| 7> ||: ^ S r } ] .

This contradicts our assumption on h. Next we assume

(ii) r - S g | | * | |< r .

Then,

(r/B x* ||)x* = r((r/|| x* ||)x*) + ((r-| |.x* ||)/|| x* )]rh.

Thus (r/|| x* ||)x* ^ T((r/|| x* ||)x*) which contradicts (5). Finally we assume

(iii) | |**
E.M.S.—19/1—G
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Then

where

This contradicts (6) and so, as all other possibilities are excluded we have
r g || x* || ±S R and our result follows.

Remark. We have based the proof of this theorem on the methods used
by Krasnoselskii in the proof of Theorem 4.12 of (4). Using similar techniques
it is also possible to generalise Theorem 4.14 of (4) to A:-set contractions (k< 1).
The result we have obtained is the following.

Proposition 3.4. Let T: Fr R->C be a k-set contraction (k<\) which
expands the cone C. Then T has at least one non-zero fixed point in C.

(An operator T: Fri R-*C is said to be an expansion of the cone C if for all
£>0

Tx g (1 + e)x for all x e C with || x || = r;
and

Tx < x for all x e C with || x || = R.)
We omit the proof of this proposition as it is somewhat similar to the proof

of 3.3.
The main tool used in the proof of 3.3 was the fixed point theorem for k-set

contractions (fc<l). This theorem can be extended to various classes of
1-set contractions. The usual proof of this extension involves approximating
to a 1-set contraction by fc-set contractions with k<\; then applying 2.5 to
these approximants gives fixed points which (hopefully) converge to a fixed
point of the 1-set contraction. Unfortunately this technique seems to fail
when applied to 3.3 because the usual approximants do not preserve properties
(5) and (6) of Definition 3.2. It would be interesting to know whether 3.3 can
be extended to classes of operators larger than the class of fc-set contractions

4. Integral equations
In this section we give an application of Theorem 3.3 to the theory of integral

equations. We emphasise that there has been no attempt to achieve the best
possible results as it is our intention to show how the theorem can be applied
without obscuring the methods involved in a mass of technical details.

Let Q be a closed subset of R" and suppose that X is the linear space of
bounded continuous functions on Q. Endowed with the supremum norm X
becomes a Banach space. Let k: QxQ->R be a continuous, bounded function
and define the linear operator K: X-* X by

Jn
K x ( s ) = k ( s , l ) x ( t ) d t , x e X ( 7 )
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We say that K is the operator generated by the kernel k. It is well known that
if fi is bounded then K: X-+ X is a compact linear operator. However if Q.
is unbounded and

sup-H I k(s, 01 dt: seili <oo

then, although AT is bounded, it is not necessarily compact, as is clearly demon-
strated by the following example.

Suppose Q = R and k(s, t) = k'(s-t) where k': R->R is a continuous
function with support contained in [— 1, 1]. Define the bounded sequence of
functions (xn)c:X by

xn(s) = x(s-n), seR;

where x e X has support contained in [— 1, 1]. Then,

where

\s-i)x{t + n)dt= f
J —

= Kx(s-n).
Obviously (yn) is a bounded sequence of functions in X which has no con-

vergent subsequence (provided Kx ^ 0, a possibility quite easily avoided).
Therefore K is not compact.

However if

sup \\ | fc(s, 01 dt: s e £!„> -+0 as n->oo (8)

(where fin = {sefi: | s | ^ n}) then it can be shown that AT: Z-^X (as
defined by (7)) is compact. Hence it is simple to see how elementary examples
of A>set contractions may arise from integral operators. Take, for example,
k = kt+k2 where kt satisfies (2) and fe2(s, 0 = k'z(s — i) (as in our example).
Then, if Kt are the operators generated by kt (i = 1, 2), we see that K = Kx+K2

is an /-set contraction with / ^ || _Af2 il- (See the remarks immediately after
Proposition 2.4.) It would be simple to give examples of kx and k2 where
II &2 II < II K II a nd so our /-set contractions need not be " trivial" /-contractions.

It seems a difficult problem to calculate the / appropriate to a particular k
precisely, therefore we will give this particular parameter as a hypothesis in
our application; giving our result in terms of / rather than more accessible
properties of k.

From now on we assume that k: fixQ->R+ is a continuous bounded
function which generates an /-set contraction in X. Let / : QxR+-*R+ be
a continuous, bounded function. Define the operator F: C-> C (C being the
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cone of non-negative functions in X) by

(Fx)(5) =/(s, x(s)), x e C (9)

We now give our long awaited application.

Theorem 4.1. Let k and f be defined as above and suppose the following
additional conditions are satisfied.

(i) sup-H | k(s, t)\dt: s e n t =M<oo;

(ii) inf {k(s, t): s e fi} ̂  A sup {k(s, t): s e Q} for allteQ;

(iii) f(s, t) is an increasing function in t for each seCl and is bounded for all
seCl, te[O, co);

(iv) there exists r>0 such that

r-kM inf {f{s, r): s e Q}<0
and

\f(s,x)-f(s,y)\£8\x-y\ for allied
and x, y e \r, co).

Then, if 81 < 1, there is a non-zero solution of the non-linear integral equation

X(5) = f «S, t)f(t, X(t))dt. (10)i = f «S, t)f(t,
Jft

Proof. Let K be the operator generated by k, and let

C = {xeX: x(s) ^ 0 for all s e fi} and

C' = {XG C: inf (x(s): s e Q) 1 A sup (s(x): s e ii)}.

Clearly both C and C" are cones in Z.
To prove this theorem it is enough to show that there is a non-zero solution

to the operator equation x = KFx, where F is denned by (9). Let T = KF.
We will show that T: C'->C is a <5/-set contraction which compresses the
cone C". As we have assumed that <5/< 1 our result will follow directly from
3.3.

We show initially that K(C)<= C. (Note that our hypothesis that

ensures that K(C)<= C.) Suppose xeC then

inf-| k(s, t)x(t)dt: s e o l ^ inf {k(s, t): s eQ}x(t)dt
Un J Jn

sup {fc(s, t):se Q)x(t)dt (by (ii))

^ A sup k(s, t)x(t)dt: s e £2}.
Jn

^ A
Jn
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Let D = {xeC: (r/k) g || x ||} where r and k are defined in (ii) and (iv).
The conditions xe C and (r/X) ^ || x || imply that inf {x(s): se R} ^ r and
so it follows from (iv) that F: D-*C is a ^-contraction.

We have proved so far that F: D-+C and ^ : C^C, thus T = AJF: D-+C
and as F is a <5-contraction and K is an /-set contraction it follows from 2.4
that T is a <5/-set contraction. We need only prove that T is a compression
of C .

Suppose that xeC and || x \\ = (r/A). Then,

_ r
Jn

(x- Tx)(s) = x(s)- | k(s, i)f(t, x(t))dt

11| x \\)dtI - I"
Jn

(This follows from the definition of C and condition (iii).) Hence

(x-Tx)(s)g(r//l)-inf {/(s,r): seQ} \ k(s, t)dt.

fTake s0 e Q such that fc(s0, t)dt>M—e where e is small enough to allow
Jn

r - X(M - e) inf {/(s, r): s e fi} < 0 (see (iv)).
Then

(x-Tx)(so)<O
and so

As C 'cC it follows that

x - Tx > 0 for all x e C',|| x \\ = (r/A), (11)

where > refers to the ordering induced by C .
Suppose ye C. Then

(y-Ty)(s) = y(s)- f k(s, t)f(t, y(t))dt

^ k || y || -MM' , by (i), (ii) and (iii);

(where M' ^ / ( J , j ) for all s e Q, y e [0, oo)). Thus, if | j ^ || >(MM'/X) we
see that

y - Ty < 0 for all y e C, || yil = ^- (12)

(again < refers to the ordering induced by C ) where R is some constant
greater than MM'Ik.

In view of (11) and (12) it follows that T: FTlK R-*C is a compression of
the cone C" and so our theorem follows from 3.3.

The results of this paper form part of the author's thesis submitted to the
University of Sussex in 1972.
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