
MAJORANTS IN VARIATIONAL INTEGRATION 
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In Perron integration, majorants are usually functions of points. If the 
domain of definition is a Euclidean space of n dimensions, we can define a 
finitely additive n-dimensional majorant rectangle function by taking suitable 
differences of the majorant point function with respect to each of the n co­
ordinates. The way is then open to a generalization, in that we need only 
suppose that the majorant rectangle function is finitely superadditive. Similarly, 
we need only suppose that a minorant rectangle function is finitely subadditive. 
These kinds of rectangle functions were used by J. Marik (5) to prove the 
Fubini theorem for Perron integrals in Euclidean space of m + n dimensions. 
He also proved that for a function that is Perron, and absolutely Perron, 
integrable, the majorant and minorant rectangle functions can be taken to be 
finitely additive. As a result he posed the following problem. 

(4, 9.1). Does there exist a two-variable function/ that is Perron-integrable 
using finitely superadditive majorants and finitely subadditive minorants, but 
that is not Perron-integrable using finitely additive majorants and minorants 
only? 

A further problem was posed by K. Kartâk. 

(4, 9.2). Can the Perron integral fail to exist when we restrict the majorants 
and minorants to be continuous? 

In one dimension the question corresponding to (4, 9.2) has been answered 
in the negative by Saks (6, pp. 250-251, Theorems 3.9, 3.11 ). The question now 
arises of whether these last proofs could be shortened by omitting all reference 
to Denjoy integration. 

We can put questions of this type into a more general setting by replacing 
the Perron integral by the variational integral. This is possible in one dimension, 
for the Perron integral of/ is equivalent to the Ward integral of /with respect 
to x (7, p. 587), which in turn corresponds to the variational integral of/.m(.), 
where ml is the length of the interval / (3, pp. 123-126 or 1, pp. 45-46). The 
proofs assume finitely additive majorant and minorant interval functions, but 
can easily be extended to deal with finitely superadditive majorant and finitely 
subadditive minorant interval functions. Then the question of whether we need 
use only finitely additive (or continuous) majorant and minorant interval 
functions for the Perron integral of / i s equivalent to the question of whether 
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we need only use finitely additive (or continuous) interval functions x in the 
definition of the variational integral oîf.m(.). 

For more general spaces we have similar results. The x for two dimensions is a 
finitely superadditive rectangle function, as in (3, Chapter 6), and the general 
X of (2, p. 114) is a finitely superadditive set function, and it is easy to show the 
connection between the variational integrals of special kinds of set functions 
and the corresponding Perron integrals. Thus we can generalize (4,9.1 and 9.2) 
in the form of the following questions. 

(1) What is the class of variationally integrable h for which the interval or 
set function x can be taken to be finitely additive? 

(2) What is the class of variationally integrable h for which x can be taken 
to be continuous? 

(3) What is the class of variationally integrable h for which x can be taken to 
be finitely additive and continuous? 

In (2, 3) we naturally have to specify the kind of continuity required. 
The basic definitions for variational integration in one dimension are as 

follows. First, we use intervals closed on the left and open on the right, as in 
(3, pp. 17-18), but clashing with (1, p. 44) and (2, pp. 129-130). This dis­
agreement makes no difference to the integration theory, provided that we 
define our divisions suitably. Here, a division 3) of a closed interval [a, b] is a 
finite family 

[Xy_i, Xj) \Xj—i <C Xj1 J = 1 , Z , . . . , fl) 

of intervals such that Xo = a and xn = b. 
A family 8 of intervals [t,x), with associated points x, is left-complete in 

[a, b] if to each x in a < x < b there is a ôi(x) > 0 such that [/, x) is in S for 
all t in x — di(x) < t < x. A family 9? of intervals [x, u), with associated points 
x, is right-complete in [a, b] if to each x in a < x < b there is a 82(x) > 0 such 
that [x, u) is in 9Î for all u in x < u < x + ô2(x). If 2 is left-complete and 9? 
right-complete in [a, b], we say that À = { 8, 9î} is complete in [a, 6], 

If A is complete in [a, b], then we can construct a division of [a, b] from the 
intervals of S and 9î (3, Theorem 16.1, p. 22 or 2, Theorem 16, p. 129). 

We use functions of intervals [v, w), so that we can write h{v, w) in place of 
h([v, w)). An interval function x is finitely superadditive in [a, b] if 

x(u, v) + x(̂ > w) < x(^> w) (all u, v, w with aKu<v<w^b). 

If equality always occurs, we say that x is finitely additive. If — x is finitely 
superadditive, we say that x is finitely subadditive. 

A pair h = \hh hr\ of interval functions is of bounded variation (VB*) in 
[a, b] if there are an A complete in [a, b] and a non-negative finitely super­
additive interval function x such that x(#, b) is finite and 

(4) IA.C0I < xCO (IQ[a,b];I e 2 if s = /, and I G 9Î if s = r). 

Let [z/, w] be an interval contained in [a, ft], and let J) be a division of [v, w] 
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that uses only intervals of 8, 9î. By (4) and finite superadditivity, 

( S » E | A . | < (®)Zx<x(v,w). 
It follows that 

(5) xi(v, w) = sup(35) £ |A,| < x(v, w), 

the supremum being taken over all such 35 for the fixed A. It is easily shown 
that xi is non-negative and finitely superadditive, so that xi is the smallest 
X for the given A, if xi is finite. 

The variation of h in [a, b] is 

(6) V(h; [a, b]) = inf x (a , b) = inf X l(a, 6) 

for all such x, A. If there is no such x, we write the right-hand side symbolically 
as + oo . If the infimum is 0 we say that h is of variation zero in [a, b]. Two pairs 
h, h* of interval functions are variationally equivalent in [a, b] if 

{hi — h*, hr — hr*} 

is of variation zero in [a, b]. If also ht* = hr* = H, finitely additive, then 
H (a, b) is called the variational integral of h in [a, b] and written 

(V) Çih„hr} = (V) fh, 

and we say that h is variationally integrable in [a, ft], 
A pair h of interval functions is of generalized bounded variation (VBG*) in 

[a, 6], if [a, b] is the union of sets Xn (n = 1, 2, . . .) for which the pairs of 
interval functions 

{hi(f, x)ch(Xw, x), ftr(*, u)ch(Xn, x)} (» = 1, 2, . . .) 

are all VB* in [a, £], where ch(X, x) is the characteristic function of the set X. 
The continuity in which we are interested is of the type 

(7) x(̂ > w) —» 0 as w — v —» 0 7£/i^ a < t; < w < b and v < x < w, 

for each fixed x'm[a, b]. 
To show that problem (1) is trivial for interval functions, we put 

(8) x(a» a) = 0» X2O, w) = x(a> w) — x(#, «0 (a < » < w < 6), 

so that X2 is finitely additive. By the finite superadditivity of x» 

X2O, w) ~ x(«S w) = x 0 , w) - x(^, v) - x(», w) > 0, 

(9) X2(i>, w) > x M ) , 

so that X2 can replace x in (4). The infimum in (6) is unaltered since 

(10) X2(a,b) =x(a,b). 
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Not all variationally integrableh can have a % continuous as in (7). For let 
the sequence \an) be everywhere dense in a perfect set P* contained in [a, b], 
and take 

b» > 0, 2>» < 

frrc 0 = aw > x, w = 1, 2, . . .), 

h 

hri(x, u) = 

(t = an < x, n = 1, 2, . . .), 
(otherwise), 

(0 (otherwise). 

Given A complete in [a, b]y and an integer n, we put 

ô(x) = min(<5i(x), ^ (x) , i\x — am\), 

for all integers m in 1 < m < w such that am ^ x. Then d(x) > 0, and can be 
used instead of <5i, Ô2 to define Ax complete in [a, 6], Sums over divisions of 
[a, b\ from the corresponding Si, 3?i will then be not greater than 

00 

£ 2bm. 
m=n+l 

As n —* 00, this tends to 0, so that h i is of variation zero in [a, b], and its vari­
ational integral is 0. 

However, for this h i , and each A, the xi of (5), and so every x, is discontinu­
ous at some points of P*. For let Yn be the set of all x in P* for which 

5j(x) > 1/n (j = 1,2). 

Then P* is the union of the Yn, so that by Baire's density theorem there are an 
interval (v, w) containing points of P* and an integer n such that Yn is every­
where dense in (v, w) P P*. Each point av in (v, w) P P* is therefore a limit-
point of Yn, and either [ap, x) G £ for x £ Fw, x—>ap-\-, or [x, av) £ 3? /or 
x G Yn, x —» ap —, or both. Thus xi is discontinuous at all ap in (z/, ze/) P P*. 

If As is continuous in the sense of (7), for s = I, r, then xi is also continuous 
(see 3, Theorem 24.2, pp. 41, 42). But in the simple case corresponding to 
ordinary Perron integration, 

hn(t, x) — f(x)(x — /), &r2(x, u) = f(x)(u — x) ; 

the former need not be continuous as x—->£ + , since/(x) might conceivably 
tend to infinity sufficiently rapidly to nullify x — t —•> 0; and similarly for /jr2. 
To answer (4, 9.2), a special proof of the continuity of a finitely additive x for 
suitable A will be needed, and it is contained in Theorem 2. The example of 
h i shows that we cannot prove the continuity of xi for every variationally 
integrable h of bounded variation, and also shows that in some sense the 
conditions imposed in Theorem 1 are the best possible, in order to obtain 
continuous xi-
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THEOREM 1. Let h = {hh hr) be a pair of interval functions with variational 
integral H in [a, b], and let [a, b] be the union of sets Zn with the following properties. 
For each t, u in (a, b), apart possibly from a countable set, with a countable closure, 
and for some complete set A, 

(11) hl{t,x) - H(t,x) ->0asx-*t+,x G Zn (n = 1, 2, . . .), [t,x) G 8; 

(12) hT(x, u) — H{x, u) —> Oasx —» u —, x G Zn (w = 1, 2, . . .), [#, w) G 9Î; 

(13) As(p, w) — H(v, w) -^Oasv —> / —,w —> / + , a < t < b, 

where the associated point lies in Zn (n = 1, 2, . . .), and w/zere [Ï/, w) G S 
w&ew s = I, or [v, w) G 9? zo/zefz s = r. TTzen in £&e definition of H we need only 
use continuous majorants %• 

In particular, conditions (11), (12), (13) are true if 

(14) hiit, x) —» 0 as x —> / + , x G Zn, a < t < b (n = 1, 2, . . .), 

and as / —> x—, a < x < b, with [t, x) G 8; 

(15) &r(x, 2i) —> 0 as x —» w —, x G Zn, a < u K b (n = 1, 2, . . .), 

and asu —» x + , a < x < £, ze;i/A [x, w) G 9î; 

(16) hs(v, w) —> 0 as v —• /—, w —> £+, a < t < b, 

where the associated point lies in Zn (n = 1, 2, . . .), and ï£^er£ [z/, w) G S 
w&en s = l,or [v, w) G 9Î, î^^n 5 = r. 

In particular, if xz is a continuous non-negative finitely superadditive interval 
function, if k (x) > 1 is a point function, if A2 is complete in\a, b], and if 

(17) |A,(J)| < &(x)x3C0 (I G 82, * = /; a?*d 7 G $2, s = r)f 

£/ze x being the associated point of I, then (14), (15), (16) are true. 

Condition (17), with the continuity of %3 deleted, is the necessary and 
sufficient condition in order that h be VBG* in [a, b] (cf. 3, Theorem 29.1, p. 56). 

By definition of H, for each integer n there are a non-negative finitely 
superadditive interval function X4.» and an A3)W complete in [a, b], and defined 
byôi,w(x) > 0, Ô2,n(pc) > 0, such that 

(18) \H(I) - hs(I)\ < X4,»(/) (/ G 2*,n,s = I; and I G 9î3,n, 5 = r), 

(19) X4.»(a, *) < 2~\ 

We first assume that (11), (12), (13) are respectively true for all t, u in 
a<^t<b,a<uKb,a<t<b. We define 

(20) X 5 > , w) = sup{0; (Ç) X \h,(I) - H(I)\) (a < v < w < b), 

for each finite collection ^ of non-overlapping intervals I in [v, w), such that if 
s = /, then I = [t, x) in S H 83,7*+™ and x is in Zn; while if s = r, then 

https://doi.org/10.4153/CJM-1966-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-008-9


54 RALPH HENSTOCK 

I = [x, u) in din $R8.»+mandtfisinZn. By (18), (19), (20), 

(21) 0 < XB.»(W, w) < X6.»(a, b) < 2-n~m. 

We can define A4 complete in [a, b] by using min(5i(x); ôi,n+m(x)) for 84, and 
min(52(x) ; 52,n+m(#)) f° r 9Î4, where wis such that x is in Z„; and by (20), (21), 

oo 

X6 = S X5,w 
tt=l 

can replace X4,rc in (18), (19), with n replaced by m, and S3,w, 9?3,n replaced by 
84, 9Î4, respectively. To complete the proof we show that %6 is continuous. 

By (21) we need only prove that each xs.n is continuous, and we can use a proof 
similar to that of (3, Theorem 24.2, pp. 41-43). 

We now suppose that there is an exceptional set X with X countable, such 
that (11), (12), (13) need not be true if /, u are in X. Let G be the union of all 
admissible intervals (v, w) in (a, b), i.e. those intervals such that h is variation-
ally integrable with continuous x in [v, w]. Then by the first part, 

(22) (a, b) H Ê G Ç X, 

where SG is the complement of G. We prove the following. 

(23) If Xo = b, and if {xn} is strictly decreasing in (a, b], with limit a, such that 
(xjjXj-i) is admissible for j = 1, 2, . . . , then (a, I) is admissible. 

From (23), from a similar result with strictly increasing {xn}, and from Borel's 
covering theorem, we see that 

(24) each interval of G is admissible. 

It follows that EG contains no isolated points, and so is perfect. Since X is 
countable, it can contain no perfect component, so that (22) then implies that 
G = (a, b), which then is admissible from (24). 

To prove (23), let xij be a suitable continuous non-negative finitely super-
additive x majorizing \hs — H\ in [xjf Xj-i], with 

X7j(a, b) < e.2-3~\ 
and put 

X8 = X X7r 
3=1 

Then xs is a suitable continuous x for \hs — H\ in (a, b], with 

Xs(a, b) < Je. 

We construct a continuous finitely additive X9 that is suitable at the point a in 
[a, 6], with 

X9(a, b) < Je. 

By (3, Theorem 21.2 (21.13), p. 33), there is a d > 0 such that 
\H(a, u) — hr(a, u)\ < \e {a < u < a + 8 < b). 
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Thus we can put 

X*(a,v) = sup mini;- )l)\H(a,u) - hr(a,u)\, x*(a,b) < fe, 
a<u<a+ô \U — d / 

and prove (23). 
To show that (14), (15), (16) imply (11), (12), (13), we use (18), (19), 

obtaining 

lim sup\H(t, x)\ < 2~n (a < x < b), 

and hence that H(ty x) —•> 0 as / —> x— ; and similarly that H(x, u) —> 0 as 
u —» x + , a < x < b. Then 

# ( / , w) = H(t, x) + H(x, u) -> 0 (a < x < ft), 

and (11), (12), (13) follow, there being no exceptional set of t, u. This set X, 
with a countable X, could be added if desired. 

To show that (17) implies (14), (15), (16), we need only note the continuity 
of X3, and put 

x 6 Zn if n < k(x) < n + 1 {n = 1, 2, . . .). 

There remains question (3), in which we require x to be continuous and 
finitely additive. Theorem 1 is not strong enough to show the existence of such 
a XJ and we have to impose a slightly stronger condition than (17). 

THEOREM 2. In Theorem 1 let (17) be true for a continuous non-negative finitely 
additive X3- Then in the definition of the variational integral we need only use 
continuous finitely additive majorants. 

We have (18), (19) for suitable X4,n» A3tW. Using a difference as in (8), if 
necessary, we can assume that X4|W is finitely additive. But as in (8), the con­
tinuity of x m the sense (7) does not imply the continuity of xi\ we cannot 
assume that X4,w is continuous. By (19), it has an at most countable number of 
discontinuities, so that the union of the sets of discontinuities, for n = 1 , 2 , . . . , 
is an at most countable set F, which can be enumerated as a sequence {yj}. 
We cut out open sets containing the discontinuities. 

We write 
oo 

(25) Xl,n = XlO.n + S Jj,n, 

where xio,n is continuous and finitely additive, and where Jj>n is finitely additive, 
and zero except for a possible singularity at yjm As X4,n is bounded and non-
negative, we take intervals round yj with lengths tending to 0, to show that 
J j,n > 0 for all j , n. By taking intervals around the first k points of Y, we obtain 
in the limit 

k 

X4,n — S Jj,n > 0 , SO that XlO.n > 0 . 
3=1 
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There is no need to alter xio,K, but we have to majorize the J},n by continuous 
finitely additive interval functions. We have 

7 (a x\ = f° (* < Jl)' 
J,^a,x) yhn>0 {x>yj)t 

and we take t},n < y} < ujM, defining 

K^{a'X)-\qj,n ( *>y , ) , 

L- (a x) =i° (x<yj)> 

We define Kj>n(a, x) to be linear in thn < x < ^ ;, Ljin(a, x) linear in 

and then construct Kjin(v, w), Ljtn(v, w) by using differences ; and we obtain the 
following : 

Jj,n(Vj W) < Lj,n(v, W) (iV > Uj,n, V < w), 

Jj,n(v, w) < Kjyn(v} w) + Lj>n(y, w), 

if at least one of v, w is outside the interval (tjtnj ujtTl) .The open set 
CO 

3=1 

encloses F, and if the associated point of the interval [v, w) lies outside Gn we see 
by (18), (25), (26) and the convergence of 

CO 

Z^t °3,n 
3=1 

that the continuous, non-negative, and finitely additive function 

(27) xio.n + £ (Kj,n + Lhn) 
3=1 

majorizes %4,n» and so \H — hs\, for intervals of 2z,n and ^ 3 ^ . By (19) we see 
that (27) is bounded by 21~n. 

By continuity of X3> the points tj}Tl, ujtn can now be chosen so that 

(28) x*(tj,n,uj,n) <2-^~K 

For each interval [v, w) we define 

Vn(v, w) = V(Xzch(Gn;.)) [v, w]). 

Then since X3 is continuous, non-negative, and finitely additive, Vn(v, w) is 
the sum of the differences of xz over the intervals of Gn C\ [v, w], so that, by (28), 

(29) Vn < 2~2n, and Vn majorizes %3 in the intervals of Gn. 
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By (29) we can further define 
oo oo 

(30) xii = £ 2T„, M= n G„. 

To each x in M there corresponds & (x), and soanw = w (x) > p, such that 

(31) k(x) < 2n, 
andalsoaô3(x) > 0 such that 

(32) (x - 53(x), x + <53(x)) ç G„. 

Let 8B be the set of [t, x) in [a, ô] such that 

(33) x G M, n = n(x), x - t < 53(x), [/, x) G 82 H 83,n, 

and let 9î5 be the set of [x, u) in [a, 6] such that 

(34) x Ç M, n = n(x), u — x < <53(x), [x, u) G 9?2 H 9J3fW. 

By (17) and (29)-(34), 

(35) |A,(i;, w/)| < xn(«S w) (5 = /, [i>, w) G 85, ors = r, [v, w) G 9?5). 

We now have to majorize |ijT| for the same intervals. First we note that by 
definition the variational integral H is finitely additive. The continuity of H 
follows, as in Theorem 1, the deduction of (11), (12), (13) from (14), (15), (16). 
We define 

(36) xi*(a,w) = s u p ( G ) £ l # l 

for all finite sets Q of non-overlapping intervals from 85 O SK5 and in [a, w]. 
Clearly X12 is monotone increasing as w increases, and as in (9), the difference 
of X12 majorizes \H\ for all intervals of 85 H 9?5. TO show that xufa b) is 
finite, we use (18), (19), and (33)-(35). Then 

00 00 

\H\ < \h.\ + E < Xll + 2. X4,n, 

where s = / for intervals of 85, and s = r for intervals of ${5. Thus we obtain 

(37) X12 < xii + É X4.«, Xi2(a, b) < 22~p. 

This result does not clash with the fact that usually H is not VB*. For by 
(17), h8t and so H, are ACG* with respect to X3, while M has "xa-measure zero," 
in the older notation. Thus (37) need not be unexpected. 

Defining xi2(z>, w) as a difference, X12 is non-negative and finitely additive. 
Finally, to show that X12 is continuous in [a, b] we use proofs similar to that of 
(3, Theorem 24.2, pp. 41-42). 

For example, from 

lim xu(a, t) < xu(a, x) — e 
t->x— 
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for some e > 0, a < x < b, we deduce t h a t ei ther 

lim sup\H(t, x)\ > e, or lim sup \H(c, t)\ < \H(w, x)\ — e, 
t-$x— t->x—, v-^w 

for some w, x in a < w < x < 6. Both results are false by the cont inui ty and 
finite addi t iv i ty of H. 

Combining the above with (35), we see t h a t in 85 KJ 3J5, 

(38) \hs - H\< xi i + Xi2. 

Using (27) and (38), 

OO OO CO 

X13 = X XlO.n + E Z (^*,n + i j .n) + Xll + Xl2 
W=P 71=P .7 = 1 

majorizes |/zs — if| for some complete set in [a, b], where %i3 is cont inuous and 
finitely addi t ive , with xu(a> b) < 10.2_ p , t hus proving the theorem. 

As in Theorem 1 we could have allowed an exceptional set X with countable 
closure, since in the proof of (23), %g is cont inuous and finitely addi t ive. B u t for 
simplicity in Theorem 2 we omit ted ment ion of X. 

I t is now a ma t t e r of tas te whether the given proof answers the last question 
of the Int roduct ion. T h e proof omits all ment ion of the Denjoy integral , and 
even of the Denjoy extension of (3, §48, pp . 118-120), and goes back to the 
basic definitions. Whethe r the proof is shorter than the proof given in Saks (6) 
of a special case, together with proofs of the re levant propert ies of the Denjoy 
integral, is a debatable point. 

Turn ing now to the case of the plane of points (x\, x2), the basic definitions 
are as follows. In our divisions we use half-open rectangles ([wi, vi); [u2, v2))t 

i.e. ua < xa < va (a = 1, 2). Such a rectangle has four vertices t h a t can be 
numbered clockwise from the vertex (uiy u2) and can be used as associated 
points. For j = 1, 2, 3, 4, a family S J of half-open rectangles is j-complete in 
R = ([ai, bi]; [a2, 62]), i.e. the rec tanglea a < xa < ba (a = 1, 2), if to each point 
(xi, x2) t h a t is t h e j t h ver tex of some half-open rectangle in R there corresponds 
a half-open rectangle Rj(xi, x2) in R with j t h vertex (xi, x2), and called the 
defining rectangle of (S; a t (xi, x2), such t h a t every half-open rectangle in 
Rj(x, x2) wi th7 th vertex (xi, x2) lies in (&j. From these families @ ;(j = 1, 2, 3, 4) 
it is possible to construct divisions of the main interval (cf. 3, p . 101, Theorem 
41.1). Using divisions of this kind we define the variat ional integral in the plane. 
Our functions are functions p of the rectangles ([u\, vi); [u2, u2))} so t h a t we 
can write p as 

p(ui, vi; u2, v2). 

Such a rectangle function p is finitely superadditive in R if for each division 2) 
of each closed rectangle R* contained in R, and with sides parallel to the axes, 
we have 

(33) L P(ui, vi; u2, v2) < p(ai*, bi*\a2*y b2*). 
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Here, the half-open rectangles ([ui,vi); [u2, v2)) are disjoint, with union 
([#1*, £1*); [̂ 2*, ^2*)), the closure of this being P*. 

If equality always occurs, we say that p is finitely additive, while if — p is 
finitely superadditive, we say that p is finitely subadditive. Note that we cannot 
restrict our divisions to consist of only two rectangles, since a situation as 
illustrated by (3, p. 103, Figure 1 ) might occur. 

In place of the pair h = {hh hr] of interval functions we use a rectangle vector 
P = \Pj\ ij = 1» 2, 3, 4), each component pj being a rectangle function. Then 
p is of variation zero in R if, given e > 0, there are an E = \(£j} complete in R 
(i.e. Sj^'-complete in P , for j = 1, 2, 3, 4) and a non-negative finitely super-
additive rectangle function £ such that for half-open rectangles Pi , 

(39) £(P) < 6, 

(40) |^-(Pi)| < €(J?i) (22i QR,Ri£ &,j = 1, 2, 3, 4). 

The rectangle vector p is variationally integrable in R with variational integral 
P, if P is a finitely additive rectangle function with \pj — P\ of variation zero. 

The diameter diam(Pi) of a rectangle R\ is the supremum of the distance 
between any two of its points. Then the continuity in which we are interested 
is of the following type : 

(41) For each fixed (xi, x2) inR, £(Pi) —» Oasdiam(Pi) —> 0, ÎWJÂ 

RI Q R and (xi, x2) G Pi . 

Given a perfect set P* in the plane, we can construct an example similar to 
that for one dimension, for which each £ is discontinuous at some points of P*. 
It is clear also that a theorem and proof analogous to Theorem 1 and its proof 
are possible, so that I need only give the enunciation of the theorem. 

THEOREM 3. Let p be a rectangle vector with variational integral P in R, let X 
be a set in R with a countable closure, and let R be the union of sets Zn, with the 
following properties. For some complete set E in R, each j = 1, 2, 3, 4, and each 
(h, h) in SX, 

(42) p^Ri) - P(Pi ) -> 0 as diam(Pi) -> 0, P i G ®;', 

when thejth vertex of Ri lies in Zni and with (̂ 1,̂ 2) fixed inR\. Then in the definition 
of P we need only use continuous non-negative finitely superadditive majorants £. 

In particular, (42) is true ij for eachj = 1, 2, 3, 4, and each (t\, t2) in SX, 

(43) pj(Ri) ->0as diam(Pi) -> 0, P i <E S'', 

when the jth vertex of P i lies in Zny and with (tu £2) fixed in Rh- and also when the 
jth vertex of P i is fixed. 

In particular, if £1 is a continuous non-negative finitely superadditive rectangle 
function, ifk(xi,x2) > 1 is a point function, and if 

(44) \PJ(RI)\ < k(xl9 x2)£i(P0 (Pi G &,j = 1, 2, 3, 4), 

where (xi, x2) is thejth vertex oj Pi , then (43) is true. 
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Further, there is a theorem analogous to Theorem 2. 

THEOREM 4. In Theorem 3 let (44) be true for a continuous non-negative 
finitely additive £i. If in the definition of P we need only use non-negative finitely 
additive £, then we can also assume that they are continuous. 

A £ that is non-negative and finitely additive (even finitely superadditive) 
with %{R) finite can have an at most countable number of points, where £ is not 
continuous in the sense of (41). We proceed as in Theorem 2, taking a suitable 
sequence {£2,*}» and the union of the sets of discontinuities, for n = 1 , 2 , 3 , . . . , 
is an at most countable set that can be enumerated as a sequence 

{(yi,m,y2,m)}. 

We again cut out open sets containing the discontinuities, and follow the proof of 
Theorem 2, except that we replace Kjtn, LjtU by rectangle functions. The use of 
Kj,n in Theorem 2 ensures that for points z not in Gn, and for ys tending to 2 + , 
the rise in Kjjn(a, x) occurs as x tends to y j —. Thus the jump of Jhn at yi is 
spread over an interval that lies between z and y3-, and not beyond yJf resulting 
in the first of the two inequalities lying above (26). Similarly for Ljtn and the 
second inequality, for yj tending to z —. 

To obtain similar results in two dimensions, for (yi,m, y2,m) approaching a 
point (zi, z2) in a rectangle with j th vertex (zly z2), we have to spread the dis­
continuity of £2,71 at (yi,mi y2,m) linearly and continuously over a rectangle with 
j ' t h vertex (yi,m, y2,m) and j th vertex (titm,t2,m), where t h e / t h vertex of a 
rectangle is the one opposite to the j th ,i.e. 

f ^j + 2 (mod 4). 

For simplicity we could assume that the union of the four rectangles so chosen 
is a square with centre (yi,m, 3>2,m)- For example, when j = 4 , j ' = 2, we can put 

yn,m([tl,m, h,m + ^{yi,m ~~ tl,m)); [̂ 2,m, t*L,m + 5(^2,w — t2,m))) ~ àçtn,m 

for 0 < ô < 1, where qn,m is the jump of £2>n at (yltmi y2,m), with rjn,m = 0 for 
rectangles that do not cross the diagonal from (titm, /2(W) to (yi,m, y2,m), and with 
7jn,m finitely additive. The proof then proceeds as before. 

The preceding theory shows that in two dimensions the continuity of type 
(41) does not pose great problems. But even if (41) is satisfied, £(#i, xi; a2, x2) 
can be discontinuous as a point function ; for example, its graph could have a 
continuous cliff or escarpment. Such a discontinuity, however, does not seem so 
relevant to the theory as the crude discontinuity implied by the failure of (41). 

Also problem (1) does not have a trivial solution like that shown by (8), (9), 
(10) for interval functions. The corresponding results in two dimensions 
would include 

(45) p(ai,vi;a2,V2) — p(ai, Ui;a2,V2) — p(ah vi\a2, u2) + p(au Ui;a2l u2) 
> p(uu vi; u2, v2) (aa < ua < va < bai a = 1, 2), 
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with p = 0 for vanishing rectangles. But not every non-negative finitely super-
additive p satisfies (45), since for the five successive rectangles in (45), p could 
take the values 5, 3, 3 ,1 ,1 , with 

p(ui,vi;a2,u2) = 1 = p(ai, ux\u2, v2), p(ah v\\u2l v2) = 2 = p(uh vi;a2t v2), 

these being consistent with finite superadditivity. 
To construct a finitely additive rectangle function from £ we could begin 

with Xi alone, writing 

(46) £s(«i, »! ! u*> v2) = f (ai, vi\ u2y v2) — £(ai, ux\ u2j v2). 

By (46), £3 is finitely additive in the Xi-direction, and the finite superadditivity 
of £ gives 

(47) £3 > f. 

But £3 need not be finitely superadditive. For in the example in which nine 
values of p are given, the corresponding f3 has values 5, 3, 3, 1,1,2, 1,2, 2, and, 
in particular, 

Mtti, fi; a2, 2̂) = 2 < 3 = £8(tti, »i; a2, «2) + fs(«i, ?i; «2, v2). 

To remove difficulties of this kind, we could put 

(48) ?4(tti, vi\ u2j v2) = sup(2)) 2 £3(xi, yi; x2, 3̂ 2), 

the supremum being taken for all sums of £3 over divisions 3) of ( [ui, Vi] ; [̂ 2,̂ 2 j), 
with general rectangle ([xi, yi); [x2, y2)). However, £4 could be infinite, and so 
useless. For example, put 

£ 6 (0 ,» / (* + D ; 0 , l / n ) = 1 (» = 1 , 2 , 3 , . . . ) , 

while ^5 = 0 otherwise; and let 

£5(^1, »I; W2, W2) = sup (2)) £ £5, 

with supremum over all divisions 2) of ([wi, fli]; [^2,^2]). Clearly £5 is non-
negative and finitely superadditive, since 

£*(«!, V\\ U2, V2) 

__ jl (ui < 0, u2 < 0, vi > w/(w + 1), 2̂ > 1/w; w = 1, 2, . . .), 
\ 0 {otherwise). 

Corresponding to £3, we write 

£e(^ i , f i î «2, V2) = {5(0, » i ; «2, ^2) — £5(0, « 1 ; M 2 , V2). 

In particular, 

£e(^i, wi; 0, 1/n) = 1 («1 < w/(w + 1) < vi; n = 1, 2, 3 , . . .), 

and we can take U\ — wn, v\ = wn+i, where 

«o = §{0'2-i)+i2î/{i0' + i)}. 
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If a division 251 of ([0, 1]; [0, lj) uses such rectangles, for n = 1, . . . , m, and 
other rectangles, then for £7 corresponding to £4, 

(SDi) E £ e > w, £7 = +00. 

However, >̂5 is majorized by the finitely additive function 

11 (w^ < xj < Vj,j = 1,2), 

where (xi, x2) is a common point of the rectangles ([0, n/(n + 1)); [0, 1/n)). 
Thus %2 = 0, 0 < Xi < J. This same £g will serve as a majorant for similar p§, 
constructed for rectangles ([3/1, 1]; [0, 1]) with 0 < y\ < xi, in place of the 
original rectangle with 3/1 = 0, and so for the supremum of such £5; and there 
are more complicated examples. 

The preceding results are not quite good enough for variational integration, 
since by choice of E we can avoid the use of divisions such as 25i. Thus we put 

Rk= ([0,1/*]; [0,1/*]), 

p6,*(«i, n; «2, v2) = 2~kpb(kuu kvt; ku2, kv2), 
CO 

£7,4 = Z) £6.*, Pl,j = 0 ( j V 4). 

Let E be complete in ([0, 1]; [0, 1]). Then the only non-zero p7tj are those with 
j = 4 and (0, 0) as fourth vertex of the rectangles. There are two integers 
K\K such that Rk lies in the defining rectangle R of (S4 at (0,0), for all 
k > K',butiîk < K, the rectangles ([0,n/{k(n + 1)}]; [0, l/kn])(n = 1,2,...) 
cannot lie in R. Thus sums of p7tJ over divisions using &j (j = 1, 2, 3, 4) are 

l-K <E2" t=2 

and the variational integral of p7 is zero. But if we restrict divisions to be formed 
from rectangles from &j (j = 1, 2, 3, 4), changing pb to p7 , then the correspond­
ing £5 is the least majorant, relative to E and p7, that is used in variational 
integration. From this £5, we construct an £6- As petk > 0, it follows that the £6 

is not less than the £6 corresponding to a p6,k with k > K\ and the new 
£7 = + 00. Thus p 7 provides the required gegenbeispiel to show that we cannot 
construct a finitely additive majorant for p 7 by first taking a difference with 
respect to x\. However, p 7 is majorized by a finitely additive rectangle function 
constructed from £8. 

Similar results are obtained on taking a difference with respect to x2. For let 

£QOI, VI; u2, v2) = £5(^1, VI; a2, v2) — £ÔOI, vi; a2, w2), 

where a2 < 0. Then if L (x) denotes the integer part of x/ (1 — x), 

. / v ( l Oi < 0 < wi, w2 < 1/L(t;i) < ^2), 
* . ( « i , * i ; « . , * ) - | 0 ( o t t m p i 5 e ) . 
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The function corresponding to £7 that is constructed from this is again infinite. 
Thus two obvious ways of constructing a finitely additive rectangle function 

from a finitely superadditive one sometimes lead to useless results. Further, 
even though in the given example it is clear where to put a discontinuity, to 
obtain a £s, it may not be clear where to put a discontinuity in a more compli­
cated example, and problem (1) does not have an obvious solution. 

A little progress has been made in the simpler situation where a point function 
is integrated with respect to a simple rectangle function. The difficulty is to 
avoid the use of the inner variation, since a two-dimensional set of inner vari­
ation 0 is not always of variation 0. We begin as follows. 

THEOREM 5. If a pair |h| of interval functions is integrable in [a, b], and ifhc 

is the continuous part of h, while X is a set such that 

(49) IV(h;[a,b];X) = 0, 

then it follows that 

(50) V(frc\[a,b]\X) = 0. 

For proof we put together (3, Ex. 26.1, p. 47, and Theorems 31.2, p. 60; 
32.1, p. 65; 32.2, p. 67; 32.3, p. 68). 

THEOREM 6. If |h| is integrable, and if f is integrable with respect to h, with 
integral K, both in [a, b], then the derivative of K with respect to h is f except in a 
set X satisfying (50) ; and a one-sided derivative of K with respect to h is f on that 
side of a singularity of h for which the hs does not tend to 0 as the interval length 
tends to 0. 

We use Theorem 5, together with (3, Theorems 35.1, p. 78; 21.2, p. 33). 

If hn (n = 1, 2) are two pairs of interval functions, their {Cartesian) product 
ki = (hi, h2), a vector with four component rectangle functions, can be defined 
to be given by 

*u( / i , ^2) = hu(Ii)h2<r(l2) (j = 1, 5 = r, 0- = l\j = 2, 5 = I = 0-; 
j = 3, s = I, a = r;j = 4, 5 = r = a). 

We also define the following interval and rectangle functions : 
|k!| = (|hi| , |h2 |) , Vn{I) = V(hn;I), 

= jhns Vn/\hns\ (hns ^ 0), 
^ \ Vn (**. = (>), 
k2 = (qi, q2), k3 = (hic ,h2c), 

wherehnc is the continuous part of hn (n = 1,2), as in (3, Theorem 32.2, p. 67). 

THEOREM 7. Ifhn is variationally integrable and VB* in [an, bn] (n = 1, 2), 
then k i is variationally integrable in R = ([ai, bi]; [a2, #2]), with the integral the 
product of the integrals Hn ofhn(n = 1,2). 

https://doi.org/10.4153/CJM-1966-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-008-9


64 RALPH HENSTOCK 

Let xi4n majorize \hns — Hn\ (n = 1, 2). By (8) we can assume xun to be 
finitely additive. Then for intervals / i , 1% in the appropriate left-complete and 
right-complete families, and by (3, Theorem 31.1 (31.1), p. 59), 

\hu{Ix)hu{U) - ffi(/i)ffi(Jî)| = I (Ai. - ffiXAar - Ht) + Ht{hu - Ht) 
+ H2(hls- HÙI 

< \hu ~ Hi\ • \hu ~H\ + \Ht\. \hu - Ht\ + \H,\. \hu - m\ 

< xu\h)x^(h) + F i d O x u 2 ^ ) + F J W X H ' W , 

the last sum being a non-negative finitely additive rectangle function with 
value for R as small as we please. Hence the result. 

Note that if, for example, R is divided as in (3, Figure 1, p. 103), and if %un 

is only finitely superadditive, then we cannot show that the final sum is finitely 
superadditive for this division. 

THEOREM 8. Let \hn\ be variationally integrable in [an,bn] (n — 1,2). Then |ki| 
is variationally integrable in R with integral 

i£ i + ( / i , / 2 ) = F i ( / i )7 2 ( / 2 ) , 

and ki is variationally equivalent to k2. 

Theorem 7 and (3, Theorem 31.2, p. 60) give the results, noting that 

|*i , - *2,| = | |*i, | - Vx Vi\ = | |*i, | - tfi+|. 

THEOREM 9. Let \hn\ be variationally integrable in [ant bn] (n = 1, 2). If the 
components ofk^are rectangle functions, then 

(51) £>(k4,ki;i?; (x1} x*)) = D(k 4 ,k 2 ; i ? ; (xl9x*)), 

or else both do not exist, except for (xi, x2) in a set C with 

(52) V(kz]R;C) = 0 . 

The D-îunctions in (51) are two-dimensional strong derivatives analogous to 
derivatives of (3, Chapter 4). The result is analogous to a special case of (3, 
Theorem 34.2, p. 75), avoiding inner variation. 

First, if Xn is a set with 

(53) V(hnc;[an,bn];Xn) = 0 , 

then |hnc|ch(Xw; .) is variationally integrable to 0 in [an, bn], where ch(X; .) 
is the characteristic function of X. By Theorem 8, the set Cn of (xi, x2) with 
xn € Xm a, < Xj < bj (J y£ n) satisfies 

(54) V(k,;R;Cn) = 0 (n = 1,2). 

Secondly, hn is variationally equivalent to qn, by (3, Theorem 31.2, and 

\hnS — Qns\ = ||An.| ~ Vn\. 
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Hence by Theorem 5 and (3, Theorem 34.1 (34.5), p. 74), given 0 < e < 1, 
there are sets Xn

l satisfying (53), such that for intervals of some ?6
W W %w 

with associated points not in Xn
l, then 

mns = \hns — g„,|/|A»,| < e. 

Thus if the associated point of the rectangle in question is not in the corre­
sponding C = G 1 W C21, which satisfies (52) by (54), we have 

\klj ~ k2j\ = \hU h2<r — qis <Z2<r| 

= \(hu ~ q.u)(h2(T - q2<r) + h2<T(qls — hu) + hls(q2<r - h2<r)\ 

< \hu h2„\ («1, m2(T + mu + ni2<T) < 3e|&i;|, 

for In in ?6
W \J 9?6W- If, now, we have 

\kij — D.k2j\ < €|&2;|, 
it follows that 

|Jfe4, - £>.£i,| < c|*i,| + (|J9| + e)\k2j - kij\ < (4 + 3\D\)e\ku\. 

Hence if the right-hand side of (51) exists, so does the other side, with equality, 
except possibly in C. Similarly, if the left-hand side of (51) exists, so does the 
other side, with equality, except possibly in C. 

THEOREM 10. Letf be a point function in [any bn] such that 

(V) Cf(.)dqn, (10 C \f(-)\dVn 
*>an •>an 

exist. Then there are a complete set A7, a function gn(xn) = ± 1 of xn alone, and a 
set Xn

2 satisfying 
(55) V(Vn;[an,bn];Xn>) = 0, 

such that if xn is the associated point of I in ?7 \J 9J7, with the appropriate s, 
and if xn is not a singularity of Vn, 

(56) either hn,(I) = \hns(I)\gn(xn), or f(xn) = 0, or xn G Xn
2. 

If xn is a singularity of Vn, so that xn $ Xn
2, then (56) holds on the side of xn on 

which a discontinuity of Vn occurs. 

By (3, Theorem 34.3, p. 76 and Example 34.2, p. 78), 

on\ ; xn) 

exists for all xn save those of a set Xn
z satisfying 

IV(Vnc;[an,bn];Xn*) = 0. 

Removing from Xn
z the singularities of Vn, and using Theorem 5, we obtain (55). 

But as hns(I) is real, 

f(* \n m/v m - if(xn)Ks(I)/\hns(I)\ = ±f(xn) (hns(I) ^ 0), 
n*n)qnsV)/ VnW - | / f e ) ( ^ < ( / ) = ^ 
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This gives (56) when xn is not a singularity of Vn. 
Now the variational integral Hz>n of/ with respect to qn is finitely additive 

and VB*, so that Hz>n(t, x) and HzfTl(x, u) tend to finite limits for t < x < u, 
as /, u —» x. Hence by using (3, Theorem 21.2 (21.12, 21.13), p. 33), we finish 
the proof. 

THEOREM 11. Let |hw| be variationally integrable in [an, bn], for n = 1, 2, and 
let f be a point function in R. Iff is variationally integrable in R with respect to 
ki, with integral K2l then the point functions 

M*i) = (V) f2f(xh.)dh2l J2(x2) = (F) f l/(-.*2)<flii 

exist, except for xn in some Xn
A satisfying 

(57) V(hn;[anibn];Xn*) = 0 (n = 1,2), 

and also 

(V) (njndhn = K2 ( » = 1,2). 

We use (3, Theorems 31.2, p. 60; 44.2, pp. 109-110). 

THEOREM 12. Let |hw| le variationally integrable in [an, bn] (n = 1, 2), and 
letf be a point function in R. If 

K2(.) = (V)Jfdkly K2+(.) = (V)S\f\dVi V2 

exist in R, then for the gn of Theorem 10, in an obvious notation, 

K2= (V)Jf.gi.gidViV* 

By Theorem 8 and the two-dimensional analogue of (3, Theorem 31.3, p. 62), 
we can replace k i by k2 in K2. Also, if 

R* = ( K i J î k f l ) ÇR, 

then Theorem 11 gives 

Kt(R*) = (V) £ { ( F ) £f(xu.)dq^dqu 

(V) C (V) Çfix,,.) dqldV, < (F) P UV) f \f(xh .)\dv\dVu 

the integral on the left existing by (3, Theorem 25.2, p. 45). Hence by Theorem 
10 there is a set X\h satisfying (55) for n = 1, such that if x\ is not a singularity 
of Vu and is not in Xi5, then for intervals in a neighbourhood of xu with xx as 
associated point, and with the appropriate s, either 

(58) hu(I) = | M / ) | * i ( * i ) , 

or 

(59) (V) jj(xu.)dq2 = 0. 
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We have a similar result when xi (? Xi5, x\ a singularity of Vi in [ai, Z>i], 
if we restrict s to correspond to the side or sides on which a discontinuity of 
Vi occurs. 

We now take a countable number of a < /3, each everywhere dense in [a2, b2], 
and including all the discontinuities of V2 in [a2, b2]. The union of the corre­
sponding sets X15 is another set X16 satisfying (55) for n — 1. Also, as (58) is 
independent of a, /3, (58) is true if at least one choice of the given a, 0 falsifies 
(59). If, however, (59) is true for all the chosen pairs a < f$, we use Theorem 5 
with (3, Theorems 34.2, p. 75; 34.3, p. 76). Then, except in a set X2

G(xi) 
satisfying 

V(V2c;[a2yb2];X2^x1)) = 0 , 

we have 

D(f(xi, x2)q2, V2; [a2, b2]\ x2) = 0, ± / (* i , x2) -> 0, f(xh x2) = 0. 

Each discontinuity x2 of V2 in [a2, 62] occurs as an a and as a 0, unless x2 is at 
an end of [a2, 62], when only one choice holds. Taking [a, 0] on one side in 
[a2, b2] of x2 where a discontinuity of V2 occurs, with a = x2 or /3 = x2, using 
(3, Theorem 21.2 (21.12; 21.13), p. 33), and the finite additivity and VB* 
property of the integral in (59), we again find that /(#i, x2) = 0. Thus we 
prove: (60) Result (58) is true for xi & X16, with a possible restriction of 5 
to that side of X\ where a discontinuity of V\ occurs in [#i, b\]\ unless 
f(xi, x2) = 0 except in a set X2

6(xi) depending on x\ and satisfying (55) for 
n = 2. 

We now examine the set C% of (xi, x2) where/ = 0. By the two-dimensional 
analogue of (3, Theorem 38.2, pp. 90-91), the characteristic function of C3 is 
variationally integrable with respect to V\ V2 in R. Also using Theorem 11, 
if 

X2
7(xi) = {x2: (xi,x2) G C3}, fi(xi) = V(V2; [a2, b2]; X2

7(xi)), 

then /1 is variationally integrable with respect to V\ in [ai, ôi]. Hence by (3, 
Theorem 38.2, pp. 90-91 ), the characteristic function of the set XÎ1 where 

(61) /i(*i) = V2(a2, 62), 

is variationally integrable with respect to V\ in [ai, b\]. Hence, using Theorem 7 
and the two-dimensional analogue of (3, Theorem 25.1, p. 43), putting —hsj 

for hsj, if C4 is the set where Xi Ç Xi7 and (xi, x2) G C3, the characteristic 
function of Ci is variationally integrable with respect to Vi V2. Subtracting this 
characteristic function from 1, we see that if C5 is the set where x\ Ç X17 and 
(xi, x2) i C3, the characteristic function of C5 is also variationally integrable 
with respect to Vi V2l and so with integral equal to V{V\ V2; R; C5) over R. 
For each x\ £ X\7 let X2

s(xi) be the set of x2 where/(xi, x2) 9e 0, and so where 
(#1, #2) € C5. Then by Theorem 11, the characteristic function oiX2

8(xi)) 
is variationally integrable, except possibly for a set Xi8 of Xi satisfying (55) 
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with n = 1. Since 

XJipd) U X2
8(xi) = [a2, 62], ^27(^i) r\ X2

8(xi) = 0, 

we use (61) and (3, Theorems 19.1, p. 27; 31.2, pp. 60-61) to show that X2
8(xi) 

satisfies (55) with n = 2. Thus we can identify X2
8(xi) with X2

6(xi), and we also 
have 

(62) V(V1V2;R;C,) = 0. 

From (60 and 62) and the two-dimensional analogue of (3, Theorem 31.3, 
pp. 62-63), we obtain the replacement of qi with gi(xi) V\. No trouble occurs 
with the discontinuities on the sides of the lines in two dimensions where the 
Vn are continuous, since the lines are countable in number. 

We can now repeat the proof, interchanging xi and x2, etc., finally showing 
that we can also replace q2 by g2(x2) V2. Hence the theorem holds. 

THEOREM 13. Under the conditions of Theorem 12, suppose that 

D(K2, Vi V2;R; (xhx2)) = f(xh x2)gi(xi)g2(x2), 

except for a set C% satisfying (52). Then 

D(K2j k i ; i ? ; (xi, x2)) = /(xi , x2), 

except for a set Cn satisfying (52). 

We use Theorems 9 and 10 to show that, except for a set C7, if/(xi, x2) 9^ 0, 

Z>(X2,ki;i?; (xi,x2)) = D(K2,k2;R; (xb x2)) 

= D(K2j Fi V2;R; (x1? x2))/{^1(x1)g2(x2)}. 

Hence the result follows. 

We have therefore reduced the problem of strong differentiation to one in 
which the integrator k i is of the form V\ V2l non-negative and finitely additive. 
In the case when Vn(u,w) = w — u (n = 1,2) we have the theorem of Jessen, 
Marcinkiewicz, and Zygmund, (cf. 6, pp. 147-149). To reduce our problem 
to this, we put 

xn+2(an) = 0, xw+2(x„) = Vn(anj xn) (an < xn < bn, n = 1, 2) . 

Note that if Vn(uny wn) = 0, then xn+2(un) = xn+2(wn). But nothing is lost since 
by Theorem 8 the V± V2 for 

([uh wi], [a2, b2]), ([ai, bi], [u2l w2]) 

are 0. The transformation is the two-dimensional analogue of that in (3, 
Theorem 23.1, p. 35), while the integral is simpler. The <j> there corresponds to 
the Vn here, and conditions corresponding to (23.3) are satisfied. But a critical 
examination of the proof shows that it is assumed that 4> is continuous. As the 
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Vn can have discontinuities, we have to allow for these in the transformation. 
We define 

fi(xi,xù = fz(xz(xi),xA(x2)) = f(xi, X2)gi(xi)g2(x2), 

where if (uni wn) is a maximal interval with xn+2(un) = xn+2(wn), the value of/3 

is taken with xn = un, disregarding the points of (un, wn), which contribute 
nothing to the integral. This defines / 3 except for strips due to discontinuities 
in the Vn. 

For example, let Xi be a discontinuity of V\ on the right. Then 

^3(^1+) — ^3(^1) = lini Vi(xi,xx + h), = Vi(xh Xi+), 

say, and there is a gap in the transformed plane of width Fi(xi, Xi+). Similarly 
for discontinuities of V\ on the left, and discontinuities of V2. In the gap we 
define 

fzipcz, x4(x2)) = f(xi, x2)gi(xi)g2(x2) (x3(xi) < x3 < xz(xi+)), 

so that, for fixed X2,fz is constant in the gap. Similarly for other gaps. Then the 
contribution of the gap to 

(V) f f*d(xhx2), R+ = ([0, 7i(ai,6i)], [0, V2(a2, b2)]), 

in an obvious notation, is 

/(*!,.)«*(• )dVl.g1(x1). Vi(xu * i + ) , 
G2 

which is the contribution of the discontinuity of Vi on the right of x\ to 

(V) ( f.gl.g2dV1V2. 

Summing over the discontinuities, the sum being absolutely convergent since 
the integral is an absolute integral, and using a proof like that of (3, Theorem 
23.1, p. 35), we find that 

(V) j f.g1.g2dV1 V2 = (V) jRJ*d(xhx2). 

The integral on the right is then equal to the corresponding Lebesgue integral, 
since it is an absolute integral. To apply the strong differentiation theorem we 
need a stronger condition than this, namely, the absolute integrability of 
/ . log+1/ | , where 

log+|/| = max(log|/| f0). 

Further, rectangles tending to (xi, x2), where one of the xn is a discontinuity 
of the corresponding Vn, sometimes transform into rectangles whose diameters 
do not tend to 0, because of a gap. Thus we have to deal separately with dis-
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continuities in a way analogous to Theorem 6. Using also Theorems 12, 13, 
and the strong differentiation theorem, we obtain the following theorem. 

THEOREM 14. Let |hn | be variationally integrable in [an, bn] (n = 1,2), and let f 
be a point function in R. If 

* . ( . ) = ( V)jf dklt ( F)/l/l log+|/| d V1 V, 

exist in R, then 

D(K2j k i ; R) (xi, x2)) = f(xu x2) 

except for a set C% satisfying 

F(k3 ; i?;C8) = 0 . 

Also y a single-quadrant derivative of K2 with respect to ki is f in that quadrant 
near to a singularity ofVi\for which the h\s h2a does not tend to 0 as the diameter 
of the rectangle tends to 0. 

Theorem 14 is of interest in itself, since we have widened the scope of the 
strong differentiation theorem. Note that we have not needed the integrability 
of the hn themselves, so that our result is not a simple transformation of the 
strong differentiation theorem for Lebesgue integrals. 

We use Theorem 14 to obtain finitely additive £ in some cases. 

THEOREM 15. Under the conditions of Theorem 14, 

(63) \K2 - f.hlsh2a\ 

is majorized by non-negative finitely additive rectangle functions £i0 with %io(R) 
arbitrarily small. 

As \hn\ is variationally integrable, we have 

(64) 11 ,̂1 - VH\ < xnn in = 1,2) 

for appropriate intervals, where xi5w is non-negative, and finitely additive with 
Xi5w (a„, bn) arbitrarily small, by (8), (9), (10). Now let e > 0. Then by (64) 
and Theorems 12 and 14, except in a set Cs satisfying (52), and for rectangles in 
j-complete families, we have 

(65) \K* -f.hlsh2ff\ < e\hlsh2ff\ < e(7i + Xi51)(^2 + Xi52). 

The last product is clearly an arbitrarily small non-negative finitely additive 
rectangle function. Also (65) is true in a quadrant connected to a discontinuity 
(xi, x2) of ki, in which h\s h2a does not tend to 0 as the rectangle tends to its 
associated point (xi, x2). 

For the quadrants where h\s h2<T —•> 0 we enumerate the discontinuities of 
k i and at the rath discontinuity (xi, x2) we put jm(i?') = e.2~m when R' has 
(xi, x2) as associated point, and otherwise jm(R') = 0. Then 

v(tdjm;R') 
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is a non-negative finitely additive rectangle function majorizing the expression 
in (63) for these quadrants, and is arbitrarily small. 

Hence to prove (63) we need only deal with the points of C9, those points of 
the set C% satisfying (52) that are not singularities of ki. Thus C9 satisfies 

(66) V(V1V2'fR;C9) = 0. 

From (66), given e > 0, there are an Ei complete in R and a £n, non-negative 
and finitely superadditive, with %n(R) < e, such that if Rf is in ©i; with 
associated point in C9, then 

(67) Vt V2(R') < Hn(R'). 

If U is the union of these Rf> there is an open set G with 

(68) C9 C G C U, V(Vi V2; R; G) < Zn(R) < e. 

For take a mesh like xn = (2m + l)2~a, for n = 1,2, and integer values of 
ra, a, that avoids the singularities of Vi and of V2. Rectangles formed from lines 
of this mesh can be put as a sequence {Rm}. Let Xm

9 be the set of points (xi, x2) 
of C9 such that Rm ^\ R lies in the union of the four (or less) defining intervals 
at (xu oc2) with (xi, x2) in Rm. If rectangles R\ = Ru R'2y . . . , R'm have been 
defined, with open union Um and complement Ê£/m that is the closure of an 
open set, and if C9 £ Um, then Um = G is a suitable set. Otherwise, let nti 
be the first integer such that some point of Xm^ is in fë£/m. Since Um is a finite 
union of rectangles, with S£/m the closure of an open set, SZ7m P\ Rmi can be 
divided into a finite number of rectangles, where, inductively, the sides belong 
to the mesh. Let R'm+h R'm+z, . . . be those rectangles of the finite number that 
contain points of Xmi

9 in their closures, including such boundary points with 
R'm+i, . . . so that the unions Um+i, . . . are open and the EC/^+i, . . . closures 
of open sets. Then if (xi, x2) is a point of Xmi

9 in 5'TO+i, this rectangle splits into 
1, 2, or 4 rectangles by lines through (xi, x2) and parallel to the axes, and by the 
finite superadditivity of £n, R'm+i satisfies (67). Thus by induction, {Um} 
is defined, the limit set being an open set G satisfying (68), since 

oo 

V(V! V2;R;G) = lim V(V, V2;R; Um) = E Vl V2(Rm') 

< £ bl(Rm') < bl(R) < 6. 
w = l 

In the notation we have disregarded boundary points of R'm. 
Similarly, we can prove that if £i2 is non-negative and finitely additive, 

if e > 0, and if X10 C R, there is an open set Gi 3 X10 such that 

(69) 7(£i2; R;G{)< F(?12; R; Z10) + e. 

I t follows also that by an analogue of (3, Theorem 49.1, p. 121), the outer 
^-measure ofX10 is equal to F(£i2; R; X10). 

https://doi.org/10.4153/CJM-1966-008-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-008-9


72 RALPH HENSTOCK 

By (64 ; 68), h\s h2a (R
f) is majorized at points of C9 by 

cn(o;Rf) = V{V\ V2;R;GnR') + VlXn2(R') + Xis1 W ) + x u W C R ' ) . 

this being a non-negative finitely additive rectangle function with arbitrarily 
small value ô > 0 for R. To majorize//zis h2(X in C9 we use 

tu(.)=i,2ntu(8m;.) (dm<e.4Tm). 

Also, since K2
+ is AC*, by the analogue of (3, Theorem 40.1, p. 98), we obtain 

V(K2+\ R] C9) = 0 from (52), and then from (69) there is an open set G2 2 C 9 

such that 
V(K2+;R;G2) < e. 

Hence K2 is majorized in C9 by 

V(K2+; R\G2C\Rf), as \K2\ < K2+. 

It follows that the expression in (63) is majorized in C9 by a non-negative 
finitely additive rectangle function that is arbitrarily small for R, completing 
the proof of Theorem 15. 

THEOREM 16. Let | h j be variationally integrable in [an, bn] (n = 1,2), and 
let the point function f in R be such that 

K*(.) = (V)jfdk1, * , + (.) = (V)J\f\ dV1 V2 

exist in R. Then (63) is true. 

We replace \k\j\ = \h\sh2a\ by Vi V2 in K2 and (63), by using Theorem 12 
and (64). For at the points where |/| < 2m we use the xnn with 

Xnn(*n',Pn) < 6.4—. 

This needs a combination of j-complete families (j = 1, 2, 3, 4) analogous to 
that arranged in (3, Example 16.9, p. 24), there being a countable number of 
7-complete families involved. The combination is also j-complete. This con­
struction has been used several times in the paper. Hence we can assume in the 
rest of the proof that hns = Vn (n = 1, 2). Let us put 

fi = m (m <f <m + l;m = 0, ± 1 , ± 2 , . . .). 

Then by the analogue of (3, Theorem 38.2, pp. 90-91), f\ is variationally 
integrable with respect to Vi V2, while 0 < / — / i < 1. Hence f — fi satisfies 
the conditions of Theorem 15, so that we can concentrate on/ i . Let Xm

u be the 
set where/ i = m. If for a point (xi, x2), fi = M, then for rectangles lying in 
some @2,m» with associated point (xi, x2), and for non-negative finitely additive 
rectangle functions £i5

m, we have 

\(V)fch(XM"; .)dVi V2 - V, V2\ < f15
M, 

| (V) jch (Z w » ; . )dV 1 V 2 \< ?15
w (m9*M), 

£lb
m(R) < e/{ (\m\ + 1)2W} (m = 0, ± 1 , ± 2 , . . .). 
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These results follow from Theorem 15. If, now, we put 

m=-N 

and combine the (B^, M in sets X M
n to obtain an (g^, and if XN

12 is the set where 
| / i | > N, we obtain 

\K2 - / x Vi 7 , | < £ H (F) fd i (X m
u ; OdPi F2 

+ (F) J"|/i|ch(XW"; •)dV1 V, + \M\ J (V) jch(XM
n;.)dV1 V, - Vi Vt\ 

< £ H - W + ( F ) f|/i[ch(ZJV
12;.)iF1F2+ \M\iu

M. 

The last sum is non-negative and finitely additive, while the value for R is less 
than 

4 e + (V) f | / i | c h ( ^ 1 2 ; . ) ^ i ^ 2 . 
*J R 

As N —> «J, this last integral tends to 0, so that we have proved the result. 

Theorem 16 gives a non-trivial extension of Marîk's result for Lebesgue 
integrals, non-trivial since we do not assume that the hn are variationally 
integrable. It seems a very difficult question to extend (63) to the case when K2 

exists as a non-absolute integral. One difficulty is the majorization of 

(V)fficHX„";.)dViV*9 

and a second is the obtaining of a result like Theorem 12. It is possible to extend 
the results of this paper to higher dimensions. In fact, if a result corresponding 
to Theorem 16 is true in two spaces, then it seems likely to be true in the 
Cartesian product of the two spaces, a crucial theorem probably being Theorem 
7. 

Two results especially have independent interest, namely, the extension of 
the strong differentiation theorem given in Theorem 14, and the connection 
between outer measure and variation in special cases, given just after (69). 
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