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Abstract

A probabilistic proof is given of the fact that the departure process
from two initially empty.. / M /1 queues in tandem is unaffected when
the service rates are interchanged. As a consequence of this, we show
that when the sum of the service rates at the two queues is held
constant the departure process stochastically increases as the service
rates become equal. The proofs are based on coupling of reflected
random walks.
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1. Introduction

Consider two initially empty ./M /1 queues in tandem. Service rates are IJl' IJ2 in
nodes 1 and 2 respectively. For a fixed, but arbitrary, sequence of arrival times at node
1 denote by (D t ) the departure process from node 2. Denote by (D t ) the same process
when IJI and IJ2 are interchanged. In Weber (1979) it is proved that (D t ) ~ (D t ) . This is
done by computing the joint characteristic function of the interarrival times of the
processes. The same result is proved in Anantharam (1985) using the filtering equations
for the ·/M /1 queue. Lehtonen (1986) uses involved pathwise arguments to obtain this
result. Furthermore, he shows that, subject to IJI+ IJ2 = IJ, (D t ) is stochastically
increasing as IJI~ IJ/2 monotonically.

In this note we provide a simple probabilistic proof of interchangeability and show
that monotonicity is a consequence of it. The proofs are based on elementary fact about
random walks. These are stated and proved in Section 2. They are used in Section 3 to
prove the- results.

2. Results on random walks

2.1. Definitions. Let (;i)~=O be i.i.d. random variables such that

;i={+1, w.p.q
-1, w.p. p =1- q,
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Define (~i)i as above with p and q interchanged. Define the unstable reflected
random walk X o=0, Xn+1 = (Xn+ ;n+l)+«X)+ = max (0, x». Also define times (Tk);=o,
(Sk);=l as follows (see Figure 1):

To=O,
Sk+l = min {n > T; :Xn+ 1 > Xn, XI =X; for some I> n},

Tk+ 1 = min {n > Sk+l:X; = X S n + 1} ,

k~O,

k~l.

Call

k~l,

the busy cycles of (Xn ) .

In words, when (Xn ) is way from 0, a busy cycle starts at a point of increase of its
path if (Xn ) returns to the same level and never falls below that level in the future. The
same holds trivially when (Xn ) is at 0.

The random quantities Xn , t: s; Bk are defined similarly in terms of the ~;'s.
Note that X Sk =X Tk=°with probability 1 and thus the (Bk ) correspond to the usual
busy cycles of the stable reflected random walk (Xn ) .

2.2. Lemma.

(a) Bk ~ Bk , k ~ 1.
(b) Sk+l - Tk~ Sk+l - t; ~ Y -1 where Y is geometric with parameter p.(V 4 W

means that the random quantities V and W have the same distribution.)
Furthermore, the elements of the sequences (Bk) and (Sk+l - 4) are independent.

Proof. (a) We first state a basic fact that will be used repeatedly. For I > 0, define
rl ~f P{mink>o E~=l ;i ~ -I}. The r/s uniquely satisfy the relation

r, =prl-l + qrl+ 1 ' I > 0, with ro= 1,

and one verifies that rl = (P/q)1 (see e.g. Shiryayev (1984). As a consequence of this
fact,

~{min x, = I} =~{min x, > o} - ~{min x, > I}
k~l k~l k~l

Pm+/{minx, =m}
kii:l

where ~{.} denotes the probability of an event given that X o= I.
Given X Sk =m and that X; =m + I for some Sk < n < Tk,

Pr {Xn+l =m + 1+ I} = Pm+!{Xl =m + 1+ 1 I~~ x, =m}

Pm+/{X1 =m+ I + I}Pm+l+l{minx, =m}
k~l

---------------=p.

Thus, during Bi, (Xn ) behaves as if p and q have been interchanged, i.e., Bk 4 Bk •

https://doi.org/10.2307/1427433 Published online by Cambridge University Press

https://doi.org/10.2307/1427433


Letters to the editor

(b) ForXTk=O, Po{Xl=llmink~aXk=O}=q(P/q)=p,andforXTk=I>O,

p,{minXk = II minXk > I-I} = p'+l{minXk = II min x, > I-I}
k~l k~l k~l k~l

p,+l{min Xk = I}
k~l

p,+l{min x, > I - I}
kii:l
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This shows that P{Sk+l - Tk~ n ISk+l - Tk~ n -I} = q. In words, when (Xn ) is not
in a busy cycle, the probability that one begins at the next step is p and the trials are
independent at each step. This is easily seen to be true for the busy cycles of (Xn ) also
and the result follows.

To prove independence of the (Bk)'s we argue as follows. Let F = a{Xs , s ~ m} (or
G = a{Xs , S > m}) be the a-field generated by (Xk)k up to and including (respectively
after) time m. Then B = {mink>m X; > I} E G for alII ~ 0. For events A E G and C E F,

P(A C IB X ) = P(A, B, C IX m)
, ,m P(B IXm )

=P(A, B IXm)P(C IX m) =P(A IB X )P(C IB X )
P(B IX m) ,m, m·

This also proves independence of the (Sk+l - Tk)'s.

2.3. Remark. As a consequence of Lemma 2.2, proces~es (Xn ) and (Xn ) can b_e
constructed on the same probability space such that Bk = B; and Sk+J - Tk = Sk+l - Tk
a.s. for all k. As indicated in Figure 1, one obtains a s_ample path of (Xn ) from a simple
path of (Xn ) by setting X; = 0, for 4 ~ n ~ Sk+l and B, =_Bi, k = 0, 1, .... Lemma 2.2
then ensures that the marginals of the joint process (Xn , X n ) are identical. Note that the
points of strict decrease for the two processes coincide because they are contained in
the busy cycles.

J~ ~~ d'\xn~n
TOS 1 T1 8 2T 2-S3 T384 T4 ~5 T,s

t
i l , I I I I
I I I : ~,I
I I I I I I I
~ I' i I I
I I I I I IXn
I I: I I I
, I I I I
I I' II I, I
I I I

n

Figure 1.
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Figure 2.

We next prove an ordering result on the points of strict decrease of reflected random
walks.

2.4. Lemma. Take p' <p ~ 1/2 and denote by (d;) and d;) the strictly decreasing
points of the corresponding random walks denoted by (Xn ) and (X~). Then (d;) ~ (d;),
i.e., d; ~ d; for all i.

Proof. Let (11;)~=o be i.i.d. random variables such that

{

I , w.p.p'

11; = 0, w.p. a
-1, w.p.p,

where a = 1-P - p'. Define (ii;) likewise with p and p' interchanged. We shall make
use of the auxiliary reflected random walks (Yn ) defined as

~=~=o, Yn+1 = (Yn+ 11n+l)+'
Yn+1 = (Yn + iin+l)+' n =0,1, ....

Denote the points of strict decrease of (1:), (y:.) by (dT), (aT) respectively. Define
(m;) = {II 111 = O} and (m;) likewise. We can construct (11;) and (ii;) such that
(m;) = (m;). By Lemma 2.2 we can further arrange the construction so that (dT) = (dT).

We now obtain versions of (Xn ) and (X~) from (1:) and (~) respectively by defining
(see Figure 2)

X
o
= 0, X { x, + 1, if n + 1 e (m;)

n+l (Xn+ 11n+l)+' otherwise.

Similarly, (X~) is constructed from (ii;). It is easy to check that p{Xn+ 1 = X; + I} =
1 - P and P{X~+l =X~ + I} = 1 - p'. It remains to show that (d;) c (d;) in this
construction.

From the fact that (d;)::>(dT) =:. (aT) c (d;), (see Figure 2) it suffices to consider
1e (d;) - (dT). For such I, ~-l = ~-l = 0, 111 = iii = -1 and X:- 1 > Q. But (m;) = (m;)
and hence_XI _ 1 >0 which implies Ie (d;). Finally, note that (d;)-(di) is finite w.p. 1
because (1:) is an unstable reflected random walk whereas (d;) - (di) is infinite w.p. 1
because (1:) is stable. Thus, the inclusion is strict with probability 1.
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3. Proof of the queueing results

3.1. Definitions. Denote by (A:), (A;) right-continuous versions of the virtual service
processes in nodes 1 and 2 respectively. By virtual service process at a node with an
exponential server we mean a Poisson process the points of which correspond to service
completions whenever the node is not empty. As before, we consider a fixed, but
arbitrary, se~uence of arrival times at node 1. We discretize time by only considering
points of (At) U (A;). We denote the process of customers in nodes 1 and 2 at these
times by (z~, z~).

Assume III > Ilz and define (Xn ) a~ in the previous section with ~; = AAJ - ~:
(hence q = 1l1/(1l1 + Ilz)). Construct (Xn ) pathwise from (Xn ) as before. Note that in
continuous time this corresponds to a construction of processes (A:), (A;) with rates Ilz,
III respectively from (A:), (A;). In this construction, A: ~A: for all t ~ o.

Write C (or 1) for the set of points of strict decrease (respectively increase) of (Xn )

and observe that C = C (or 1 c 1). Let (n i ) ; be the arrival points with the convention
that each arrival point gets identified with the nearest embedding point to its left.
Finally, let (d;)i C C be departure points (Z~i = Z~i-1 - 1) and let (ti)i C 1 be the points of
intermediate transitions (z~ = Z~-l + 1).

3.2. Remark. Suppose there is an infinite supply of customers in node 1. The
departure process from node 1 is_ then Poisson and X; = z~ (respectively X~ = z~). By
Remark 2.3, this implies (d;) = (d;) = C = C, i.e., starting with an empty·1MII queue
we can interchange the arrival and service rates without affecting the departure process.

We proceed with the following result.

3.3. Lemma.
(a) z~ ~ z~, all m.
(b) z;. ~ z;', all m.

Proof. Part (a) holds because arrivals are the same for both processes and A: ~A:.
For (b), the fact that C = C must be used in addition to the above.

We next prove the result in Weber (1979).

3.4. Theorem.
(d;)i = (iii)i.

Proof. Consider m E C = t and as~ume m E (ii;). Then Z;'-l > 0 and from Lemma
3.3(b) Z;'-l > O. Hence m E (d;) and (di) C (d;). _

It remains to show that m E (d;) implies m E (d;). We argue by induction on i. The
fact is easily seen to be true for i = 1. For i = k assume that d, = d, for all j such that
dj ~ ni, Let 1= Z~k + Z~k = Z~k + Z~k be the number of customers that customer k finds
ahead of him i!1 the system. Then, nk ~ d, ~ di, and d, E C for j = k -I, ... , k - 1.
Each point in C (respectively C) must be preceded (not necessarily immediately) by
exactly one (respectively at least one) point in 1 (respectively I). Therefore, there are 1
distinct points Sj in 1 such that

nk-j ~ tk - j ~ Sj < iik - j , and Sj f (li)~':i-1 for j = 1, ... , l.

This implies that the 1customers ahead of the kth cu_stomercan depart during instants Sj

and thus d; ~ di, However, (di ) C (di ) implies that d; = d.,

3.5. Remark. If an arbitrary queueing node is introduced between nodes 1 and 2,
then from A:~A: it follows that when the network starts empty, D, ~ D, (where ~

means stochastically less than or equal to). st st
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The following theorem (Lehtonen (1986» is a direct consequence of Lemma 2.4. Its
proof is similar to the one of Theorem 3.4.

3.6. Theorem. Let III + 112 = III + 112 = Il with Il~ > III~ 1112 and write (D,) and (D;)
for the corresponding departure processes. Then, (D,) ~ (D;).

3.7. Remark. As indicated in Lehtonen (1986), this result implies that if N ·IM/1
queues in series are such that III + . · · + IlN= Il, then the departure process is
stochastically maximized when III = ... = IlN= IlIN.
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