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A DIOPHANTINE EQUATION ASSOCIATED TO X0(5)

IMIN CHEN

Abstract

Several classes of Fermat-type diophantine equations have been
successfully resolved using the method of galois representations and
modularity. In each case, it is possible to view the proper solutions
to the diophantine equation in question as corresponding to suitably
defined integral points on a modular curve of level divisible by 2
or 3. Motivated by this point of view, an example of a diophantine
equation associated to the modular curve X0(5) is discussed in this
paper. The diophantine equation has four terms rather than the usual
three terms characteristic of generalized Fermat equations.

1. Introduction

A solution (a, b, c) ∈ Z3 to an integer-coefficient polynomial diophantine equation in three
variables is said to be proper if (a, b, c) = 1. Several classes of Fermat-type diophantine
equations have been successfully resolved using the method of galois representations and
modularity. In each case, it is possible to view the proper solutions to the diophantine
equation in question as corresponding to suitably defined integral points on a modular
curve of level divisible by 2 or 3 (see [4]). Motivated by this point of view, we discuss an
example of a diophantine equation associated to the modular curve X0(5).

Theorem 1. Let p > 7 be a prime, and suppose that (r, x, y) ∈ Z3 is a proper solution to

x2p + 22xpyp + 125y2p = r2.

Then y = 0.

2. Diophantine equations attached to families of elliptic curves

Proposition 2. Let A be an integral domain with field of fractions K . Let P, Q ∈ A[S, T ]
be polynomials, and let R = P − 1728Q. Write P = P 3

0 P1 and R = R2
0R1, where

P0, R0 ∈ A[S, T ]. Suppose that s, t, α, β ∈ A satisfy

P1(s, t) = α3;
R1(s, t) = β2.

Then the elliptic curve

Y 2 = X3 − 3P0(s, t)αX + 2R0(s, t)β

has j -invariant j = P(s, t)/Q(s, t) and discriminant � = 126Q(s, t).
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Proof. Let u = P(s, t) = (P0(s, t)α)3 = a3, let v = Q(s, t) and let u − 1728v =
(R0(s, t)β)2 = b2. The elliptic curve

Y 2 = X3 − 3aX + 2b

= X3 − 3P0(s, t)αX + 2R0(s, t)β

over K has j -invariant j = u/v = P(s, t)/Q(s, t) and discriminant � = 126v =
126Q(s, t), using standard formulae.

3. The diophantine equation associated to X0(5)

Let P(S, T ) = (S2 + 250ST + 3125T 2)3 and Q(S, T ) = S5T ∈ Z[S, T ]. Elliptic
curves over Q with j -invariants of the form P(s, t)/Q(s, t), where s, t ∈ Z, correspond to
elliptic curves over Q with a 5-isogeny over Q (see [3], where this parametrization of the
modular curve X0(5) is given).

For non-zero a, d ∈ Z, let Radd(a) be the product of primes dividing a but not d, and let
Supd(a) be the largest positive divisor of a coprime to d . For a prime q, let vq : Z −→ Z

denote the valuation associated to q.

Proposition 3. Suppose that (s, t, r) ∈ Z3 is a proper solution to the equation

s2 + 22st + 125t2 = r2, where t �= 0.

Then there exists an elliptic curve E(r,s,t) over Q with j -invariant P(s, t)/Q(s, t),
conductor N = 2a · 3b · 5c · Rad30(s

5t) with a ∈ {0, 4}, b ∈ {0, 1} and c ∈ {0, 1, 2}, and
discriminant � satisfying Sup30(�) = Sup30(s

5t). Furthermore, the case c = 2 happens
only if v5(s) = 2, 3.

Proof. Suppose that (r, s, t) ∈ Z3 is a proper solution to

s2 + 22st + 125t2 = r2, where t �= 0.

Then

P(s, t) = (
s2 + 250st + 3125t2)3

,

R(s, t) = P(s, t) − 123Q(s, t) = (
s2 − 500st − 15625t2)2(

s2 + 22st + 125t2)

= ((
s2 − 500st − 15625t2)r

)2
.

By Proposition 2, the elliptic curve E over Q given by

Y 2 = X3 − 3 · (
s2 + 250st + 3125t2)X + 2 · (

s2 − 500st − 15625t2)r

= X3 + a4X + a6
(1)

has j -invariant j = P(s, t)/Q(s, t), and this model has discriminant � = 21236s5t .
Since the invariant c4 of model (1) is given by c4 = 144(s2 + 250st + 3125t2), we

see that v2(c4) � 4. If v2(c4) > 4, then s2 + 250st + 3125t2 ≡ 0 (mod 2). Now,
s2+250st+3125t2 ≡ s2+22st+125t2 (mod 4), and so, since s2+22st+125t2 = r2, we
find that in fact s2+250st+3125t2 ≡ 0 (mod 4). If s2+250st+3125t2 ≡ 0 (mod 4) and
s2 + 22st + 125t2 is a square modulo 16, then in fact s2 + 250st + 3125t2 ≡ 0 (mod 16).
Hence we conclude that either v2(c4) = 4 or v2(c4) � 8. Also, s2 + 250st + 3125t2 ≡
(s + t)2 (mod 2), so s ≡ t ≡ 1 (mod 2). Since � = 21236s5t , we know that v2(�) = 12.
By [7, Tableau IV], v2(N) = 4 unless v2(c4) � 8 and model (1) is not minimal.
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(We note that in some of the scanned electronic versions of [7] available from the pub-
lisher, the rightmost columns in the tableaux are missing.) If model (1) is not minimal, a
change of variables gives a model with good reduction modulo 2, so v2(N) = 0.

Replacing X by X + r in model (1) yields the model

Y 2 = X3 + 3rX2 + 3
(
r2 − s2 − 250st − 3125t2)X + r

(
r2 − s2 − 1750st − 40625t2).

Note that s2 +250st +3125t2 ≡ s2 +22st +125t2 (mod 3), and s2 +1750st +40625t2 ≡
s2 +22st +125t2 (mod 27). Replacing X by 3X and Y by

√
27Y and dividing by 27 yields

the model of a twist of the elliptic curve given by (1). The invariant c4 = s2+250st+3125t2

of this twisted model satisfies v3(c4) = 0. By [7, Tableau II], we see that v3(N) = 0, 1 for
this twist.

If c4 = 144(s2 + 250st + 3125t2) ≡ 0 (mod 5), then s ≡ 0 (mod 5). Hence, if
s �≡ 0 (mod 5), then c4 �≡ 0 (mod 5). By [7, Tableau I], we see that v5(N) = 0, 1.
Suppose now that s ≡ 0 (mod 5). Using the equation s2 + 22st + 125t2 = r2 and the
properness of (r, s, t) ∈ Z3, we deduce that v5(s) = 2, 3.

Suppose that q �= 2, 3, 5. The elliptic curve associated to model (1) has additive bad
reduction modulo q only if model (1) has cuspidal reduction modulo q, with the cusp being
(0, 0). This occurs only if both d4 ≡ 0 (mod q) and d6 ≡ 0 (mod q), and hence only if
s2 + 250st + 3125t2 ≡ 0 (mod q) and either s2 − 500st − 15625t2 ≡ 0 (mod q) or r2 =
s2 + 22st + 125t2 ≡ 0 (mod q). This happens only if q = 2, 3, 5 or s ≡ t ≡ 0 (mod q),
a fact that can be verified by equating the roots of the corresponding inhomogenous quadratic
polynomials and squaring successively, or directly by using resultants. The latter case is
not possible, since (r, s, t) ∈ Z3 is a proper solution to s2 + 22st + 125t2 = r2. The
former case is not possible, as we are assuming that q �= 2, 3, 5. We conclude therefore that
vq(N) = 0, 1.

We remark that a proper solution r, s, t ∈ Z3 to s2 + 22st + 125t2 = r2 gives rise to a
solution (α, β, t) ∈ Z3 to α3 − 1728t = β2 as the construction of the elliptic curve E(r,s,t)

goes through Proposition 2. However, this solution may not be proper, and so it seems
necessary to perform Tate’s algorithm specifically on E(r,s,t) rather than the more-general
elliptic curve Y 2 = X3 − 3αX + 2β.

The above proposition allows us to invoke the machinery of galois representations and
modular forms to establish Theorem 1.

Proof of Theorem 1. Suppose that (r, x, y) ∈ Z3 is a proper solution to

x2p + 22xpyp + 125y2p = r2,

where y �= 0. Let E = E(r,s,t) be the elliptic curve over Q associated to (r, s, t) =
(r, xp, yp) satisfying s2 + 22st + 125t2 = r2, as given by Proposition 3.

The elliptic curve E has conductor N = 2a · 3b · 5c · Rad30(s
5t), where a ∈ {0, 4},

b ∈ {0, 1} and c ∈ {0, 1, 2}. By the proof of Proposition 3, the case c = 2 occurs only if
v5(s) = 2, 3. Since s is a pth power, where p > 7, this case does not arise, and so in fact
c ∈ {0, 1}.

Since p > 7, we know that ρE,p is irreducible, by [6]. More precisely, E must have at
least one odd prime of multiplicative reduction, or else E has conductor 2a , which is not
possible, as there are no elliptic curves over Q with this conductor. By [6, Corollary 4.4],
it follows that p = 2, 3, 5, 7, 13. On the other hand, X0(65) has no non-cuspidal rational
points [5], so the case p = 13 cannot occur, as E would give rise to such a point.
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The discriminant � of E satisfies Sup30(�) = Sup30(s
5t) = Sup30(x

5pyp). By the
modularity of E (see [2]), ρE,p

∼= ρf,p for a weight-2 newform f on �0(N). Since vq(�) ≡
0 (mod p) for q �= 2, 3, 5, ρE,p is unramified at q �= 2, 3, 5, p and flat at q = p. By level
lowering (see [8]), ρE,p

∼= ρg,p for a weight-2 newform g on �0(M), where M = 2a ·3b ·5c.
A computation in Magma [1] reveals that there are no elliptic curves over Q possessing

a 5-isogeny over Q of conductor M = 2a ·3b ·5c with a ∈ {0, 4}, b ∈ {0, 1}, c ∈ {0, 1}. This
allows us to show that p = 2, 3, 5, 7 in the following manner, contradicting the assumption
that p > 7.

If q �= 2, 3, then E has either multiplication or good reduction modulo q. In the former
case, tr ρE,p(Frobq) = ±(q + 1). In the latter case, we note that since E has a 5-isogeny
defined over Q, there is an extension L | Q, of degree at most 4, such that E(L) has a point
of order 5. Let q be a prime ideal of the ring of integers OL of L which lies over the prime
ideal qZ of Z. Let r be the degree of OL/q ∼= Fqr over Z/qZ ∼= Fq . It follows that |E(Fqr )|
is divisible by 5 for some r | 4.

Recall that g is a weight-2 newform on �0(M), where M = 2a · 3b · 5c and a ∈ {0, 4},
b ∈ {0, 1} and c ∈ {0, 1}. By a computation in Magma [1], there are 8 possibilities for g,
and all of them have rational fourier coefficients. Let F be the elliptic curve over Q attached
to the newform g, so that ρg,p

∼= ρF,p and aq(g) = aq(F ).
For each of the eight possibilities for g and its associated F , we determine a set of primes

q �= 2, 3, 5, p such that |F(Fqr )| is not divisible by 5 for all r | 4. If E has good reduction
modulo q, then aq(E) �= aq(F ), for if aq(E) = aq(F ), then |E(Fqr )| = |F(Fqr )| for all
r � 1, contradicting the fact noted above. If E has multiplicative reduction modulo q, then
aq(F )±(q+1) �= 0, by Hasse’s bound. Since ρE,p

∼= ρF,p, it follows that tr ρE,p(Frobq) =
tr ρF,p(Frobq). Hence either p | (aq(E) − aq(F )) or p | (aq(F ) ± (q + 1)). By using this
information, together with the fact that |aq(E)| < 2

√
q, the desired constraint p = 2, 3, 5, 7

can be obtained.
The above verification can be separated into two cases: (a) p = 11 or p � 17; and

(b) p = 13.
Tables 1 and 2 list, respectively, aq(F ) and |F(Fqr )| for each possible F and 2 � q � 41,

as computed by Magma [1]. In case (a), we have chosen a prime q for each F so that |F(Fqr )|
is not divisible by 5 for r | 4. The corresponding entries in Table 2 have been boxed. For
the column corresponding to the same q, the entry aq(F ) in Table 1 is also boxed. From
this, one can easily verify that the constraint p = 2, 3, 5, 7 is obtained as described above.

Table 1: Table showing aq(F )

Label 2 3 5 7 11 13 17 19 23 29 31 37 41

15 : 1 −1 ∗ ∗ 0 − 4 −2 2 4 0 −2 0 −10 10

48 : 1 ∗ ∗ −2 0 −4 −2 2 4 8 6 −8 6 −6

80 : 1 ∗ 0 ∗ 4 −4 −2 2 −4 −4 −2 8 6 −6

80 : 2 ∗ 2 ∗ −2 0 2 −6 4 −6 6 4 2 6

240 : 1 ∗ ∗ ∗ 0 4 6 −6 4 0 −2 8 −2 −6

240 : 2 ∗ ∗ ∗ 4 0 2 6 4 0 −6 −8 2 −6

240 : 3 ∗ ∗ ∗ −4 0 −6 −2 −4 8 −6 0 −6 10

240 : 4 ∗ ∗ ∗ 0 4 −2 2 −4 0 −2 0 −10 10
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Table 2: Table showing |F(Fqr )|

Label r 2 3 5 7 11 13 17 19 23 29 31 37 41

15 : 1 1 4 ∗ ∗ 8 16 16 16 16 24 32 32 48 32
2 8 ∗ ∗ 64 128 192 320 384 576 896 1024 1344 1664
4 16 ∗ ∗ 2304 14848 28416 83200 130560 278784 706048 921600 1876224 2828800

48 : 1 1 ∗ ∗ 8 8 16 16 16 16 16 24 40 32 48
2 ∗ ∗ 32 64 128 192 320 384 512 864 960 1408 1728
4 ∗ ∗ 640 2304 14848 28416 83200 130560 280576 708480 925440 1875456 2827008

80 : 1 1 ∗ 4 ∗ 4 16 16 16 24 28 32 24 32 48
2 ∗ 16 ∗ 48 128 192 320 384 560 896 960 1408 1728
4 ∗ 64 ∗ 2496 14848 28416 83200 130560 280000 706048 925440 1875456 2827008

80 : 2 1 ∗ 2 ∗ 10 12 12 24 16 30 24 28 36 36
2 ∗ 12 ∗ 60 144 192 288 384 540 864 1008 1440 1728
4 ∗ 96 ∗ 2400 14400 28416 84096 130560 280800 708480 923328 1872000 2827008

240 : 1 1 ∗ ∗ ∗ 8 8 8 24 16 24 32 24 40 48
2 ∗ ∗ ∗ 64 128 160 288 384 576 896 960 1440 1728
4 ∗ ∗ ∗ 2304 14848 28800 84096 130560 278784 706048 925440 1872000 2827008

240 : 2 1 ∗ ∗ ∗ 4 12 12 12 16 24 36 40 36 48
2 ∗ ∗ ∗ 48 144 192 288 384 576 864 960 1440 1728
4 ∗ ∗ ∗ 2496 14400 28416 84096 130560 278784 708480 925440 1872000 2827008

240 : 3 1 ∗ ∗ ∗ 12 12 20 20 24 16 36 32 44 32
2 ∗ ∗ ∗ 48 144 160 320 384 512 864 1024 1408 1664
4 ∗ ∗ ∗ 2496 14400 28800 83200 130560 280576 708480 921600 1875456 2828800

240 : 4 1 ∗ ∗ ∗ 8 8 16 16 24 24 32 32 48 32
2 ∗ ∗ ∗ 64 128 192 320 384 576 896 1024 1344 1664
3 ∗ ∗ ∗ 2304 14848 28416 83200 130560 278784 706048 921600 1876224 2828800
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For case (b), a bit more work is necessary. For each F , we choose three values of q so that
|F(Fqr )| is not divisible by 5 for r | 4. The corresponding entries in Table 2 are in bold-face.
For the column corresponding to the same values of q, the entries for aq(F ) in Table 1 are
also in bold-face. From this, it can be verified that p = 2, 3, 5, 7, by simultaneously using
the constraints imposed by all three primes.

Acknowledgements I would like to thank M. Bennett for discussions that led to the topics
considered in this paper.
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