A PROPERTY OF META-ABELIAN EXTENSIONS

YOSHIOMI FURUTA

Let k& be an algebraic number field of finite degree, A the maximal abelian
extension over k, and M a meta-abelian field over k£ of finite degree, that is,
M/k be a normal extension over k of finite degree with an abelian group as
commutator group of its Galois group. Then A M is a kummerian extension
over A. If its kummerian generators are obtained from a subfield K of A,
namely if there exist elements ai, . . ., a: of K such that A M= A(™a, ...,
"™nla: ), then we shall call M a meta-abelian field over k attached to K. 1If
furthermore there exist b, . . . , bs of K such that AM=A("™bi, . .. "bs)
and M contains all n;-th roots of unity (i=1, ..., s), then we shall call M a
K-meta-abelian field over k and by, . . ., bs M-reduced elements of K. For k-
meta-abelian fields over k, we have in [2] the decomposition law of primes of
k in M" The purpose of the present paper is to show that this decomposition
law is effective also for meta-abelian fields over % attached to &, or more exactly
these fields are already k-meta-abelian fields over k. We shall have a little

more generally the following

TueoreM. If M is a meta-abelian field over k attached to K, then MK is

a K-meta-abelian field over k.

In order to prove the theorem it is sufficient to observe the case where K
is equal to 2. Now let M be a meta-abelian field over % attached to k, A, the
largest abelian subfield of M, and M; a cyclic subfield of M over A, whose

degree is a power of a prime /. Then there exists an element a; of %2 such

Received May 31, 1961.

) The symbol [;]“ is not defined in [2] for the case r=0. Therefore to state the
decomposion law it is necessry that »=>1, namely k containes all I/-th roots of unity.
But if we define [ :J"=1 or =0 according as a#PP-D=1 or 21 (mod. p), then, remark-
ing that lemma 4 in [2] is also true for »=0, we have the decomposition law in M/k by
means of this symbol also for the case r=0. Here [-q-Jn[.l.’],l:[@-]" does not hold

] p [}
when [%-]“ =0.
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that AM; = A(“"a; ),” and M; is necessarily normal over k2 Since M/A, is
abelian, M is the composite of such M;. Therefore in order to prove the
theorem we may assume that AM=A(’"\/’¢7) with a single element @ of k.
Thus the essential point of the proof is the existence of a M-reduced element
of k.

First in §3, we shall show that a can be so chosen that A.‘Va )/A, is a
kummerian extension (weakly M-reduced element of k). To do this we study
in §1 extensions of the type F(‘y'@)/F with a< F, which are not necessarily
kummerian over any algebraic number field F of finite degree. Here the
treatment of the case where /=2 and y—1& F (radical case) is especially
complicated, because the extension obtained by adjoining a 2”-th root of unity
is in general not cyclic. Next in §4, we shall study the characters of AM/A,,
substantially using the normality of M/k  Finally in §5, applying the above
results, we shall conclude the proof. The results in §2 are not necessary for
the proof of the theorem, but we add them to complete the statement in § 1.

Throughout this paper the following notations will be used.

the rational number field.
k the ground field which is an algebraic number field

of finite degree.

A the maximal abelian extension over k.

F any algebraic number field of finite degree.

I a fixed positive rational prime

Cm="Cm a fixed primitive I”-th root of unity such that
Chn = Cnes.

Cn=Clny, Clyy « v« indefinite primitive I"-th roots of unity.

Ch=Ch, CoY, ... indefinite I"-th roots of unity.

a an I"-th root of a such that “V('Va ) =""Va.

Fin= Finy = F(Cpn) .

Fis the composite of all Fi.,, n=1,2,....

2) Because, there exists an element b of k such that AM;=A("Vb). Let m=l*x,

(x, )=1. Then AMi=A("Vb)= AUV b)= A, and (AMi; ACYE ) =AYb );ANN b))
is prime to _l. But _Vsince (AM;; A) is equal to a power of !/, we have necessarily
AMi=A(" b)=A('Vb).
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F" the multiplicative group consisting of all "-th
powers of non-zero elements of F.

S(K/F) the Galois group of a normal extension K/F.

(K; F) the relative degree of an extension K/F.

§ 1. Extensions F(/V @ )/F which are not necessarily kummerian

LemMA 1.1. Suppose that ac F,Na € F. Then F("Va) is a normal ex-

tension over F if and only if F("NV a ) contains .

proof. Every conjugate of “Va over F is of form ¢n+'Va. Therefore,
if A("Ya) contains ), then F("Y @) is obviously normal over F. Now suppose
conversely that F(ya ) is normal over F, and that I is the greatest common
divisor (%, "), ¢ty +"V @ running through all conjugates of ‘Va over F. If
m =0, there exists an integer x such that (x I”)=1 and consequently
twe'Va/"Va =¢yeF*Va). Heace F(*Va ) contains ¢n,. But m=0. In
fact, ("Va)°=¢?+Va for any automorphism ¢ of F(*yV'@ ) over F, and hence
¢"Va) =(("Va))""="Va, whence “Va €F. Hence m=0 by the assump-

tion of the lemma.

LEmMA 1.2. Let o be an automorphism of F(Cn)/F such that Cfp={q,
and Cly1y5Cy+p for r<n. Let further 7 be an integer such that Ciny =Cln,.
Then I'l7—12

[u=r

Proof. From (&) =0 =¢3, and (&))" =¢%, =¢y, follows
In~

I'lg—1. I I'"'|5—-1, 7 can be written 7=1+xI""' so that Cfpsy = (&' )?

FIn—(r+1) n—(r+1)

= C{ny =§(n) ¢ = Coreny contradicting the assumption of the lemma.

ProrosiTION 1.1. Suppose that &y € F, Cosn& F and F('Na)/F is an

abelian extension, a being an element of F. Then (Fumy(!Na); Fum) =I'.

Proof. Put w='Va, K=Faulw), ©=8(K/F), A=G(K/Fn) and
8= @Q(F»/F). Define / by Z(A) = w*/w for any A= U. Then / generates the
character group of . For any s 4 let U, be a prolongation of s to . Then,
since (©0")/w" =a’/a =1, there exists an I™-th root of unity &€ F such

that "¢ = wb,, and we have

3 ["]|b means I”|b and I"+1t 0.
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0= (L(A)w)'" = 1(A)°wbs,
wu"A = (mba)A = Z(A)(Dbo-

Now suppose that K/F is abelian. Then for every ¢ =8 and every A< the
above two equations should be equivalent. Hence 7(A)” =%(A), which means
that Y(A) €k and Z(A) is an I’-th root of unity for every A< . Therefore

the order of ¥ is at most equal to /. This implies our assertion.

LEMMA 1.3. Suppose that (pr<F and a<F,\Na € F. Then (F!Va);
F)=1"

Proof. Obviously (F(Ya); F)<1!". Now if the inequality occurs, then
there is an integer » =1 such that F(" V&) F('Va)=F"'Va). So, putting
V@ =a and K=F(a), we see Ya ¢ Kand K(Va)=K("'Va)=K(Va)
= K(Na ). But since (€ K, this equality contradicts a property of kummerian

extentions.

LemMa 1.4, Let ac<F a< F. Then it is neceasary and sufficient for
F\N@)/F to be normal that we have ;< F.

Eroof. The sufficiency is clear. So we assume that F(\ @ )/F is normal.
Then we have (F(¢); F)<I—1, (F(¥a); F)=1and by lemma 1.1 F(Na)
DF({)DF. Hence F(¢) =F, namely F2¢,.

Hereafter frequent special treatments about the case /=2 are needed. So
we give the following definitions. Denote by Pj the largest real subfied of
Pyv. Then P, is the composite of the quadratic field P:=P(V—1) and the
cyclic field P)v of degree 2% over P. Furthermore we denote by P; the in-
termediate field of P»./P%-: different from both Pj and Pp-i. F is called, a
radical field if F does not contain v—1, and otherwise a non-radical field. The
radical case with respect to F is by definition the case where /=2 and F is a
radical field, and the non-radical case with respect to F is the case either /%2
or F is a non-radical field (even if /=2). If F is a radical field, then t.here is
an integer T=2 such that F- Py» = Pjr or = Pjr according as F P:» is imagi-
nary or real. If F. P, is imaginary, i.e., if F~ Pio =Pjr, then F is called a
radical field of the first kind, otherwise a radical field of the second kind. Putting

(1.1 A= (G + &) + 2 = (Cover + )’

we call 2r = 2 the radical number of F. Then
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(1.2) Piwn=Pp(YA,), Pp=Pp(V=4),

(1.3) Covdy = (14 &)

In the case of F being a radical field of the first kind

(1.4) F(Cx) =F(Cn) = - -+ = F(Grn1), F(Cp) x F(Cvn1) for vy=T+1;
in the case of F being of the second kind

(1.5) F(Cyp) = F(&) = - -« =F(&r), Fl»)xF(Gw) for v=T;
and in both cases

(1.6) E Pyr = Pir.

Now let 7 be again an odd or even fixed rational prime, and F'*’ the multi-
plicative group of all elements a of F such that V@ € F,,. Then from Hasse
[3]1 we have

LemMA 1.5. In either one of the following two cases F*"' = F s
i) the non-radical case,
ii) the radical case with v =T+ 1.
In other cases the facter group F'™[F* is of order 2 and its non-trivial coset
is represented by 2% or — 2% according as
iii) » =T+ 1 in the radical case of the second kind, or

iv) 2<v < T in the radical case of the firet or second kind.
Let us proceed our consideration about F(*Va)/F.

ProrosiTIiON 1.2. In the non-radical case with respect to F, if ac€ F and
& F, then (F"Va); F)=1"

Proof. First assume that ¥ @ & F,. Then (Fe)(*Va); Fe) =1"by lemma
1.3. Since (Fe('Va); Fo) = (F('Va); F)<I", we have (F("Va); F)=1"
Nexst assume that ¥'a € Fs). Then F(¥ '@ ) CFe, and hence F(NVa )/F is a
normal extension. Therefore F=¢;, by lemma 1.4. This implies that (F,;
F) =1 and further F(Ya)=Fg.. Hence Va & Fa. For, if 'Y a € Fy, then
a= F” by lemma 1.5, contradicting the assumption. Now (F('Va); Fu)
= (Fe("V@); Fa)=1""by lemma 1.3, and hence (F(*Va@); F)=1" owing

to (Fp); F)=1 as was seen above.

LemMa 1.6.  If =1, acF and F*Va)=F(-1), then (F*Va);
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FVa)) =2

Proof. Put K=F(y=1) and suppose that *Va €, *"Va € K (0Sp<n).
Then, since K is a non-radical field, (K(*yVa@); K)=2"" and (K(*Va);
K)=2"""! by prop. 1.2. Therefore 2=(K(*Va); K(* Va))s(F*Va);
F(* "V a)) <2, which implies our assertion.

The followung proposition holds in both cases, radical or non-radical.

ProposiTioN 1.3. If F(*\V'a ) DF, with a < F, then there exists an integer
u such that F('N'a) =Fs,. If moreover ¥'a €F, ¢y, EF, CpinyEF and s>,
then FING) = Fisy.

Proof. First we prove the latter. Suppose that F(¥'@ )= Fy.y,. Then
V@ & Fy+1. Because, if 7=1 then crearly Y@ & Fy4yy; and if r=0, Ya
€ Fy+1, then {4 € F by lemma 1.4, which is a contradiction. Now using Fr+1)
instead of F in Prop. 1.2 we have (Fy+1,("V@); Fy+1) =10". Then from the
assumption of the proposition follows (F('Va); F)= (Fyi(!Va); Fu+y)
(Fir+1; F)>1" On the other hand (F(*Va); F) <I". This is a contradiation.
Hence F(’«/?) = F+1), which is the latter assertion of the proposition. Next
we prove the former. i) The non-radical case with respect to F: Let "V a € Fys),
""V'a & F,, then F(*V'a ) DF>F(*y'a) and by prop. 1.2 (F'Va); F('Va))
=(F("Va); Fs)=1""* Hence F(*Y' @) = F., ii) The radical case with respect
to F (ie, I=2and r=1): If s=1, ie, {» = —1, then our assertion is trivially
true, and so assume that s=2. Then by the latter assertion of the proposi-
tion, already proved above, we have F(va@ ) = F(N—=1). Therefore if we take
F(Y—=1) resp. Va instead of F resp. a, this case is reduced to the non-radical
case i).

Now in the non-radical case we have the following two propositions.
ProrosiTiON:1.4. In the non-radical case with respect to F, suppose that

CrnEF, Cran€§ F; andacF,Na &€ F. Then F('N'a )= F("V¢, ) implies m = n.

Proof. If n=0 our assertion is trivial. If #=1 then =1 by lemma 1.4,
and ¥¢, € F by the assumption, from which our assertion follows immediately
by prop. 1.2.

ProrositiON 1.5. In the non-radical case with respect to F, suppose that
CrEF, Lrsny§ F; acF and a¢ F'. Then in order that F("Y'a) = F(*NVC. ) it
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is necessary and sufficient that a= ¢, b" with some be F.

Prooy. The sufficiency is clear. In order to prove the necessity we may
assume that n=1 and further =1 by lemma 1.4. When n =1 the assertion
is clear, because 7=1 and F(¥ @ ) = F(Vls, ) is a kummerian extension. Assume
that #=2, the assertion is true for 1, 2, ..., #—1, and further that F(Va)
= F("J¢s ). Then prop. 1.3 and prop. 1.4 imply F(""Va ) = F(*"”
a=¢,,8"" with some b< F by the assumtion of the induction. Now if ¥ b € F,

L
v& ), hence

then our assertion hase been already proved. So we may assume that ¥ b & F.
Then Y b € F("V¢u) ), since F('NCin ) = F('NVa)=F'V¢ 6" ) = FUN,, « ¢y
N b), and further F(Y'8) = F(Y¢w), bcause in the non-radical case F('VC¢)/F
is a cyclic extension. Therefore by the case =1 we have b=2¢5 ¢ with

JH=1

ceF, and so a=¢,¢k )" =l ¢ with some ¢ F. This proves the

proposition.

In the radical case the following proposition holds, corresponding to prop.

1.5 in the non-radical case.

ProrosiTiON 1.6. In the radical case with respect to F, suppose that a< F,
v a € F, and denote by A the radical number iy of F. Then a necessary and
sufficient condition for FCNa ) =FC*V=1) is a= —b*" or a= —2*"'¢" with

b, c€ F, the latter occurring only when n>T."

Proof. Necessity. When n=1,a= —b* with b€ F, since F(Vva ) = F(y—1)
is a kummerian extension. Assume that =2 and the assertion is true by
1,2,...,n—1, and further that F(*Va )=F(*Y~1). First we shall show
that F*'"Va)=F(*V-1). If F®V-1)=F\-1), then F* Va)=F{a)
=F(V—=1)=F*®"V=1), owing to #=>2. Next suppose that F(*y—1)x F(y~-1),
and put K =F(Vv—~1). Then by the latter half of prop. 1.3 we have

(1.7) K=FKa)=K(a), and hence K*Va)=F*a)=K>®-1).

Furthermore (K(*Ya); K(* Va))=2 and (K3V-1); K*"V-1))=2 by

lemma 1.6. On the other hand, since K(*"V—1)/K is cyclic, K(* V=1)

oi=1,

=K® Va)=F* Va) and K®"Y-1)=F® V=1) by the construction of

2u=1 -

K. This implies that F(**'Va ) = F(* ¥=1). Therefore by the assumption of
4 Inr the case where F is a radical field of the first kind, we have only a= —b",
since V—-1&F for n>T (=2).
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oli—=1 on—1

the induction we have a= — 5" or a= —1""'¢*" with some 5, c€F. But
the latter does not occur. For if F is a radical field of the first kind, we have
V=1 e€F by (1.2), and so a= — 47" ¢ '= —=(y=2 +¢)?" for n=3, where
V=2 *ceF. Hence we may write a= — 5" for n==3. For n=2 we have
a= —Aict=(y—14 +¢)% which contradicts the assumption of a. Next if F is of
the second kind and a= — %" '¢*”, then F(*V—=1)=F(*Va)=F®y=1 :¢,-
4Act). This implies that ¥ic* € F(*y—=1), hence F(¥ic?)/F is a normal ex-
tension. Since F(VAc? ) = F(¥'1) % F, we have F(Yi¢? ) DF(y—1) by lemma 1. 1.
Then prop. 1.3 implies that F(V4 )= F(y—1). But this is a contradiction, for
F was é radical -field of the second kind. Thus in both cases we have
a=—b"". Now if Vb €F, then our proposition has been already proved. So
we assume v b&F. Since F(*y—=1)=F*Va)=F®V~1-+¢%Vb), we have
Vb e F*y=1). Hence FWb)=F(\—=1),=F«W1) or =F(y=1), where the
latter two equations may occur only when F is a radical field of the second
kind. If F(Wb)=F(y=1), then b= —¢% hence a= —¢*' with ceF. If
F(Yb)=FWA) or =F(Y—21) then b=1ic* or = —ac® hence a= —1* "¢
with ce F. This concludes the proof of the necessity of the proposition.
e with
ceF and n>T. Then we may assume that F is a radical field of the second

Sufficiency. The sufficiency of a= —b* is clear. Let a= — 2

kind® Hence 4" is by lemma 1.5 a 2™th power in F({) and we have
F*Va)=F*a, ¢u)=F*®V=1, Cn)=F(an+y). Finally if n<T then
a= —A""¢" can not occur. For, if #= T then F(*V @ ) = F(Clre,* VA ) = F(Cr)
«F(*Y=T) by (1.3) and (1.5); and if #n<T then V4 & F(Cn+1), hence
CnroV A & F(Cineyy), which means that F(*Va )% FCY-1).

Thus the proposition is proved.

§ 2. Supplements to the radical case

In order to prove our theorem the following propositions of this § are
unnecessary, which are assertions in the radical case, corresponding to prop.
1.4 and prop. 1.5. We state them for the sake of completeness.

First we treat the case of the first kind.

ProrosiTiON 2.1. Let F be a radical field of the first kind and assume

$) See footnote 4.
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asF,Va &F. Then F*N—=1)=F*Va) if and only if the following ccndi-

tions are satisfied:

i) When 1<m=T, we havel<n<Tanda= —b" forn<T,a= — 1" b
for n=T,
ii) When m2T+1, we have n=m and a= —b*",

where A is the radical number v of F and b is an element of F.

Proof. 1) Suppose that F\*V=1)=F(*Va) for 1=m=<T7T. Then \*Va)
D F(&n) by lemma 1.1, and hence T+1=#%n=1 by the assumption and (1.4).
If n=T+1, then F'V @) =F?¥V=1) = F(Cz+1), and hence * V@ € Fursyy.
This contradicts lemma 1.5 ii), since va & F. Therefore T=n=1. Letn=T;
then as above F(*ya)=F(*V=1)=F((y), and hence *Va €Fu,. Since
va €F, lemma 1.5, iv) implies a= — 275 with be F. Next let 1=n<T,
then since F(*V=1)=F(*V=1)=F(*Va), prop. 1.6 implies a= —b" with
be F. Thus the necessity is proved. The sufficiency follows from lemma 1.5,
iv) immediately. ii) First suppose that F\*V—1)=F("Va) for m=T+1.
Similarly to the proof of case i), we have F(*V @ ) D F(((»), and hence T+ 2 = n.
If T+2=n, then F*"'Va@ ) = F¢z2), hence a=4*" " with b& F by lemma 1.5
ii). This contradicts Yya € F. Hence we have T+1=#, and furthermore
T+1=n=2, since (R¥'YZ1); F)=4. Since F*Va) =F(*"'V=1)xF(y-1),
we have (F°Va); F* Va))=2 by lemma 1.6, and hence F(* Va)
= F(Y=1)=F(®"Y=1), which is the subfield of F(*'Y=1) of index 2. Then
a= —b"" withb& Fby prop. 1.6and hence F(*' 'V =1) = F®V @) = F(¢lniyV b ),
which implies v  F(*'*Y =1 ) owing to # < T'+ 1 as was seen above. However
FCPN @) =F(Cne) =F2Y=1), hence n=T+1, that is, m=n Next we
consider the case of m> T+ 1. It follows from F\?ya ) = F*V=1)DF*"Y=1)
and prop. 1.3 that there exists an intger # such that F(*ya@)=F® "V=1).
Then from the result of the above case where m=T+1 we have #=T+41,
namely F(*""V @) =F®"YZ1). Furthermore F*"'Va )% F(*"*Va) by lemma
1.6. Put « =2T+1\/7 and K = F(a) which is equal to F({ir+2). Then K is a
non-radical field, and contains neither Cir+s nor v « , furthermore K(*" ™"y (r42,)
=K "™ &). Then prop. 1.4 implies m — (T'+1) = n — (T +1), hence m = n.
After all m=n when m=T+1. Thus our assertion, including the suffictiency,
follows from prop. 1.6.

Next we treat the case of the second kind, which is done by the same
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way as in the case of the first kind.

ProrosiTiON 2.2. Let F be a radical field of the second kind and assume
acsF,Va € F. Then F(*N=1)=F(*V a) if and only if the following conditions
are salisfied:

i) when 1<m<T, we have 1<n<T, and a= —b" forlsn<T,a= -2 &
for n=T,

i) when m=T, we have 2<n=<T, and a= —b" for n=T, a= — 120" for
2=5n<T,

iii) when m>T, we have n=m, and a= —b* or a= — 3",

where X is the radical number ir of F and b is an element of F.

Proof. i) Suppose that F*V—1)=F*Va) for 1=m<T. Then F(*Ya)
DF(&n) by lemma 1.1, and hence T=#7#=1. Then our proof concludes by
repeating the same argument as in the proof i) of Prop. 2.1 under the asser-
tion T'=n=1. ii) Suppose that F(*'V~1)=F(*ya) for m=T. By taking T
instead of T+1, and using lemma 1.5 iii) instead of lemma 1.5 ii) in the first
part of the proof ii) of prop. 2.1, we obtain T=n=2, a= —6"  and Vb
e FC®"'V=1) for some b= F. Then FWb)=F, =FK\=1), =F«2%) or
= F(V=1) in the present case where F is of the second kind. If F(Vb)=F
or =F(V=1), we have n= T by fhe same way as in prop. 2.1, and hence by
prop. 1.6 a= —b*. If FWb)=FW71) or =F({=1), then b= = Ac* with
ceF, hence a= — 1" "'¢® owing to #n=2. Conversely let a= —1*"'¢® with
ceF. Then F(*N'a)=F(lnV1). Now FllniV 1) =F(lx) or =F(lz+1)
according as n=T or T>n=2. In fact, putting Cim+1, =Cirsn and £ =SV A,
we have F(x?) = F(¢{)=F({m) owing to T=n=2. Hence we can write
¢y = f (&%) for some rational function f in F, and so by (1.3) =x= + ¢, VA
= Clreny(Creny + Ceny) = Crih (L, + 1) = i3 (f(*) +1).  This implies that
F(g) = F\{)) or F(k) = F(r+1)) according as x =0 or x=1. iii) Suppose that
F¥V=1)=F(Va) for m>T. It follows from F(*y @) =F(*V=1)>F*y=1)
and fromr prop. 1.3 that there exists an integer # such that F\*y a ) = F( Vi Y
Let # be the largest integer with such a property. Then 2=#<T by ii).
'b* with b F by ii). This follows F(Cum+p)
=F*Va)DF®'Va)=F(Cusz Vib').  Then F(lumy) D428, because
m>T>uand hence m+1=u+2, Therefore F(y Ab*)/F is an abelian extension

auU—

Assume u<T, then ga= —A*
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of degree 4, hence F\Y A»* )DF(Y=1) by lemma 1.1. Furthermore F(¥1)
= F(¥~-1) by prop. 1.3. But this is a contradiction, since we treat the case
of the second kind. Hence we have # =T, and so F(*Ya)=F(Y—=1). Then
by repeating the same argument as in the latter part of the proof ii) of prop.
2.1 by using T inatead of T+ 1, we have m ==, which implies our assertion
by prop. 1.6.

§ 3. First reduction of kummerian generators

LemMMA 3.1. Let M be a meta-abelian extension over k altached to k such
that AM=AUNVa) withack, Na &k Put"Va =a and n—m=v. Suppose
that Suy € Av= A~M, Ceiny & Ao, a € As. If @ =Cin 8" with B & Ao, then there
exists an elements b of k such that b< K, AM=ACVD) and " Vb e A, for

some integer v.

P

Proof. It follows from “Va € A, that k("Va )/k is an abelian extension,

and hence AaDk(""\/-a—)Dk(C(m;) by lemma 1. 1 Therefore t=m by the as-

_sumption of £. Since 8" =¢%Fa, we have 8" =d"" <k Then there is a

¢ kand f°ck Putting §° =b, we see AM

=A'Va) = AV a) = AL VB =AVB) = A'VB) and Vb eA,
which proves the lemma.

1z-1

positive integer z such that g

For a meta-abelian extension M over %k attached to % such that A M= A,
3¢y, we shall call an element a of k weakly M-reduced, whenever a¢ ¥,
AM=A("Va) and A,>""

First, in the non-radical case with respect to A,, we prove the existence

al®

of a weakly M-reduced element.

ProrosiTiON 3.1. Let M be a meta-abelian extension over k attached to k

and put AM=A,. Then in the non-radical case with respect to Ao, there
exists a weakly M-reduced element of k.

Proof. Suppose that (y e, Corn € Ac; AM=A(Va) with ack; and
"Sa e, "Va&A, Put "Va=a and n—-m=v. If v<t, then a is
already weakly M-reduced. So we assume v>¢. Since M/A, is abelian, AM/A,

is abelian and hence A.("YVa )= A"V« ) is also abelian. A¢'Va ) D Aslw)

by lemma 1.1. Therefore by prop. 1.3 there exists an integer # such that

6) Set "V @ =a!™" for a negative #.
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z\/Cm). Then #=wv~1t by prop. 1.4, for we treat the

A"V a) = Adllw) = A"
non-radical case with respect to A,. Furthermore a = (8" with € A, by
prop. 1.5. From this and lemma 3.1 our proposition follows at once.

Next we consider the radical case with respect to A,.

Lemma 3.2. Let M be a non-abelian meta-abelian extension over k attached
to k such that AM = A(*Va) with ack, and put A~M=A,. Suppose that
V=1 & Aq (ie. Aq is a radical field); “Na €Ay, 7Va € A and n—m>2.
Then putting *Na =a and n—m=v, we have A* V=1)=A("Va)
* AV a).

Proof. Since Ao*Va)=Al*Va) is an abelian extension over A, we
have Ao(?V a ) D Ay(¢r) by lemma 1.1. Furthermore by prop. 1.3 there exists
an integer # such that A.(Cx) = Ag(*V a). Suppose that # is the largest integer
with such a property. If v=<u, then A,*Va)CAll») and hence AM
= AA(*Va )T Ay(C») C A, contradicting the assumption that M is non-abelian.
Hence v>u. Since v=2, A¢({») is a non-radical field. Therefore, by the
assumption that « is largest, prop. 1.2 implies that A¢(®*y« ) is an extension
of degree 2°™* over A.(¢x») = A¢(*y @ ). On the other hand by prop. 1.1 the
degree is at most equal to 2. Since v>u%, we have v—u=1 and A,(*¥ a)
% Ao(* V), which proves the lemma.

ProrosiTiON 3.2. Let M be a meta-abelian extension over k attached to %
such that AM=A(*NVa ) withack, and put A M= A,. Furthermore suppose
that =1 & A, (the radical case with respect to A,). Then there exists a weakly
M-reduced element of k.

Proof. Let *Va €A, ™'Va &€ Ay; and put a="Va,n—-m=v. If v=0
or =1, then ais already weakly M-rduced. So assume » =2. Then A (* "y =1)
=A)(* V) by lemma 3.2. Hence prop. 1.6 implies a = — 8% or = — 227 g*~,
where B A, and 1 is the radical number of A, However we need not cosider
the latter case. For, if A, is a radical field of the first kind, then only the
case a = — % occurs.” If A, is of the second kind and a = — i 8", then
AM=ACYVa)=A(Vig). Since AM/A, is abelian, A(Vi?)/A, is also
abelian and A(‘VA8?) DAo(v —1) by lemma 1.1. Furthermore prop. 1.3 shows

" See footnote 4.
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Ao(VAB) = Aoly¥ 1) = Ao(y¥ —1). But this is a cotradiction. Therefore we have
also a= —p*" with B A,. Then our proposition follows at once from
lemma 3.1.

§ 4. Characters of M/A,

Let M be as in §3 a meta-abelian extension over % attached to 2 and put
A M=A, Suppose that (s, € Ao, C¢+1) € Ao and a is a weakly M-reduced
element of %k, whose existence has been proved in §3. Puf o="Va,
G =C(AM/E), A=B(AM/Av), 8=8(Ao/k) and

(4.1 $(A) = v’/ for any A= .

Then ¢ generates the character group of G(A.("Va )/A,), for we see ¢o(AB)
= 0*®/0 = (0*?/0®) (0] 0) = g( A)Eo(B) and ¢(A) € Ao. For seg let Us be
a prolongation of ¢ to AM. Then since (0"')°=a°=a =", we have

(4.2) 07 = wCa), where ¢lgy = 1.

If we choose another prolongation Vs of ¢ and set w'® = wy,), then V,= BU,
with some B ¥ and 0" = 0”’° = (¢o( B)0)"* = ¢! B)"°wls. Hence

(4.3) N(o) =¢0(B)U°C(o).

For Ac Y and ¢ € ¢ we write A° = U;'AU,. Then 0”°*° = (0€,)*" = ¢ol A%l
= ¢0(Au)wC(Aa), w0 = (gbo(A)a))U" = d)o(A)Ua(.t)C(a). Hence

(4.4) Gol A%) = o A)VeCis.
Define ¢5 and &, by

(4.5) ¢'0(A) ¢o( A%)
and
(4.6) . CslA) = o0

Let further 7 be an integer determined by ¢%, = ¢(s, the order of ¢, being I
Then by (4.4) we have

(4.7) bs = ¢5¢s.

Through different choice of the prolongation of s to AM, ¢ is multiplied by
an I'-th root of unity. However the root of unity is contained in Ao, hence &,

is determined only by o, does not depend on the choice of the prolongation,
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and is a character of %A by (4.7).
Now let @ resp. ¥ be character groups of G(A/A) resp. G(A('Va)/As,
the latter being generated by ¢, which is defined by (4.1). For A€ let A,

and A, be restrictions of A to A and to AQ(I“\/—[Z ) respectively, and set
4.8) CP(A) =¢(A) ¢(A)  for €0, g .

Then such products of ¢ and ¢ form the character group X of %. Denote by
Xu the subgroup of X corresponding to M; and for 7€ X, s let 7° be the
character of U defined by 7°(A) =7(A°) for A¥. Then we have

LemMma 4.1. Let X, be an intermediate field of AM/A,, and X, be the
subgroup of the character group X of W corresponding to Ki. Then in order
that Ki/k is a normal extension it is mecessary and sufficient that ¢¢ € X,
ce0, g¥ imply ¢°" e X, for all 6 =8=G(AJ/R).

Proof. Put A =G(AM/K;). Then, in order that K;/k is normal it is
necessary and sufficient that A°< ¥, for all A€, and all s=¢. Furthermore
we have A°e Y if and only if 7°(A)=72(A°)=1 for all X X;. Therefore
Ki/k is normal if and only if 7°<= X, for all & X; and all 4. On the other
hand if X =¢¢, o= 0, p € ¥, then 2° ' =¢° ' owing to ¢’ = ¢. Hence the lemma
is proved.

LEmMA 4.2. Let M be as above and non-abelian over k. Then for every
6 €8 and every ¢ ¥ we have ¢° ' € Xu.

Proof. M is a normal extension over k. So, if we can show that for any
¢ €T there exists ¢=® such that ¢¢ € Xu, then our assertion follows from
lemma 4.1. Now let ¢ be any element of ¥. Then there exists an integer x
and ¢ such that ¢¢* < Xy and ¢* =1, because AM = A+Aq("Va ) and further
M/k is non-abelian. Let x=0"«", (x",1)=1. Since the order of ¢' is then at
most equal to /™%, we have ¢* ¢ & Xy, where #’y=1 mod./”™ . Let m be a
smallest integer of » such that ¢¢' & Xy, ¢ running through all elements of
®. Then the character group of AM/A is generated by ¢, and hence
AM=A(""Va). Since M/k is non-abelian, namely AM= A, we have m =0
by prop. 1.2. This means that there exists ¢ € @ such that ¢¢ € Xy, which is
to be proved.

LemMma 4.3, Let oy, . . ., o5 be elements of § =G (A/k), and xi, . . ., x5 be
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integers. Then 5+ - - &5 e Xy is equivalent to 30, - - - o,y € A, where Sy
is obtained by (4.2) from any representatives Ui, of si in & =G(AM/R) (i=1,
., S
Proof. Since Cit -+ - (e Xy is equivalent to (5t - - - $(A) =1 for all
A e G(AM/M), our assertion follows at once from ¢3(A) = (45) = ({7
for any Us.

LemMA 4.4. If Cin =S8, for o €9, then (€ X,
Proof. If ¢y =¢yy, then ¢° ' =¢, by (4.7), and hence ¢, € Xy by lemma 4. 2.

Lemma 4.5. Let U. be a prolongation of s <=8 to & and C.) be as in (4.2).
Suppose further (') 7= and (") ox 0", Then C. is a primitive I*-th

root of unity.

Proof. Since (') =w'"¢h, and (0') =0, we have ¢ =1 by (4.2).
Analogously, ¢/2; %1 from (o 7) 7% "', Therefore ¢, is a primitive I*th
root of unity.

§ 5. Completion of the proof

Let M be a meta-abelian extension over % attached to k£ and put A~ M = A,.
Furthermore suppose that £, €%, o€ k; and S € Ao, Ci+1n € Ao, Then
we have

Lemma 5.1. Let M be as above and AM=A("\ @), where a is a weakly
M-reduced element of k. Then it follows from k(N @ ) = k(Cri1)) that Con € Aoy

namely n<t, a is M-reduced and M is k-meta-abelian over k.

Proof. a is weakly M-reduced. Hence if ¥'a €A, then n<t and our
assertion is already true. So assume ¥ @ = A,. Then prop. 1.4 implies =1,

and the proof is separated into two cases:

Case 1. Na € k(Cy): First we remark that this case contains all the non-
radical cases and the radical cases of the first kind. Because, in these cases
k(&) /k is cyclic, and so k(Y@ ) Ck(Zy) yields k(N @) = B¢, ), contradicting
the assumption of the proposition. Now let ¢ be a prolongation to A, of a
non-trivial automorphism of the normal extension k(Na, C)/k(Cs). Then
s is a primitive /”-th root of unity by (VY@ )’%4 @ and lemma 4.5. On the

other hand ¢, & Xy by ¢, =¢; and by lemma 4.4, hence lemma 4.3 implies
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)€ M. Thus our assertion is proved in the case where Y a & k().

Case 2. Na €k(Cs): As remarked in case 1 this case occurs only in the
radical case of the second kind. Therefore suppose that /=2, v—1 & %, and
let A=21, be the radical number of 2 Then k(Va)Ck(Ss) and k(Va)
xk(y=1). Hence (k(¢y); k) =4, and t=T+1 by (1.5). Then a quadratic
subfield of k(Cuy)) over k is B(V—=1), B(VA) or B(Y—4); and we see k(Va)
=k(NVZX) or =k(yY—=2).. Now let s resp. r be prolongstions to A, of non-trivial
automorphisms of the quadratic extensions  k(Cg+1))/kB(V=1)  resp.
E(Cir+1))/E(N@); and & resp. 7 integers such that &% =¢% resp. Ci =Cin-
Then Va°=vya, and lemma 4.5 implies that ., is a primitive 2™th root of
unity. Furthermore since ¢{n = and &{r41 % Cir+1y, We may write by lemma
1.2 5=1+2"y(0), where (3(0), 2) =1. ¢°7'=¢* ¢, & Xy by lemma 4.1 and
(4.7). Now y'(s) being an integer such that y'(¢) y(¢) =1 mod. 2", we have

(5.1) e Xy, (y(g), 2) =1.

As for g, proceed similarly as above. Namely, Va °* =y a °xva implies that
Cox is a primitive 2"-th root of unity, and v—1°=y—1"%xy—1 implies
7t =142y(or), where (y(o7), 2) =1. Hence ¢" ' =¢**°9¢,. € Xy, and so

(5.2) PP e Xy, (y'(o7), 2) =1,

where y(gt)y'(ot) =1 mod.2"™". Therfore ¢ ‘¢ Xy by (5.1) and
(5.2), and further ¢{” ¢ " = M by lemma 4.3. Since T=2, this is a

primitive 2”-th root of unity, which proves our assertion.

Lemma 5.2, Let M be as above a meta-abelian extension over k attached
to k and AM = AN @), where a is a weakly M-reduced element of k. Then
Cp—urr € Ao, provided that ""Va € Ay=A~M for n>u=r.

Proof. Let ¢, r be as in the beginning of this section, and ¢ be an auto-
morphism of A,/k such that (Va)’xVa and ¢} =¢"* where (¥, 1) =1.
Such a ¢ really exists. In fact, if =7, then ¢ is obtained as a prolongation
to A, of a non-trivial automorphism of k(¥ a@ )/k If t>rand k(¥ a ) = k(Cy+1),
then an automorphism o with ¢}, =¢}%" also satisfies the condition (Y@ )’
xYa, for we have (%), % Cps1y by lemma 1.2.  Finally if ¢t>7 and &Y @)
x k({r+1)), then a prolongation ¢ to A, of a non-trivial automorphism of
ENa, Crin)/ k(NS a satisfies (Va)°xVa and ¢riq) % Crer), hence 6 = C" ™
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where (%, ) =1 by lemma 1.2 and 1.4. For such a ¢ we have ¢" =¢'"""*¢, by
(4.7). Now from (Va)’sx%a and from lemma 4.5 follows that ¢, is a pri-
mitive "-th root of unity for any prolongation U, of ¢ to 8. On the other hand,
" r=¢ "¢, e Xy by (5.3) and lemma 4.2, hence ¢ "*¢f e Xu.  Since,
however, the order of ¢ is at most equal to I, owing to the assumption "V a
e Ao, we have ¢} e Xy. From this and from lemma 4.3 follows Cf:;reM.
Since ¢(;) was a primitive I”th root of unity as was seen above, we have

Cin-u+ry € M, and furthermore ¢u-u+r € Ao, which is to be proved.

Conclusion of the proof of the theorem

Hereafter the same notations as above will be used; %o\ €k, Cren Sk M
be a meta-abelian extension over k attached to k; A~M=Ag; &t < A,
Cern & Ay; AM=A("Va'), where a can be assumed a weakly M-reduced
element of k, namely """V a A, by §2.

Now if n<t, then M is already k-meta-abelian over k.. So suppose 7>t

Since of couse Y@ € A,, we have =1 by lemma 1.4. Furthermore
(5.4) Cin-ter € Ao

by putting #=1¢ in lemma 5. 1.

Let

(5.5) a=¢50"  with bek, and ax¢hic"""  with any ce .
Then

(5.6) AM=A(Va)=AChn""Vb)=A""Vb).

Hence if n — 4 <1t then M is already k-meta-abelian over 2. So suppose % — u
>t and put #—p=». Then AM=A(Yb) by (5.6). On the other hand
from (5.5) and from the reducibility of a follows "V @ =Cla-tin+' Vb € A,
hence " Vb € A, by (5.4). Moreover b & k' because of (5.5). Hence b is
also a weakly M-reduced element of .. Furthermore 2(Y 6 ) = k(¢ ). Indeed,
otherwise b = ¢, ¢! with c € k owing to =1, and @ = ¢} ¢™"", contradicting (5.5).
Using & resp. v instead of @ resp. #» in lemma 5.1, we see from the above
results that M is a k-meta-abelian extension over k. This concludes the proof

of the theorem.
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§ 6. Remarks on P-meta-abelian fields of degree 8

We shall characterize P-meta-abelian fields of degree 8, P being the rational

number field, by using our theorem. The following lemma is easily proved.

LeEmMmMmA 6.1. Let F be any algebraic number field of finite degree and 2
be a quadratic extension of F. Then 2 is embeddable in a biquadratic cyclic
extension over @ if and only if there exists an element p in Q such that Noir#
= —1.

Now let M be a non-abelian P-meta-abelian field over P of degree 8 and
A be the maximal abelian field over P. Then AM = A(Va ) for some a< P
and our theorem implies Y —1 € M. Conversely, let M be a non-abelian normal
field over P of degree 8 and assume y—1 € M. Then, since M/P is a quarternion
or dihedral extension, there exists a positive element d of P such that quadratic
subfields of M are P(V—1), P(Wd) and P(W—=d). Put 2=P(V=1,Vd) and
k= P(Yd). Since 2 is imaginary and % is real, M/k is a non-cyclic biquadratic
extension by lemma 6.1. Hence M/ P is necessarily a dihedral extension. Let
kB (yu) for u=k be a subfield of M distinct to £, and z be a conjugate of .
over P. If B(Via)=k\ p), then A( p)/P is biquadratic normal, and so
abelian. Hence M =%(y 2)2 is also abelian over P, which contradict our
assumption. Therefore 2(v ) xk(V % ), and hence M=k(y &, ¥ # ), moreover
E(Wui ) =k(¥=T1). Then pg= —7* for some y=k Put Viu=o0 and 2y )
=A. Since v=—Vdp= w( - f:g) :w({;)g, A/P is normal, and moreover
abelian. Therefore M is a subfield of AQ(% d ), that is, M is a P-meta-abelian.
Then we have proved.

ProrosiTiON 6.1. A necessary and sufficient condition for a non-abelian
normal extension M over P of degree 8 to be a P-meta-abelian is that M

contains Y—1. And then M is a dihedral extension over P.
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