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Abstract. This paper provides a brief look at dynamo scaling relationships for the degree of
equipartition between magnetic and kinetic energies. Two simple models are examined, where
one that assumes magnetostrophy and another that includes the effects of inertia. These models
are then compared to a suite of convective dynamo simulations of the convective core of a
main-sequence B-type star and applied to its later evolutionary stages.

1. Introduction
The effects of astrophysical dynamos can be detected at the surface and in the envi-

ronment of many magnetically-active objects, such as stars (e.g., Christensen et al. 2009;
Donati & Landstreet 2009; Donati 2011; Brun et al. 2015). Yet predicting the nature of
the saturated state of such turbulent convective dynamos remains quite difficult. Nev-
ertheless, one can attempt to approximate the shifting nature of those dynamos. There
may be the potential to identify a few regimes for which some global-scale aspects of
stellar dynamos might be estimated with only a knowledge of the basic parameters of
the system. For instance, consider how the magnetic energy of a system may change
with a modified level of turbulence and also how rotation may influence it. Establishing
the global-parameter scalings of convective dynamos, particularly with stellar mass and
rotation rate, is useful given that they provide an order of magnitude approximation
of the magnetic field strengths generated within the convection zones of stars as they
evolve from the pre-main-sequence to a terminal phase. This could be especially useful in
light of the recent evidence for magnetic fields within the cores of red giants, pointing to
the existence of a strong core dynamo being active in a large fraction of main-sequence,
intermediate-mass stars (Fuller et al. 2015; Cantiello et al. 2016; Stello et al. 2016). In
turn, such estimates place constraints upon transport processes, such as those for angular
momentum.

2. Scaling of Magnetic and Kinetic Energies
Convective flows often possess distributions of length scales and speeds that are peaked

near a single characteristic value. One estimate of these quantities in stellar convection
zones assumes that the energy containing flows possess a kinetic energy proportional to
the stellar luminosity (L) that is approximately vrms ∝ (2L/ρCZ)1/3 (Augustson et al.
2012) , where ρCZ is the average density in the convection zone. However, such a mixing-
length velocity prescription only provides an order of magnitude estimate (e.g., Landin
et al. 2010). Since stars are often rotating fairly rapidly, their dynamos may reach a quasi-
magnetostrophic state wherein the Coriolis acceleration also plays a significant part in
balancing the Lorentz force. Such a balance has been addressed and discussed at length
in Christensen (2010), Brun et al. (2015), and Augustson et al. (2016).
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Figure 1. (a) The scaling of the ratio of magnetic to kinetic energy (ME/KE), with data from
Augustson et al. (2016). The black curve indicates the scaling defined in Equation (2.1), with
β = 0.5. The blue dashed line is for magnetostrophy (β = 0). The green dashed line represents the
buoyancy-work-limited dynamo scaling, where ME/KE ∝ Ro−1/2 . The red dashed line indicates
the critical Rossby number of the star, corresponding to its rotational breakup velocity. (b) The
scaling of the dynamic Elsasser number (ΛD ) with inverse Rossby number in simulations from
Augustson et al. (2016). The uncertainty of the measured Rossby number and energy ratio or
dynamic Elsasser number that arises from temporal variations are indicated by the size of the
cross for each data point.

In Augustson et al. (2017), it is shown that one can derive a scaling relationship
based upon the vorticity equation. In particular, integrating the enstrophy equation and
ignoring any loss of enstrophy through the boundary requires that

∇×
[
ρv×ω + 2ρv×Ω +

J×B
c

+ ∇·σ
]

= 0.

Thus, the primary balance is between inertial, Coriolis, Lorentz, and viscous forces.
Scaling the derivatives as the inverse of a characteristic length scale � and taking fiducial
values for the other parameters in the above equation yields ME/KE ∝ 1 + Re−1 + Ro−1 ,
when divided through by ρv2

rms/�2 . Here the Reynolds number is taken to be Re =
vrms�/ν. However, the leading term of this scaling relationship is found to be less than
unity, at least when assessed through simulations. Replacing it with a parameter to
account for dynamos that are subequipartition leaves

ME/KE ∝ β(Ro,Re) + Ro−1 . (2.1)

Here β is unknown apriori as it depends upon the intrinsic ability of the non-rotating
system to generate magnetic fields, which in turn depends upon the specific details of
the system such as the boundary conditions and geometry of the convection zone.

For a subset of dynamos, like those discussed in Augustson et al. (2016), Equation
(2.1) may hold. Such dynamos are sensitive to the degree of rotational constraint on
the convection and upon the intrinsic ability of the convection to generate a sustained
dynamo. The inertial term, in particular, may permit a minimum magnetic energy state
to be achieved, bridging the subequipartition slowly rotating dynamos to the rapidly
rotating magnetostrophic regime, where ME/KE ∝ Ro−1 . For low Rossby numbers, or
large rotation rates, it is possible that the dynamo can reach superequipartition states
where ME/KE > 1. Indeed, it may be much greater than unity, as is expected for the
Earth’s dynamo (e.g., Roberts & King 2013).

Consider the data for the evolution of a set of MHD simulations using the Anelastic
Spherical Harmonic code presented in Augustson et al. (2016). These simulations attempt
to capture the dynamics within the convective core of a 10 M� B-type star. Given the
choices of rotation rates for this suite of simulations, they have nearly three decades of
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Figure 2. A magnetic Kippenhahn diagram showing the evolution of the equipartition magnetic
field for a 15 M� star. The abscissa show the time remaining in Myr before the iron core infall
that occurs at tf . The burning phase of the core is indicated at the top of the diagram.

coverage in Rossby number, as shown in Figure 1(a). In that figure, the force-based scaling
given in Equation (2.1) is depicted by the black curve (where ME/KE ∝ 0.5+Ro−1). This
scaling does a reasonable job of describing the nature of the superequipartition state for a
given Rossby number. These simulated convective core dynamos appear to enter a regime
of magnetostrophy for the four cases with the lowest average Rossby number, where the
scaling for the magnetostrophic regime is denoted by the dashed blue line in Figure 1(a).
This transition to the magnetostrophic regime can be better understood through Figure
1(b), which shows the dynamic Elsasser number (ΛD = Brms

2/(8πρ0Ω0vrms�), where � is
the typical length scale of the current density J). So as ΛD approaches unity, the balance
between the Lorentz and the Coriolis forces also approaches unity, indicating that the
dynamo is close to magnetostrophy.

The scaling relationship between the magnetic and kinetic energies of convective dy-
namos in turn provide an estimate of the rms magnetic field strength in terms of the
local rms velocity and density at a particular depth in a convective zone. Therefore, these
relationships permit the construction of magnetic Kippenhahn diagrams that show the
equipartition magnetic field, which is estimated based on the mixing length velocities
achieved in stellar evolution models, as shown in Figure 2 for a 15 M� star. During the
main sequence, the magnetic field generated by the dynamo running in the convective
core has an estimated rms strength of about 106 Gauss, which is consistent with the simu-
lations described in Augustson et al. (2016). Likewise, during the helium-burning phase,
the equipartition magnetic field rises to about 107 Gauss. During subsequent burning
phases, the field amplitude continues to rise largely due to the increasing density of the
convective regions where it eventually reaches 1010 Gauss during the oxygen-neon and
silicon burning stages. The density dependence of the equipartition magnetic field can
be seen more directly in the scaling B ∝ ρ

1/6
CZ L1/3 , which follows from the scaling of the

mixing length velocity discussed above, and by noting the surface luminosity of the star
does not change significantly during these late-stage burning phases.
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3. Conclusions
As discussed in Augustson et al. (2017) and Augustson (2017), there appear to be

two scaling laws for the level of equipartition of magnetic and kinetic energies that
are applicable to stellar systems, one in the high magnetic Prandtl number regime and
another in the low magnetic Prandtl number regime. Within the context of the large
magnetic Prandtl number systems, the ratio of the magnetic to the kinetic energy of
the system scales as ME/KE ∝ β + Ro−1 , where β depends upon the details of the
non-rotating system, as mentioned above in §2 and in Augustson et al. (2016). For low
magnetic Prandtl number and fairly rapidly rotating systems, such as the geodynamo and
rapidly rotating low-mass stars, another scaling relationship may be more applicable. This
scaling relies upon a balance of buoyancy work and magnetic dissipation and it yields a
ratio of magnetic to kinetic energy that scales as the inverse square root of the convective
Rossby number (Davidson 2013; Augustson et al. 2017). In either case, it is likely that the
magnetic energy can grow to be near or above equipartition with the kinetic energy, which
allows the estimation of the magnetic energy at various stages of evolution as shown in
Figure 2. Future magnetic field estimates will consider both the magnetic Prandtl number
and the star’s rotational evolution, utilizing angular momentum transport techniques
such as those discussed in Amard et al. (2016). Yet, more work is needed to establish
more robust scaling relationships that cover a greater range in both magnetic Prandtl
number and Rossby number. Likewise, numerical experiments should explore a larger
range of Reynolds number and level of supercriticality. Indeed, as in Yadav et al. (2016),
some authors have already attempted to examine such an increased range of parameters
for the geodynamo. Nevertheless, to be more broadly applicable in stellar physics, there
is a need to find scaling relationships that can bridge both the low and high magnetic
Prandtl number regimes that are shown to exist within main-sequence stars. The authors
are currently working toward this goal, as will be presented in an upcoming paper.
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