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1. Introduction

The object of this note is to generalize the notion of quasi-monotony for
sequences of real numbers and to prove corresponding generalizations of certain
known theorems. First, we recall the definition of quasi-monotony.

Definition 1. A sequence {a,} is said to be quasi-monotone if and only if
n~%a,|0 for some B = O or equivalently if and only if a, = 0 and Aa, = —an™'a,
for some « 2 0. (Here Aa, = a,—a,,,).

The generalized notion referred to in the title is to be called (¢, §)-monotony
and this gives rise to

Definition 2. A sequence {a,} is said to be (¢, §)-monotone if and only if
a,~0, a, = 0 ultimately and Aa, = —08,.,, where the 6, form a sequence of
non-negative numbers, {¢,} is a positive monotone increasing sequence and
X¢,0,<00.

It is easily seen that every monotone decreasing null sequence is (¢, 8)-
monotone for all sequences {¢,}, {5,} such that £¢,5,<c0. Also, we observe
that a quasi-monotone sequence {a,} in which a,—0 is (¢, )-monotone with
6,+1 = an”'a, for all sequences {¢,} such that £¢,, ,n”'a,<c. In a recent
note, Boas (1) defined §-quasi-monotone sequences and obtained a number of
theorems involving them. These results of Boas are concerned with the parti-
cular monotone increasing sequences {n'}(y = 0) and {log n} and, in our ter-
minology, these §-quasi-monotone sequences are (n”, §)-monotone and (log n, 8)-
monotone respectively. The following results on (¢, é)-monotone sequences are
first established in this paper.

Theorem 1. If the sequence {a,} is (¢, §)-monotone and Ta,A$, converges,
then a,¢,—0.

Theorem 2. If the sequence {a,} is (¢, §)-monotone and Ta,A¢, converges,
then the series £, . Aa, is absolutely convergent.

Theorem 3. If {A,} is a strictly increasing sequence of positive integers such
that Al, = O(A4,_,) as n— oo and if the sequence {a,} is (n, 8)-monotone, then
the two series Xa, and Za, A2, are either both convergent or both divergent.

The conclusion of Theorem 1 clearly holds for every convergent sequence
{$.} and, as Theorem 2 is deduced from Theorem 1, this theorem is also true

https://doi.org/10.1017/50013091500012153 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500012153

38 M. M. ROBERTSON

for convergent {¢,}. It is easily seen that Theorem 1 extends Olivier’s theorem
which shows that, for monotone decreasing null sequences {a,}, Za,<c0
implies that na,—0. Theorem 3 provides an extension of the well known
Cauchy condensation test for convergence. The extension of Cauchy’s test for
quasi-monotone sequences was proved by Shah (2) and Szasz (4).

In order to state the next result, we require another definition.

Definition 3. A sequence {a,} is said to be (¢, 5)-positive if and only if it is the
sequence of differences of a (¢, 5)-monotone sequence.

Theorem 4. If the sequence {a,} is (¢, 8)-positive and £, ,a, converges,
then the series L¢p, . (a, is absolutely convergent.

In the note of Boas mentioned above, several results were established con-
cerning the integrability of trigonometric series. Here, we generalize two of these
results to the case where the trigonometric sine or cosine coeflicients form a
(¢, 6)-monotone sequence. Previous results of this nature for quasi-monotone
sequences were proved by Shah in (3).

Theorem 5. Suppose that n(x) is a non-negative function such that n(x) € L(0, )
and

1/n n
¢, = nf n(x)dx + J‘ x tn(x)dx
0 1/n

is a monotone increasing sequence. If {1} is a (¢, 6)-monotone sequence and

X2,A¢, converges, then T2, cos nx is convergent for all values of x (except perhaps
at integral multiples of 2n) and n(x)ZA, cos nx € L0, r).

Theorem 6. Suppose that n(x) is a non-negative function such that
xn(x) € L(0, )
and
1/n n
¢, = n® f xn(x)dx + f x ™ In(x)dx
o] ) 1/n
is a monotone increasing sequence. If {A,} is a (¢, 6)-monotone sequence and
22,Ad, converges, then 2, sin nx is convergent for all values of x and

n(x)Z2, sin nx € L(0, n).

2. Proofs of the first four theorems

As has been already remarked, the conclusion of Theorem 1 is immediate
when {¢,} is convergent and so we assume that ¢,7co. We note that

A(¢rar) = ¢rar_¢r+lar+l = arA¢r+¢r+ IAar
and so, for m<n,

n—1 n—1
¢mam—¢nan= _Z arA¢r+ _Z ¢r+1Aar (21)
n—1 n—1
= Z a,Ap,— Z Gr+16r41-
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Since Za,A¢, and ¢, converge, to every ¢>0 there corresponds an integer
N such that

n—1

n—1
2 aAd— Y 416,412 —¢

r=m r=m

and therefore,
¢mam—_¢nan ; —¢&

for all m, n such that N £ m<n. Hence, since € is arbitrary, the sequence
{¢,a,} can have at most one limit point. This limit point must be zero, as
otherwise we shall show that a contradiction must occur.

Let us suppose that ¢,a,—/>0. Then, for all sufficiently large n, a,>4I¢, *
and so, since Za,A¢, converges, ¢, 'A¢, is convergent. Since the sequence
{¢,} is monotone increasing, we write —c, = ¢, 'A¢,. Then we have ¢, = 0,
2c, convergent and ¢, /¢, = 1 +¢,. Therefore,

o0

llm ¢n = ¢l H (1+Cn),

n— o0 1

which is the above mentioned contradiction since TI(1+c,) converges because
of the convergence of Xc, and ¢,7c0. This completes the proof.
To prove Theorem 2, we write (Aa,)” = max (0, —Aa,) and obtain

¢n+1 ' Aan] = d’n+1AanJ"2¢n+1(Aan)-~
Since 0 < (Aq,)” £ 8,., and Z¢,5, converges, we see that Z¢,.(Aa,)” is

convergent. The proof is completed by showing that £¢,, ;Aa, is convergent,
and this follows by the Cauchy principle of convergence from (2.1) because
both {¢,a,} and Za,Ad, converge.

We now prove Theorem 3. First, we assume that Za; A4, is convergent.
We have Aaq, = —6,,, and so a,,, < a,+9,,,. It follows that

r

a,La,+ ) 6

int1
for A,<r<2,.+,. This shows that

An+1—1 An+1—1

Z a, £ (An+1—ln)a/'.,.+ ; 5k(;"n+l_k)

7 Antl
and so, since
A1 —k<lpy1—2,<C(Ap—4,-)<Ck
for some fixed positive number C, we have

o0

a oo
Ya, £ =Y a, A} + Y né,.
1 1 1
Thus Za, converges since both Za; A2, and Znd, are convergent. The converse

result is proved in a similar fashion.
Next we prove Theorem 4. Since the sequence {a,} is (¢, )-positive, there
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is a (¢, 6)-monotone sequence {4,} such that a, = A4, = A,—A4,,,. Also,
=3
A,—0 and so Za, is convergent and 4, = Y a,. Then the proof follows from

Theorem 2 if we show that £4,A¢, is convergent.
Now, there is an integer N such that 4, = 0 for all n> N so that, in order

to show that £4,A¢, converges, we have only to show that — Y A4,A¢, is
N+1
bounded above for all m>N. We have

m m ) m 0
- X AAp, =~ Y Ad, Y as— Y A Y (a+d+)
N+1 n=N+1 k=n n=N+1 k=n

for all m>N. Since a,+3J,,, = 0 for all k, we can reverse the order of sum-
mation and obtain

- _ZN A¢nkz_: (ax+6,41)

+1
m k o0 m
=— Z Ap(ar+Ss)— Y, Y A(ay+54q)
k=N+1n=N+1 k=m+ln=N+1

0

i (e 1= One D)@+ 0k 1) H(Drns 1~ Dns 1) Zl(ak+5k+1)

k=N+1 k=m+

Z Prs1(ak+0k4 1),
k=N+1

and so A4,A¢, converges because both X¢,, 4, and £¢,5, converge.

lIA

3. Proofs of Theorems 5 and 6

Since the proofs of these theorems are very similar, we prove only Theorem
6. We write ¢,(x) = 1—cos (k+3)x. Then we obtain

—2sin +x }n_j Ay sin kx = 2": A{cos (k+%)x—cos (k—4$)x}

= 21: A cr-1(x)—eu(x)}
n—1
= A1€0(X) — Anc,(x) + & (s 1 —Ader(x).
Since 4,—0 as n—o00, we have

f: A, sin nx = % cosec §x{—A,co(x)+ f: (A2 )e(x)} (3.1

whenever the right-hand side is convergent.

Now, since X¢,0, and X1,A¢, converge, it follows by Theorem 2 that
Y.+ 1404, is absolutely convergent. Thus XAA, is absolutely convergent and,
as | ¢(x) | £ 2, (3.1) shows that the series £, sin nx is uniformly convergent
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in any closed interval which excludes all integral multiples of 2n. Also, clearly
the series converges to zero at integral multiples of 2x.
To show that n(x)X4, sin nx € L(0, n), we see from (3.1) that

f ’ n(x) | i A,sinnx |dx < 4|2, | f ’ 7(x)co(x) cosec $xdx
0

0 1

+ Jn 1(x) f | A4, | c,(x) cosec dxdx

0 1

=1|2| J n(x) tan kxdx+ Y | A, | J n(x)c,(x) cosec 1xdx
0 1 0

1

<34 |'["xn(x)dx+8§|Aln|{n2f
0 1

[0}

" xn(x)dx + Jn x " n(x)dx}.

1/n
This latter quantity is finite since xn(x) € L(0, n) and ¢, | A4, | is convergent.
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