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Abstract

A framework is proposed for generative models as a basis for digital twins or mirrors of structures. The proposal is
based on the premise that deterministic models cannot account for the uncertainty present in most structural modeling
applications. Two different types of generative models are considered here. The first is a physics-based model based
on the stochastic finite element (SFE) method, which is widely used when modeling structures that have material and
loading uncertainties imposed. Such models can be calibrated according to data from the structure and would be
expected to outperform any other model if the modeling accurately captures the true underlying physics of the
structure. The potential use of SFE models as digital mirrors is illustrated via application to a linear structure with
stochastic material properties. For situations where the physical formulation of such models does not suffice, a data-
driven framework is proposed, using machine learning and conditional generative adversarial networks (cGANs).
The latter algorithm is used to learn the distribution of the quantity of interest in a structurewithmaterial nonlinearities
and uncertainties. For the examples considered in this work, the data-driven cGANs model outperforms the physics-
based approach. Finally, an example is shown where the two methods are coupled such that a hybrid model approach
is demonstrated.

Impact Statement

In the current work, a generative model framework for digital twins is proposed. The framework is fitted to a
mathematical formulation of digital twins, also referred to as mirrors, from the previous works. Different types of
generative models are presented and tested on simulated data. The physics-based model is a stochastic finite
element model, widely used to model structures under uncertainty. The data-driven method is a conditional
adversarial network, whose functionality fits the framework of mirrors. The hybrid-model is the combination of
the two aforementioned methods. All models are tested according to their ability to model uncertainty. Finally,
the models are considered as two different types of mirrors, ε-mirrors and α-mirrors, which have different
functionality.

1. Introduction

A recent innovation in the field of system simulation is the creation of digital twins for specific systems
(called physical twins). For example, attempts have been made to do this in the fields of manufacturing
(Rosen et al., 2015; Uhlemann et al., 2017), control systems and the internet of things (Schluse et al.,
2018), smart cities (Dembski et al., 2020), social networks, andmanagement (Macchi et al., 2018)—more
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detailed literature reviews and descriptions of state-of-the-art research relating to digital twins can be
found in the recent review papers (Fuller et al., 2020; Jones et al., 2020; Wagg et al., 2020). Structural
dynamics is also a field inwhich digital twins have been a desired achievement for a number of years—see
Wagg et al. (2020) and references therein. One of the motivations for creating a digital twin of a structure
(the physical twin) is to enable more accurate prediction of the structure’s behavior under a wider range of
different situations. For example, predictions could be used to avoid scenarios under which the structure
might be more likely to suffer damage or degradation. Equivalently, in the extreme case, the model might
be used to limit the use of the structure in operating conditions where one might be concerned that some
form of structural failure might occur (e.g., using a wind turbine in higher wind speeds than usual). In this
context, the overall goal of a digital twin can be viewed as maximizing the effective operational life of the
structure, and as such, is directly linked to the business objective of minimizing cost (or maximizing
profit) associated with the physical twin.

For complex engineering applications, it is not possible to have complete knowledge of all the physics
of the structure, including all its possible environmental and operational conditions. Therefore, one of the
underlying concepts of a digital twin is that a combination of models is used to capture the overall
behavior of the physical twin. In particular, a commonly proposed scenario is that physics-basedmodel(s),
such as finite-elements, are combined with data-based techniques, such as machine learning (Bishop,
2006; Murphy, 2012). In addition to this, models can be defined for different parts (or substructures) of a
physical twin and then assembled into a larger model. This type of assembled modeling approach was
discussed inWorden et al. (2020), where the concept of a digital mirrorwas also introduced to give amore
precise mathematical set of definitions, and these definitions will be used as the framework for the results
presented in this paper.

Avery important part of building a digital twin is to consider the associated uncertainty of the process.
This aspect includes both aleatory uncertainty, which refers to events or quantities that are inherently
random and cannot bemodeled using deterministic physics-basedmodels (e.g., measurement uncertainty;
Smith, 2013), and epistemic uncertainty which relates to a lack of knowledge about the properties of the
physical twin. A common example of epistemic uncertainty is when the effects of nonlinearity are not
captured in a physics-based model, leading to errors between the data acquired from the real structure and
themodel. Another type of epistemic uncertainty is not knowing all the variables that affect the result of an
event. In machine learning, these variables are sometimes referred to as “lurking” variables (Bishop,
2006). Similarly, in probability-based models for uncertainty, such variables are called latent variables
(Booyse et al., 2020).

Despite the separate definitions of aleatory and epistemic uncertainty, it will typically be a very
challenging problem to quantify these separately within a digital twin. Therefore, the motivation for this
work is to use generative models as the basis for a digital twin that can provide estimations of aleatory and
epistemic uncertainty. The probabilistic framework of generative models fits naturally with models for
aleatory uncertainty, and epistemic uncertainties can be inferred based on variations between the digital
twin outputs and recorded data from the physical twin. A related approach has been developed in Booyse
et al. (2020) to build a black-box digital twin for a structural health monitoring (SHM) application.

In the current work, two different types of generative models are studied; the first using the stochastic
finite element (SFE) method (Sudret and Der Kiureghian, 2000; Ghanem and Spanos, 2003). SFEmodels
are used to propagate uncertainty from material and loading to quantities of interest via finite element
models. They are white-box models, directly exploiting knowledge of the physics of the structure. The
second type of generative model considered is the conditional generative adversarial network (cGAN)
(Mirza and Osindero, 2014). Using this algorithm, one can generate samples of learnt distributions,
conditioned on a set of variables. These distributions are of the structural quantities that the model is built
to predict. Because cGAN is amachine learning algorithm, it should be able to perform for a wide range of
structural or environmental conditions for which there are data; this is in contrast to SFEmodels, which are
able to perform only under predefined conditions. However, themachine learningmodel is limited to a set
of system conditions for the data gathered, and cannot extrapolate beyond this, which is in contrast to the
SFEmodel that can be used in awider predictive role. A hybrid approach, using both generativemodels, is
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an attempt to get the best aspects of both models. Specifically, what is usually expected from hybrid
approaches (gray-box models) is: (a) to use the cGAN algorithm to correct the discrepancy of the SFE
model in cases where the physical formulation of the finite elements do not suffice and (b) to allow the
hybrid model to have some predictive capability based on the SFE model away from the operational
conditions where data are available; that is, extrapolation capability.

The main thesis of this paper is that one should adopt generative models to properly accommodate
uncertainty in potential digital twins. To present this idea, specific modeling technologies are used to
illustrate the various shades: stochastic FE for a generative white box and the cGAN for a generative black
box; combined together, these present a fully generative gray box. The presentation is not intended to
suggest that these model types are the only possibilities; in fact, a range of paradigms could prove equally
powerful. In terms ofwhite generativemodels, a fairly basic implementation of the stochastic FEmethodhas
been presented here, based on the early polynomial-chaos formulation of Ghanem and Spanos (2003);
however, more recent variants, like the stochastic Galerkin approach (Augustin and Rentrop, 2012), have
advantages likemore general expansion bases for the stochastic space. Avery recentmethodology StatFEM
(Duffin et al., 2021; Girolami et al., 2021), provides an elegant Bayesian framework for both building and
updating generative FE models. In terms of generative black-box models, GANs are by no means the only
option; in fact, one alternative—the variational auto-encoder (Kingma and Welling, 2014)—has already
proved to be generally useful in engineering problems; particularly in condition monitoring problems (e.g.,
Mylonas et al., 2020). Another versatile generative framework is provided by Gaussian processes (GPs)
(Rasmussen andWilliams, 2005). Although GPs are most often used as nonparametric black-box learners,
they are also the basis for the StatFEMmodels mentioned earlier. Furthermore, GPs offer a direct method of
building gray-box models by training them from data, but building a priori physics into their mean and
kernel functions (Rogers et al., 2020; Pitchforth et al., 2021; Cross et al., 2022).

The layout of the paper is as follows. In Section 2, mirrors are defined based on the work in Worden
et al. (2020). In Section 3, details of the GANs and cGANs are given. In Section 4, a white-box mirror
based on a SFEMmodel is presented. In Section 5, a black-box mirror based on a cGAN is described. In
Section 6, the combination of the two models into a hybrid mirror is presented and also the extrapolation
potential of both the hybrid and the black-box mirrors is studied. Finally, the results are summarized and
conclusions are drawn. Further details about the SFE method can be found in the Supplementary
Appendix.

2. Digital Mirrors

Although the term digital twin has been widely used in many disciplines and in industry sectors, an
alternative terminology is used here tomake the subsequent analysis more precisely defined. The physical
twin (also called the structure and denoted S) has NS different states s¼ s1,s2,…sNSf g (in contrast to
Worden et al. [2020] where each state refers to a time instant t, the notation here is simplified for
convenience and since the problems to be presented here are not dynamic but static). Together with the
structural states, the environment E of the structure has NE corresponding states, e¼ e1,e2,…eNEf g. In
general, the set s may contain specific displacements (or accelerations when dynamic problems are
considered) that are of interest from a structure, or stresses, strains, and response spectra that one might
monitor in a SHM scheme. The set emay include environmental conditions affecting the structure such as
temperature, humidity, wind speed, and so forth.

The approach taken in the current work is to build mirrors that predict the behavior of different parts of
the structure S, rather than a global model for the whole S. This subset of states/quantities that are mirrored

defines the context C¼ eCi ∈ E,sCj ∈ s; i, j
n o

, where sCj is the response or predictive context and e
C
i is the

environmental context. This formulation is used to define the exact quantities that the model is able to
predict and the exact environmental conditions under which the model is able to perform.

FollowingWorden et al. (2020), definitions are constructed according to the mirror’s ability to predict
the states sCj . This ability ismeasured usingmetrics defined below, and based on this themirrormodels can
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be considered to be either ε-mirrors or α-mirrors. A model is considered to be an ε-mirror if a distance
metric, dC, is less than (or equal to) a predefined tolerance, ε, such that,

dC pC, rC
� �

≤ ε, (1)

where pC is the prediction of the digital mirror within some context C and rC is the observation of the
response of the structure. The definition simply implies that the response of the physical structure should
be within some distance of the prediction of the mirror. If the mirror is based on a deterministic model,
then the distance defines some interval or area in the prediction space similar to confidence intervals.
Given that the models that are studied here are probabilistic, dC should be some probability distribution
distancemetric defining themaximum distance between the predicted and real probability distributions of
interest.

The second type of mirror is the α-mirror. In order for stochastic model to be considered an α-mirror,
the quantity of interest of the real structure should always bewithin an interval defined by the output of the
model with a given probability p, that is,

P rCi ∈ mC
M �ασCM , m

C
M þασCM

� �� �¼P αð Þ, (2)

where rCi is an observation, P is the probability that the observation is within the defined interval,M is the
model used as a mirror,mC

M is the prediction of the model or the mean value of the outputs in the case of a
generative modelM, σM is the corresponding standard deviation, P αð Þ the probability as a function of the
predefined parameter α, which controls howwide the interval defined in Equation (2) is. The probabilityP
is a function of the parameter α and for everymirror, such a function can be defined, according to available
data. The curve P αð Þ can be used to explain the potential of the generative mirror in describing the
behavior of the structure S exploiting only the mean value and the standard deviation of the generated-by-
the-model samples. Such an approach provides a way to define an interval, regardless the shape of the
distribution, within which all observations rCi would fall into with some probability P αð Þ.

A distinction is introduced within the environmental parameters. The first category is the controlled
variables (eCc ), which are the variables that are used as deterministic inputs into the mirror M. They are
quantities that are measured from the environment of the structure and whose effect on the behavior is
modeled. The second category is the uncontrolled variables (eCu ), which include parameters that affect the
structure but are either unknown or stochastic. A generative modelMEC

u that makes the best estimate of eCu
is needed (in the case of SFEs, as will be explained later,MEC

u is the stochastic process used for the random
quantities of the problem). Given that the model M used as a mirror is a generative model, the model’s
output under the context C is a probability density function P of the prediction pC of the quantities of
interest given by,

PpC ¼M eCc ,beCu ¼MEC
u

� �
, (3)

where PpC is the probability density function of the quantity of interest.
Furthermore, followingWorden et al. (2020), the definition of a virtualization is provided. Given some

context C, a virtualization is defined as the pair,

VC ¼ MC
ε1
,MEC

u∣ε2

� �
, (4)

whereMC
ε1 is a model calibrated according to data from the physical structure and an established ε-mirror

for some tolerance ε1 within the context C andMEC
u∣ε2 is modeling the stochastic uncontrolled variables in

the context,C, which is also an ε-mirror with tolerance ε2, that provides the best estimate for the unknown
parameters. A generative model can be considered a virtualization with clearly separated stochastic and
deterministic inputs. The stochastic inputs aremodeled byMEC

u∣ε2 and themodelMC
ε1 is informed fromMEC

u∣ε2
as well as fromdeterministic parameters to generate probability distributions of the quantities of interest of
the outputs; for example, displacements, natural frequencies, and accelerations.
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The framework is schematically shown in Figure 1. As mentioned, the uncontrolled variables eCu from
the environment are modeled by a generative modelMEC

u . Of all the data acquired from the physical twin
(SC), a subset is considered to be the training data,Dtr, used to calibrate the digital mirror model, that is,
SC Dtrð Þ. The calibrated model is used to yield predictions. Since it is a generative model, some stochastic
input is used, which in this case is the best estimate of the uncontrolled environment variables beCu . Some
controlled variables of the environment are also used as inputs eCc . As far as the evaluation of the modelM
as a digital mirror is concerned, using some testing data instances rC ∈ Sc Dtð Þ (where Sc Dtð Þ are acquired
data from the physical twin and considered the testing data) and Equations (1) and (2), the parameter ε1
and the curve α!P αð Þ are defined; the latter two describe the ability of the model to perform as a digital
mirror. It is worth noting that for a generative model, the distance dC is computed between the probability
density function of the predictions PpC and the probability density function of the recorded data of the
quantity of interest PrC . Finally, the model is used to get a probability density function of predictions PpC

corresponding to new values of the controlled variables.

3. Generative Adversarial Networks

The SFEmethod is a white-box physics-based generative modelingmethod that can be used as amirror of
a structure. The method’s performance is largely based on the knowledge one has about the physics of the
problem and the finite element formulation. As an alternative, and trying to avoid unnecessary epistemic
uncertainty problems, a machine learning black-box solution to the problem is proposed here.

For the purposes of using generative models as mirrors of structures, a very recently developed neural
network architecture is used here. The core algorithm is the generative adversarial network (GAN)
(Goodfellow et al., 2014) and a variation of it, the cGAN (Mirza andOsindero, 2014). The latter algorithm
is used exactly in the sameway as an SFEmodel is used. A deterministic input to the model is defined and
the model generates distributions (or samples) of the output quantities. In the current section, the two
algorithms are presented and their functionality is explained.

3.1. Vanilla GANs

The traditional scheme followed in machine learning is the training of a model to perform classification
(Bishop, 1995) or regression (Specht, 1991). To extend this to images, convolutional neural networks

Figure 1. Schematic representation of the proposed framework for a digital mirror.
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were developed (Krizhevsky et al., 2012), yielding superior performance in the two mentioned tasks.
Recently, a new type of neural network has emerged, the GAN (Goodfellow et al., 2014). The goal of this
new scheme was initially to generate images that resemble reality. This task is achieved via the use of two
neural networks. The first one is termed the generator and produces “fake” images given a latent noise
vector. The second network is the discriminator, which tries to identify whether an image, fed to it as an
input, is fake (generated by the generator) or real (coming from the available dataset). By training, both of
these networks improve toward their objectives and finally, the generator, provided with some latent
vector, can generate images that appear to be real. More intuitively, this means that the generator maps a
latent vector distribution into a distribution or a manifold of the real data. The layout of the basic (vanilla)
GAN can be seen in Figure 2.

The generator is commonly a multilayer perceptron (MLP) (Bishop, 1995) that takes as input a latent
noise vector z coming from a probability distribution pz zð Þ and maps it into a vector (or an image)G zð Þ of
dimension equal to the dimension of the training samples. The discriminator is another MLP that takes as
inputs, vectors (or images) x, and outputs the probability of the sample being real, P x¼ realð Þ¼D xð Þ.
The training of the discriminator is carried out by maximizing the probability that it assigns the correct
label (“real” or “fake”) to the samples. At the same time, the training of the generator,G, is accomplished
by trying tominimize the probability that the discriminator classifies the generated samples as fake, that is,
minimization of log 1�D G zð Þð Þð Þ. Following from Goodfellow et al. (2014), the objective function L
can be interpreted as a two-player game explained by,

min
G

max
D

L D,Gð Þ¼Ex�pdata xð Þ logD xð Þ½ �þEz�pz zð Þ log1�D G zð Þð Þ½ Þ�: (5)

Training of such a network is performed in two steps per epoch. During the first step, random samples
are created by the generator and concatenated with a batch of real samples from the dataset. The resulting
training batch is used to train the discriminator for one epoch by back-propagating the error of the output.
The target label for the real samples is 1 and for the generated ones is 0. The first term of the right-hand side
of Equation (5) is set in this step as the objective function and itsmaximization is attempted. Consequently,
the two networks are clipped together as in Figure 2, and random samples of the latent vector are generated
to create random-generated samples. These samples are fed into the whole GAN assembly and the target
outputs are labels of 1. The weights of the discriminator’s connections are considered as constants during
the second training phase and the error is back-propagated to train only the generator. This time, the
objective function is composed exclusively of the second term of the right-hand side of Equation (5) and
itsminimization is sought. Following this training scheme, during the first step, the discriminator learns to
distinguish between real and generated images and the generator to generate images that the discriminator
classifies as real and (as shown in Goodfellow et al., 2014) to have probability distribution similar to the
real data.

The most straightforward application of GANs is to generate artificial data to augment a dataset.
Training neural networks is highly dependent on the size of the available dataset. The rule-of-thumb for
training neural networks that generalize well (Tarassenko, 1998) specifies that for each trainable weight of
the neural network, 10 training samples are needed. This statement probably does not stand for GANs, as
they are also trained using random noise and generated samples that do not come from the available
dataset. Acquiring engineering data is difficult and sometimes even expensive. Labeled images are hard to
obtain and their manual labeling costs both time and money. In cases of image datasets, augmentation can

Noise, z Generator

Generated
samples G(z)

Real
samples x

Discriminator Probability D(G(z))

Figure 2. Vanilla GAN layout.
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also be achieved by rotation of the pictures or color change, and so forth. In SHM, for example, where
acquiring sufficient data is vital to efficiently monitor the health state of structures, the securing of data
from structures in different damage cases or under different environmental conditions can be very
expensive or even impossible; the samples are usually limited and augmentation is not trivial. Especially
for deep networks, and even more for deep convolutional neural networks, where the number of trainable
parameters is huge, augmentation of available dataset size could yield an efficient way to increase the
generalization performance of models (Frid-Adar et al., 2018).

3.2. Conditional generative adversarial networks

cGANs are an attempt to control the output of the generator by conditioning on some variables. In contrast
to the traditional GAN layout (Figure 2), where the product of the generator is completely controlled by
random noise z, the output of the generator is here partially controlled by some vector c; thus providing a
way of learning distribution and manifold transformations parameterized on the code. This code may be a
continuous variable or a discrete one. Since the output of the generator depends on the code, the output of
the discriminator should also depend on it and the discriminator should also have it as an input. Therefore,
the layout of the cGAN is as shown in Figure 3.

Training such an assembly of networks, the discriminator learns that, for each different value of c, a
different acceptance or rejection boundary is defined in the sample space. Since the decision boundary of
the discriminator varies according to the code, the generator also learns to vary its outputs according to c to
“fool” the discriminator. In cases of discrete or categorical variables, the result is that the generator learns
to generate samples belonging to different categories. InMirza andOsindero (2014), an illustration of this
result is presented for the MNIST dataset; a collection of hand-drawn digits of numbers. By defining
10 binary categorical variables as the code, the generator is able to create sample images in predefined
classes, controlled by the code.

The use of continuous variables yields more convenient results for physics modeling. A continuous
variable would force themold (the boundary around themanifold of the data) created by the discriminator,
to be gradually transformed as a function of the values of the code. The decision boundaries of the
discriminator then force the generator to create samples within the region they define. Consequently, the
geometry of the generated manifolds is conditioned on the code vector c. Using this training scheme, the
generator has learnt the transformation of the manifold and the distribution of the generated points, as a
function of the code.

The algorithm may be exploited to generate artificial data as a function of some code vector but, in the
current work, it shall also be exploited to learn the transformations of the aforementioned manifolds and
distributions, as functions of the code. The output of interest of a generative model is the distribution of
some quantity of interest, making the cGAN algorithm a suitable candidate to serve as such a model. The
code plays the role of the variable that affects the output distribution and the cGAN is called to learn from
the data how the distribution transforms according to the values of the code. The code in a structure
modeling context can represent the loading and the environmental conditions of some structure, while the
output distributions are the probability distributions of the quantity of interest, that is, displacement,

Noise, z

Code, c

Generator

Generated
samples G(z, c)

Realsamples x, c

Code, c Discriminator Probability D(G(z, c))

Figure 3. Layout of a cGAN.
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acceleration, natural frequency, and so forth. A major advantage of using such a model as a digital mirror
is that there is no need for modeling the uncontrolled variables from the environment (eCu ), that is, the
generative model MEC step in Figure 1 is bypassed. The effect of these variables is taken into
consideration via the noise variables of the cGAN model.

4. SFE Models as Mirrors

An SFE model updated according to data acquired from a structure could be considered as a mirror
under the criteria discussed earlier. It could take into account experimental noise and aleatory
uncertainty that might exist in a structural problem. The model can also be continuously updated
according to newly acquired data, to take into account random events and environmental condi-
tions. In every case, model parameters have to be chosen in order for the model to fit the
acquired data.

The parameters of the model that will most probably need calibration are the parameters describing the
stochastic fields of the problem. Some assumptions can bemade about the fields; the first might be that the
field is stationary andGaussian or lognormal. A subsequent assumption might then be about the form of
the autocorrelation function. A quite common type of autocorrelation function in SFEM problems is the
squared-exponential function, such as ρ x,x0ð Þ ¼ exp � x�x0

l

� �2
, where x and x0 are the points in space and l

is a parameter called the correlation length.
Having decided on the type of the field and the autocorrelation function, the hyperparameters

remaining to be defined are the mean and variance values of the random field (or the mean and variance
functions if the field is not stationary). Furthermore, for the aforementioned autocorrelation equation, a
third hyperparameter is the correlation length l. Fitting can be done in many ways; the most straightfor-
ward is an exhaustive search over some set of candidate parameters for the values that yield the best
results.

However, a way to evaluate the performance of such generative models is needed. Since it is a
generative model and its output is a distribution, a distance metric between the generated and the
real distributions should be used as a performance criterion. The Kullback–Leibler divergence
(KL divergence) (Kullback, 1997) is a quantity that measures the “distance” between two distri-
butions; it can therefore be used as such a criterion. Regarding mirror terminology, this is the
distance ε used to define an ε-mirror. The KL divergence between two distributions P and Q is
given by,

DKL PkQð Þ¼
Xnval
n¼1

P xð Þ log P xð Þ
Q xð Þ

� 	
, (6)

where nval is the number of available datasets to compute theKLdivergence between the predicted and the
real distributions. (Note that this is the discretized version of the metric.)

Stochastic FEMmodels take into account uncertainties in the parameters of the structure, but can have
a deterministic input. Thus, the output distribution is a function of the input. A model, which might be
considered as a mirror of a structure, should be able to perform under different inputs. A simple case to
consider is that of a deterministic load input to the model. In this case, the model shall be evaluated for
different values of the load and the best one shall be the one with the best average performance among all
the cases of deterministic loads. Other deterministic inputs might also be the temperature of the
environment, seismic accelerations, humidity, and so forth.

Under the framework of mirrors, the load or any other deterministic input shall be the controlled
variable eCc . Any uncertainties, such as Young’s modulus, Poisson ratio, and so forth, and unknown
environmental parameters are included in the uncontrolled variables eCu . The generative model that
estimates the uncontrolled parameters (MEC

u ) shall be the stochastic process described by the Karhu-
nen–Loeve expansion. The SFE model will be the generative model that will provide the probability
density functions of the quantities of interest.
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4.1. Definition of simulation dataset

To test the algorithm, data should be available from some structure of interest. Such data may refer to
different deterministic inputs such as load, temperature, and so forth. For every available value of the
deterministic input, a set of samples should be available, from which the distribution of the quantity of
interest is extracted. The model should perform well in generating distributions close to the ones in the
dataset for different values of the inputs. Since SFE models are white-box physics-based models, fitting
them to data for a set of input values increases the belief that the model will generalize. This assumption is
only true if the physical formulation of the model corresponds to the real physical mechanism, that is, if
epistemic uncertainty is not present.

To define the required dataset, a simulated structure is considered here to generate data. The structure is
a simple cantilever with Young’s modulus defined as a stochastic field, similar to the one in Figure 21 in
the Supplementary Appendix. In real structures, such cases may be observed in a bridge, for example,
when many heat sources affect the temperature of the structure. This situation would result in fluctuations
of the stiffness of the structure within its volume. The final field is of course a stochastic field with some
correlation function.

The model cantilever here has length equal to 5 (length units), a rectangular cross section with height
equal to 0:4, and width equal to 0:1. The stochastic field was chosen to be a stationary Gaussian stochastic
field with mean value equal to 2�109 and standard deviation equal to 0:2�2�109 (pressure units). The
correlation length was 3:0. The procedure described in the Supplementary Appendix was performed, and
Equation (16)with order of the expansionm¼ 2was used to generate realizations of the stiffnessmatrix of
the structure. As an input, a deterministic distributed load along the cantilever with varying values was
considered. The values of the load f were 10, 20, 30,…, 200 force units/length units. The dataset was split
into three datasets, one for training, one for validation, and one for testing. Samples of the corresponding
tip displacements of the cantilever are shown in Figure 4. For each load value, 1,000 samples were
generated. The results comply with the linearity of the problem, since the mean value (red line) is almost
linearly increasing as the load increases.

4.2. Model calibration (updating) for a simulated structure

The calibration procedure followed is simply an exhaustive search in a subset of the three-dimensional
parameter space. The search is performed over some logical range of values for the parameters. The range
could be defined using engineering insight of the problem. The three parameters are the mean Young’s
modulus (μE), the Young’s modulus standard deviation (σE), and the correlation length (lcorr). The model
was calibrated using a subset (loads 10,40,70,100,130,160,200f g) of the total set of load cases of the
dataset. It is, however, tested in all the cases and some distribution comparisons are shown in Figure 5 for
selected load cases. The overall average KL divergence is 0:0028. This valuemeans that themodel almost

Figure 4. Samples of tip displacements (orange points), their mean values (red line), and �3 standard
deviations (blue line).
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perfectly explains the behavior of the structure and is able to make accurate predictions regarding the
distribution of the tip displacements, as evidence, the visual comparisons in Figure 5 are presented.

Of course, the model performs so well because the formulation of the finite elements in the SFEmodel
was exactly the same as the one used to generate the dataset. In real structure situations, epistemic
uncertainty may be present. In addition, more uncertain parameters may affect the structure, such as
humidity. In the latter case, fitting a model with uncertainty imposed in the Young’s modulus, could
perform well enough incorporating the uncertainty of the unknown parameters, as uncertainty existing in
the stochastic field of the model. In such cases, however, the values of the model parameters from the
fitting will not resemble the real values of the random field of the stochastic quantity.

Taking into account the definitions of ε-mirror and α-mirror, the SFE model may serve as both types.
For the case of an ε-mirror, the distance metric ε to be used is the KL divergence of the real data from the
SFE model outputs. Considering ε equal to the maximum KL divergence, of the available datasets,
between the simulated and the predicted by the SFE model distributions. The maximum KL divergence
was 0:0029 and so, the SFE model can be an ε-mirror with ε≥0:0029 considering engineering judgment
or some safety factor.

Regarding the use of the model as an α-mirror, the curve α�p αð Þ from Equation (2) should be defined.
Using only the available data, and various values for the α parameter, Figure 6 shows the probability p as a
function of α. For α¼ 2, 90% of the observations fall into the interval defined by Equation (2) while for

(a) (b)

(c) (d)

Figure 5.Distributions of tip displacements corresponding to Monte Carlo samples (orange) and SFEM
generated samples (blue) and different load cases, (a) 30 load units, (b) 80 load units, (c) 120 load units,

and (d) 180 load units.
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α¼ 3, 95% of the observations are in the aforementioned interval. A straightforward evaluation of the
quality of the model according to this curve is not available. Certainly, as close as this curve is to the
corresponding curve of the real data, the better it is. However, this is equivalent (and maybe a more loose
evaluation criterion) to the requirement that the distribution of the real and the generated data are similar.
The curve represents the potential of the model to explain the structural behavior and can definitely be
used as a tool to perform a probabilistic cost–benefit analysis of the performance of the structure,
according to the predictions. Moreover, if one is interested only in defining an interval of the potential
quantity of interest, under some environmental conditions, the model should, for some value of α, include
a sufficient percentage of the observed outcomes.

5. cGAN as Mirrors of a Structure

Since a cGAN is able to generate manifolds of data as a function of a code vector, it fits the desired
functionality of amirror, as described in the current work.Moreover, as stated in Goodfellow et al. (2014),
the generator learns, apart from generating data that look real, to generate data close to the distribution of
the original data. The same results are expected herein by the use of a cGAN. Two examples are presented
below; one refers to the same problem that an SFEMmodel was used for, in the previous section, and the
second is the same problem but with material nonlinearities. Although SFE approaches to nonlinear
problems exist (Stefanou, 2009), knowledge about the physics and the source of the nonlinearity is
required for their application. The current work is focused on illustrating the convenience of the machine
learning approach and its applicability without any knowledge about the nature of the problem (linear or
nonlinear) or the source of the uncertainty. Therefore, a nonlinear SFE approach is not considered.
Nevertheless, as illustrated in the application of the SFEmodel on the linear structure, if all the underlying
physics of the problemmatched the nonlinear finite element formulation (this should include the nature of
any noise processes), it would outperform any black-box approach, since there would be no epistemic
uncertainty. The cGANmethod is a completely data-drivenmethod and it is expected to be able to perform
regardless of the linearity or otherwise of the underlying problem.

The cGAN also fits the defined context about controlled and uncontrolled environmental parameters,
eCc and e

C
u . There is a direct relationship between the cGAN code and the controlled variables and the noise

vector and the uncontrolled variables. Defining such a separation could be crucial when one wants to
quantify uncertainty. According to the way the cGAN works, the separation of known and unknown
parameters and their effect on the predicted distribution is clearly given by the separation of the input
vector into the noise and the code. Continuing, two applications of the cGAN are presented showing the
versatility of the algorithm and its ability to perform both in linear and nonlinear structural problems.

Figure 6. Probability defined in Equation (2) as a function of the parameter α for the SFE model applied
on the linear cantilever case study.
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5.1. Application of the cGAN in a linear problem

Using the same dataset as before, a cGANwas trained. The training procedure followed was a standard
neural network cross-validation training procedure. The dataset was split into three subsets: training,
validation, and testing. The split is performed to train according to the first dataset, select as the best
model the one that performs best in the validation dataset and confirm that it is able to perform well on
data that it has never “seen” before, that is, the testing dataset. The split was made according to the
codes/loads. Each load belonged to only one of the three datasets. More specifically, the samples having
loads 10,40,70,100,130,160,200f g were the training dataset and the ones with loads
20,50,80,110,140,170,190f g and 30,60,90,120,150,180f g were the validation and testing sets,

respectively.
Both the generator and discriminator are three-layered neural networks here; each has an input layer,

a hidden layer, and an output layer. The activation function was chosen to be a hyperbolic tangent
function, except for the activation of the output layer of the discriminator, which is a sigmoid function to
map to a probability in the interval 0,1½ �. The noise vector was 10-dimensional. Different sizes were
tested incrementally regarding the noise vector. It was noted that as the size increased, the performance
was increased, as was the convergence speed toward the Nash equilibrium. Therefore, the size chosen
here was a 10-dimensional noise vector, since increasing it further did not yield notably better results.
The code vector was one-dimensional, since the control variable is only the load. Finally, using different
hidden layer sizes in the set 10,20,30…3,000½ � and selecting the model with the lowest KL divergence
in the validation set, the sizes of the hidden layers that yielded good results were 200 nodes for both
networks. Using the same size of hidden layer in both the generator and the discriminator might conceal
a physical meaning, since the generator decodes the noise into the real feature space and the
discriminator maps the feature space into some latent code (in its hidden layer) to distinguish real
and fake samples.

The quantity to be minimized is the KL divergence between the generated and the acquired dataset
distributions. However, the value of the loss function during training does not directly represent this
quantity. The KL divergence is used as a model selection criterion and it is calculated between the
generated and acquired distributions for the validation dataset every 100 training epochs. At the end of
training, the cGAN instance that had the lowest average KL divergence among the codes of the
validation dataset is selected as the most accurate model and is tested on the testing dataset. To define
distributions on both the database samples and the cGAN generated ones, kernel density estimates
(Epanechnikov, 1969) are fitted in both cases. The kernel used in the current work is a Gaussian kernel.
Throughout the paper, every KL divergence is calculated for distributions of neural network outputs.
These outputs are scaled to the interval �1,1½ � and the bandwidth parameter used to the fitted kernel
distributions was in all cases considered equal to 0.1. That is considered an appropriate value, since the
range of the outputs is equal to 2; therefore, a bandwidth value equal to 1

20 of the range yields meaningful
distributions about the quantities of interest. This could be another training hyperparameter whose
optimization might be the objective of the cross-validation procedure (Silverman, 1981), but was not in
the current work.

The best average KL divergence, which was achieved by a model whose generator had 3,000 neurons
in its hidden layer, was in the validation dataset 0.081, and in the testing dataset 0.083. Some of the
distributions from the testing dataset are presented in Figure 7. It can be seen that the performance is not as
good as the performance of the SFEMmodel, but given that the algorithm is amachine learning algorithm,
it is acceptable.

The cGAN model is also tested according to its ability to serve as an ε- and an α-mirror. As far as its
potential use as an ε-mirror is concerned, the maximum KL divergence observed on the available testing
datasets was 0.168 and therefore, based only on the data, the model can be considered an ε-mirror for
ε¼ 0:168 regarding the distribution of the tip displacement of the cantilever. As far as the ability of the
model to serve as an α-mirror is concerned, similarly to Figure 6, the equivalent plot for the cGAN for the
linear problem is shown in Figure 8.
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5.2. Application of cGAN in a nonlinear problem

The next application for testing the potential of the cGAN in approximating the distribution conditioned
on the load, is a similar cantilever but with material nonlinearity. More specifically, a softening material is
considered; again, it is a simulated structure. The dimensions of the cantilever are the same. As a
comparison, in Figure 9, the load curves for the linear and the nonlinear structures are shown.

In this case, random Young’s moduli were sampled from a normal distribution with mean value equal
to 2�109 and standard deviation 0:1�2�109. Each nonlinear simulation was performed using a total
load of 400 load units and 40 loadsteps. After finding the solution of the Newton–Raphson iterations, the
displacements were stored for every iteration; in this way, every nonlinear simulation provided 40 tip
displacements, one for every load in the set 10,20,30…,400f g. For every load case, 500 samples were
generated. In Figure 10, samples are shown for different loads in the dataset 10,40,70…,400f g which is
also considered the training dataset for the cross-validation procedure followed (load units
20,50,80…,380f g comprised the validation dataset and load units 30,60,90…,390f g the testing

dataset).
An identical approach to the linear case was followed except for the sizes considered for the hidden

layer of the networks. The sizes tested belonged to the set f10,20,30,…3000g. Again, following the same
cross-validation procedure, the networks that yielded the best results had 110 neurons in their hidden
layers. The lowest averageKL divergence in the validation dataset was found to be 0.045 and that network

(a) (b)

(c) (d)

Figure 7. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and cGAN
generated samples (red) regarding the linear problem, different load cases, (a) 30 load units, (b) 90 load

units, (c) 150 load units, and (d) 180 load units.
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Figure 8. Probability as defined in Equation (2) as a function of the parameter α for the cGAN model
applied on the linear cantilever case study.

Figure 9. Load curves for the linear (orange) and the nonlinear (blue) material cantilevers.

Figure 10. Tip displacement samples generated by the nonlinear cantilever.
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yielded KL divergence equal to 0.050 on the testing dataset. Generated distributions corresponding to
codes of the testing dataset, in comparison to the real ones (acquired from the simulated structure) are
shown in Figure 11. It is observed that as the spread of the distribution along with the load increases, the
algorithm has efficiently learnt to generate samples with greater spread.

To compare the cGAN approach with the SFE method, a SFE model was calibrated (performing an
exhaustive search for the optimal parameters) according to the data of the Monte Carlo simulations of the
nonlinear cantilever. Although the linear physics formulation does not suffice to accurately explain the
behavior of the nonlinear cantilever, the SFEmodel could yield accurate enough predictions to be used as
a mirror. The results for the same loads as in Figure 11 are shown in Figure 12. The results reveal that the
SFE model is unable to capture the effect of the nonlinearity on the distributions of the tip displacements;
such a result is expected, since nonlinearity is not included in the formulation of the SFEmodel used. This
result is also confirmed by the average KL divergence between the real and predicted distributions in the
testing dataset, which was 3.43.

Similarly, the cGAN is tested as an ε-mirror regarding its ability to predict the distribution of the tip
displacement of the cantilever. Themaximum value of the KL divergence on the available testing datasets
now is 0.25. Regarding its use as an α-mirror, the plot showing the probability defined in Equation (2) is
shown in Figure 13. Although the KL divergence in this later case study was lower than in the application
of the cGAN in the linear case, the α-curve this time is not as good as the one in Figure 8, in the sense that
eventually, for larger values of α (e.g., α¼ 4:0), the cGAN applied in the linear case, is able to include in
the desired interval a larger portion of the observed data.

6. Hybrid Model Approach

6.1. Definition of the hybrid model

The approaches presented so far were either completely physics-based (SFE model) or data-driven,
informed partially by the physics of the problem (a cGAN informed by the value of the load). It became
clear that a SFE model without the appropriate physics included (such as nonlinear effects) cannot
describe efficiently a phenomenon like the tip displacement of the nonlinear cantilever. In real-life
applications, insufficient physics in SFE formulation might mean that the users do not know where the
uncertainty is coming from (epistemic uncertainty about the aleatory uncertainty). On the other hand, the
cGANwas able to capture the effect of the load on the distribution of the tip displacement both in the linear
and the nonlinear case without any knowledge about the source of uncertainty. The efficiency of the
algorithm lies in its insensitivity to the linearity of the underlying problem.

Naturally, one would prefer a model that includes further understanding of the underlying physics
rather than just using the value of the input in the physical system; that is, the load in the case studies. To
define such a coupling, a hybrid approach is followed. The SFE model is used as a first estimator of the
target distributions and afterward the cGAN algorithm is applied to correct them. A similar approach for
nonlinear modeling has been presented in Rogers et al. (2017) and another about learning such model
discrepancies has been developed in Gardner et al. (2020).

In Rogers et al. (2017), two types of such models are defined. The first is the A-type models in which
the black-box model is exploited to infer the error between the white-box model predictions and the
observations. Inference is performed on the error between the white-box model and the real observation,
that is,

δ Xð Þ¼ y Xð Þ� f Xð Þ, (7)

where y is the observation, f is the white-box model, X is the input variable to the model, and δ is the error
sought to bemodeled using a black-box/machine learningmodel. This type ofmodel is not suitable for the
current work, since it contradicts the desired definition of a generative model as a mirror. This is because
the generative modeling framework requires unknown parameters affecting the structure, while A-type
models requires definition of exact errors for specific inputs on the model. To define a training dataset to
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(c)

(e)

(b)

(d)

(f)

Figure 11. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and cGAN
generated samples (red) regarding the nonlinear problem, for different load cases; (a) 30 load units,
(b) 90 load units, (c) 150 load units, (d) 240 load units, (e) 300 load units, and (f) 360 load units.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and SFEM
generated samples (red) regarding the nonlinear problem, for different load cases; (a) 30 load units,
(b) 90 load units, (c) 150 load units, (d) 240 load units, (e) 300 load units, and (f) 360 load units.
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follow the A-type model approach, one would need to specify errors between specific predictions of the
white box model and observation. Although, when uncertainty is admitted, that cannot happen, as the
output of the white-box model is a function of both a set of controlled and uncontrolled variables; that is,
f Xð Þ¼ f ec,euð Þ. Since some variables eu are not observable in nature (e.g., the Young’s modulus exact
field within the volume of a structure), their exact values cannot be used to define such a dataset, which
should comprise pairs between model outputs f ec,euð Þ and observations y ec,euð Þ.

As a result, the approach to be followed here is to define a B-type model. This latter type of hybrid
model is based on the idea that the black-box model performs inference using the output of the white-box
model and the controlled variables, that is,

y Xð Þ¼ g X, f Xð Þð Þ, (8)

where g is the black-box model. Specifically for the problem addressed here, the cGAN is called to
transform the predicted distributions of the SFE model into the correct ones observed in the data (red and
blue distributions, respectively, in Figure 11) being also informed by the value of the load/code. Type B
models are applicable in the case of generative models, since to define the real and the predicted
distributions, one needs to integrate both sides of Equation (8), which can be done without knowledge
of the uncontrolled variables because their effect is explained via the generative model g. On the contrary,
integration of both sides of Equation (7) is not feasible without knowledge of the values of the
uncontrolled variables for every observation.

The output distributions of the SFE model are used as the latent sampling space of the cGAN. The
physics-based model is yielding results based on the “linear part” of the physics of the system and the
cGAN is called to learn only the “nonlinear part.”This approach is expected to assist the cGAN training by
providing latent variables whose distribution is closer to the real ones. In the completely data-driven case
presented earlier, the cGAN simply learnt transformations of the same latent distribution as a function of
the code. In the hybrid approach, the latent distribution is also a function of the code, aiming in assisting
the training procedure. The layout of the combined model is shown in Figure 14.

Figure 13. Probability defined in Equation (2) as a function of the parameter α for the cGAN model
applied on the nonlinear cantilever case study.

Model inputs Fi /
code c

Physics-based
model

Model output
xi

Generator Prediction yiˆ

Real samples yi

Discriminator

GAN loss

Probability D(G(z, c))

Figure 14. Layout of the SFE-cGAN hybrid model.
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6.2. Application of the hybrid model

The same training procedure was followed. The hidden layer sizes considered were in the set
f10,20,30,…,1500g. The model was trained given codes and data of the training dataset. The model
that yielded the lowest KL divergence on the validation dataset had 1,000 neurons in its hidden layer and
was selected as the best model. The aforementionedmodel was tested on the testing dataset and the results
for a selection of the input loads are presented in Figure 15. The average KL divergence on the validation
dataset and on the testing dataset was 0.049 and 0.044, respectively, meaning that the predicted and the
real distributions were quite close; the maximum value of KL divergence was 0.22, which will be the
value of ε, if the hybrid model is to be considered an ε-mirror. Regarding its ability to serve as an α-mirror,
Figure 16 shows the probability of the observation falling into the interval defined by Equation (2) as a
function of α.

6.3. Extrapolation capability study

As already mentioned, the greatest advantage of physics-based models is that they can provide accurate
predictions even for data coming from a different domain than the one used to calibrate them. This
advantage is based on the definition of the physics of the model that fit sufficiently the physical
phenomena, which the model is called to explain. On the other hand, data-based models tend to have
no such capabilities. If one has trained a machine learning model on a specific domain of the data, use of
the model outside this domain (extrapolation) should be avoided.

When a hybrid model is built, inheritance of the extrapolation capabilities of the physics-based part of
the model is desired. In the current application, the output of the hybrid model is controlled by the input
code to the model and also by the distribution output of the physics-based SFE model. The SFE model’s
physics do not suffice to explain the nonlinear behavior of the material of the cantilever. Sometimes, even
the physics of the underlying problemmight not be clear making the use of a white-box model even more
unfavorable. However, a part of the physics of the linear SFE model herein applies also in the nonlinear
case. Specifically, that higher values of input load correspond to higher values of tip displacements and
higher values of standard deviation (as shown in Figure 5). Therefore, in the current subsection, the
potential extrapolation capabilities of the hybrid model are studied and compared with the extrapolation
capabilities of the black-box model.

A first step, that can be made to increase the extrapolation capabilities of the black-box model (and
therefore also of the hybrid model), is to redefine the normalization scheme of the input and output values
of the neural networks used herein. The approach that has been followed so far is to scale the input and the
outputs onto the interval �1,1½ �. This technique brings all the values within the effective range of the
sigmoid functions used (hyperbolic tangent herein) and allows proper gradients to be calculated and the
networks to be properly trained using the back-propagation process. However, normalization on the
interval �1,1½ �most probably saturates the sigmoids for the extreme values of the inputs and the outputs
andminimizes the extrapolation capabilities of themodels. To bypass such an issue, in the current section,
the scaling is performed having as target the interval �0:8,0:8½ �. If one knows that amodelmight be called
to perform outside its training domain, this scaling strategy is a viable option to increase the extrapolation
capability of the model.

The initial dataset is split in two to compare the extrapolation potential of the hybrid and the black-box
models. The first subset includes data corresponding to load units 10,20…310f g and the second subset to
load units 320,330…400f g. Using the first subset, a hybrid model and a black-box model were trained;
that is, the dataset was split in training, validation, and testing datasets and the same procedure as before
was followed. After training, the models were also tested on the second subset, which is outside the
training domain of the models, to evaluate their extrapolation capabilities.

The best black-boxmodel had in terms ofKL divergence on the validation dataset had 1,000 neurons in
its hidden layer. It yielded averageKLdivergence equal to 0.048 on the validation dataset and 0.054 on the
testing dataset. A distribution comparison between the predicted and the real distributions for loads of the
testing dataset is shown in Figure 17. The results are quite close to the ones observed in the application on
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Figure 15. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and
generated samples by the cGAN-SFEM hybrid approach (red) regarding the nonlinear problem, for

different load cases; (a) 30 load units, (b) 90 load units, (c) 150 load units, (d) 240 load units, (e) 300 load
units, and (f) 360 load units.
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Figure 16. Probability defined in Equation (2) as a function of the parameter α for the cGAN-SFEM
hybrid model applied on the nonlinear cantilever case study.

(a)

(c)

(b)

(d)

Figure 17. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and
generated samples by the cGAN model (red) regarding the nonlinear problem, trained according to the
reduced dataset for different load cases; (a) 60 load units, (b) 120 load units, (c) 210 load units, and

(d) 300 load units.
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the complete dataset. To see how the model extrapolates, the same model was tested on the second subset
of loads (load units 320,330…400), which is outside the training domain. Some distributions are shown in
Figure 18 and the average KL divergence for the “extrapolation dataset” is equal to 0.77. It is clear that
outside the training domain, the model does not perform well and as the load increases, the distribution
moves only slightly toward higher values of displacements.

The hybrid model is tested in exactly the same way. The model with the minimum KL divergence on
the validation dataset had 1,500 neurons in its hidden layer. This model yielded KL divergence equal to
0.034 on the validation dataset and equal to 0.038 on the testing dataset. Samples of the predicted
distributions in comparison with the real ones are shown in Figure 19. Consequently, the samemodel was
tested on the “extrapolation dataset.” Similar distribution comparison figures are shown in Figure 20. It is
clear that the performance this time is better than in the case of the black-box model and this is confirmed
by the average KL divergence observed on the second dataset, which is equal to 0.288. One can see that
the part of the physics which is correctly incorporated in the physics-based model (higher load values
correspond to higher displacements) has affected positively the performance of the hybrid model on data
outside its training domain.

(a) (b)

(c) (d)

Figure 18. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and
generated samples by the cGAN model (red) regarding the “extrapolation dataset” for the nonlinear
problem for different load cases; (a) 320 load units, (b) 350 load units, (c) 370 load units, and (d) 400 load

units.
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7. Discussion and Conclusions

In the current work, models were developed that serve as mirrors of a specific structure. The models were
chosen to be generative models in an attempt to take into account various uncertainties that might be
present during the modeling procedure. A physics-based method, a data-driven method, and a hybrid
approach were presented along with their results and performance according to the chosen metric (KL-
divergence).

SFEM is the physics-based method, which, calibrated according to acquired data from a structure, was
tested as a potential mirror model of a beam structure. As for every physics-based method, if the model’s
physics formulation fits exactly the physics of the problem, the model is able to outperform any other
method and have almost perfect accuracy in predicting the behavior of the structure it describes. This
situation is also the case for the SFE model in the concept described in this work. The SFE model was
calibrated using an exhaustive search (within some range of values for each parameter) in the parameter
space according to acquired data and the generated distributions almost perfectly fit the ones correspond-
ing to the measured distributions.

Even though such amodel outperforms every othermethod, if there is epistemic uncertainty, that is, the
model does not describe fully the physics or one does not know which parameter exactly is stochastic or

(a)

(c)

(b)

(d)

Figure 19. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and
generated samples by the hybrid model (red) regarding the nonlinear problem, trained according to the
reduced dataset for different load cases; (a) 60 load units, (b) 120 load units, (c) 210 load units, and

(d) 300 load units.
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the form of the stochasticity, it would not perform as well as in the previous case. In such cases, a data-
driven method such as the one described herein should be employed. The nonlinear problem described is
one such case.

Machine learning approaches could prove even more useful in cases where a physical phenomenon
cannot be modeled by finite elements or any other such physics-based method. Situations like this are
when one has no knowledge about how an environmental parameter affects the structure. For example,
temperature and stiffness reduction (or increase) are usually assumed to have a linear relationship. If that
does not stand, a finite element model, in which stiffness is reduced or increased linearly according to
temperature, would not suffice regarding generation of accurate predictions.

Within the current framework, a cGAN was considered as a mirror of a simulated structure with
material nonlinearities. The algorithm was able to perform well enough to be an ε-mirror of the structure
for values of ε calculated by the data. The algorithm fits the framework of controlled and uncontrolled
environmental variables and is able to incorporate within its formulation any uncertainties that might
exist. It can be also considered an α-mirror, given different probabilities, for the observation to fall into the
interval, as a function of α. The latter type of mirror models may serve as a conservative aspect of the
digital mirror model, since it provides an interval, within which any observation should fall into with

(a)

(c)

(b)

(d)

Figure 20. Distributions of tip displacements corresponding to Monte Carlo samples (blue) and
generated samples by the hybrid model (red) regarding the “extrapolation dataset” for the nonlinear
problem for different load cases; (a) 320 load units, (b) 350 load units, (c) 370 load units, and (d) 400 load

units.
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probability P αð Þ. The α-mirror approach is irrelevant to the shape of the distribution and is only informed
by the mean value and the standard deviation of the samples generated by the model.

Finally, a hybrid approach of the SFEM and cGAN is presented. The approach is based on using the
cGAN to correct the predicted-by-the-SFE-model probability density functions. The hybrid model is able
to perform slightly better than the cGAN in the nonlinear case. The advantages of the method are
considered the information imposed into the model by the physics-based SFE method and the versatility
of the cGAN algorithm in being able to perform regardless the nonlinearity of the problem. It appears to be
a viable strategy for such applications, since it is further based on the physics of the problem, and also
provides a framework of correcting the predictions of a physics-based generative model when unknown
and even immeasurable parameters affect the result. Moreover, the presented results reveal that such
models have greater extrapolation capabilities. Even if the physics-basedmodel used does not completely
incorporate the underlying physics of the problem, the model can still be informed by the valid parts of the
captured physics and, that way, outperform black-box models in terms of accuracy in situations outside
the training domain of the model.
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A. Appendix

A.1. Stochastic finite elements
Finite element method (FEM) models (Bathe, 2006) have been a very powerful and useful tool to numerically solve differential
equations which describe mechanical systems. FEM transforms a continuous problem and a continuous differential equation into a
discrete system of equations. Solutions are calculated only for a discrete number of points. Solutions for intermediate points are
calculated using interpolation functions called shape functions. The continuous static differential equation most commonly used in
FE models is given by: Z

V
σεdV ¼

Z
V
f VdV þ

Z
Se

f SdS, (A.1)

where the LHS is the internal potential energy of a body, where σ is stress, ε is strain, and V is the volume of the body of interest, the
RHS is the potential work of the forces applied on the body, which is the integral over the volume of all the volume forces ( f V ) plus
the integral over the surface of the surface forces ( f S). Using a finite element formulation andminimizing the total potential energy or
the difference between the two sides of equation, one gets,

K½ � Uf g¼ Ff g, (A.2)

where K½ � is the stiffness matrix of the structure for a specific meshing scheme applied, Uf g is the displacement vector of the nodal
displacements, and Ff g is the equivalent nodal force vector to the total applied forces on the body.

For dynamic problems, inertia forces are introduced into the RHS of Equation (A.1) resulting in,Z
V
σεdV ¼

Z
V
f VdV þ

Z
Se

f SdS�
Z
V
ρ€udV �

Z
V
c _udV , (A.3)

where ρ refers to themass density function of the body, €u is the acceleration, c is the damping parameter, and _u is the velocity at every
point. This equation holds for every time instant t of the simulation. Once again, following the FEM formulation and defining a
discretization of the body, the system of equations are,

M½ � €U

 �

tð Þþ C½ � _U

 �

tð Þþ K½ � Uf g tð Þ¼ Ff g tð Þ, (A.4)

where M½ �, C½ �, and K½ � are themass, damping, and stiffnessmatrices and €U

 �

, €U

 �

, and Uf g are the nodal accelerations, velocities,
and displacement vectors, respectively.

The matrices in Equations (A.2) and (A.4) often are calculated assuming deterministic structural parameters, for example,
Young’s modulus (E), Poisson’s ratio (ν), and mass density (ρ). However, these parameters are quite often not deterministic.
Especially in composites, such parameters are almost certainly random. Young’s modulus might vary within the volume of the body
one tries to analyse using FEM. These variations are not just discrete variables, almost certainly they are stochastic processes
(Papoulis and Pillai, 2002). A stochastic process has a correlation function that defines how values over some distance (spatial or
temporal) are correlated. Furthermore, every point has amean value and a variance defined by functions μ xð Þ and σ2 xð Þ, respectively.
If the two functions are constant everywhere over the space where the process is defined, then it is called a stationary process.

An example of a deterministic consideration of Young’s modulus and a stochastic Young’s modulus for a cantilever beam
problem would look like the functions shown in Figure A1. The black line represents how conventional FEM is applied assuming a
constant and deterministic value for structural parameters, while the red and blue lines show samples drawn from a stochastic
process. Away to address problems like this, in general, would be to sample from the stochastic process and follow a Monte Carlo
scheme. This approach would require solving a large number of deterministic FEM problems, performing a sensitivity analysis, and

E

10
9

Figure A1. Cantilever beam with constant Young’s modulus (black line) or spatially varying
(red and blue lines).
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post-processing the results in order to infer the statistics of the quantities of interest. In this case, the quantity of interest could be the
displacement of the tip and a probability distribution would be defined over the potential values of this displacement.

The SFEM already mentioned, is a quite popular means of propagating uncertainty from material properties and randomness in
the excitation forces into the response characteristics of a structure. In contrast to a Monte Carlo approach, SFEM infers the
distribution of interest as a function of a set of discrete normally distributed variables. In order to explain the SFEM formulation of a
problem, first a method to decompose the random field is needed. The expansion method used herein is the Karhunen–Loève
expansion (Loeve, 1977; Sudret and Der Kiureghian, 2000).

A.2. Karhunen–Loève (KL) expansion
TheKL expansion is based on the spectral (i.e., eigenvalue) decomposition of the autocovariance function of the given random field.
Given a random field H xð Þ and its autocovariance function CHH x,x0ð Þ, any realization of the field H xð Þ is expanded over a basis of
deterministic functions, defined by the eigenvalue problem (Sudret and Der Kiureghian, 2000),Z

Ω
CHH x,x0ð Þϕ x0ð ÞdΩx0 ¼ λiϕi xð Þ, (A.5)

where the kernel CHH x,x0ð Þ is a kernel autocovariance function, bounded, symmetric, and positive definite, and Ωx0 is the total
space of x0. The set of eigenvalues λi and eigenfunctions/eigenvectors ϕif g form a complete basis to express every realization of the
field as,

H x,θð Þ¼ μ xð Þþ
X∞
i¼1

ffiffiffiffi
λi

p
ξ i θð Þϕi xð Þ, (A.6)

where ξ i θð Þ are the coordinates of the realization which are independent random variables and θ is the random event.

In practice, if one wishes to define an expansion of a random field and either generate random realizations or use it, as it will
subsequently be used for the purposes of stochastic FEM, a truncation is performed at mth order yielding,

H x,θð Þ¼ μ xð Þþ
Xm
i¼1

ffiffiffiffi
λi

p
ξ i θð Þϕi xð Þ, (A.7)

where it is assumed that the eigenvalues λi are sorted in ascending order.

A.3. Solution of static SFEM problems
After defining the stochastic field in the finite element formulation of a problem, this field is expressed via the KL expansion. This
approach leads to the stiffness matrix of Equation (A.2) appearing as a summation over stiffness matrices constructed according to
the eigenfunctions of Equation (A.7); more specifically,

K θð Þ¼K0þ
Xm
i¼1

ξ i θð ÞKi, (A.8)

where the Kis are deterministic matrices that are calculated using the eigenfunctions ϕi from Equation (A.7). Realizations from the
set ξ i can be used in order to generate realizations for the stiffness matrix K θð Þ, in case a Monte Carlo simulation is to be followed.

Now, substituting Equation (A.8) into Equation (A.2) yields (assuming a deterministic load),

K0þ
Xm
i¼1

Kiξ i θð Þ
" #

U θð Þ¼
Xm
i¼0

Kiξ i θð Þ½ �U θð Þ¼F: (A.9)

In order tomove further from this point, a polynomial chaos expansion (PCE) is used (Ghanem and Spanos, 2003). PCE has been
a very efficient and widely used method in engineering applications, for meta-modeling, structural health monitoring, and so forth
(Spiridonakos and Chatzi, 2015; Spiridonakos et al., 2016). Here, it is used to decompose the field of displacementsU θð Þ yielding,

U θð Þ¼
X∞
j¼0

U jΨ j θð Þ, (A.10)

where the Ψ j θð Þ, for j¼ 0,1,2… are polynomials defined in ξ i θð Þ which satisfy,

Ψ0 � 1, (A.11a)

Eξ θð Þ Ψ j
� �¼Eθ Ψ j

� �¼ 0 j> 0, (A.11b)
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Eξ θð Þ Ψ j θð ÞΨk θð Þ� �¼Eθ Ψ j θð ÞΨk θð Þ� �¼ 0 j 6¼ k , (A.11c)

that is, the terms Ψ j θð Þ are orthogonal in expectation (E½�).
By truncating at P terms and substituting into Equation (A.9), one obtains,Xm

i¼0

Kiξ i θð Þ
XP�1

j¼0

U jΨ j θð Þ¼F: (A.12)

The solution to this equation can be found by minimizing the error,

εm,P ¼
Xm
i¼0

Kiξ i θð Þ
XP�1

j¼0

U jΨ j θð Þ�F: (A.13)

The best approximation of the exact solution U θð Þ in the space HP spanned by the Ψkf gP�1
k¼0 is obtained by minimizing this

residual in a mean-square sense. In a Hilbert space this is equivalent to requiring that the residual be orthogonal to HP , yielding,

Eθ εm,PΨk½ � ¼ 0 k¼ 0,…P�1: (A.14)

Substituting Equation (A.14) in Equation (A.12), one finds,

Eθ

Xm
i¼0

XP�1

j¼0

Kiξ iΨ j θð ÞΨk θð ÞU j

" #
¼Eθ Ψk θð ÞF½ �: (A.15)

Introducing the following notation,

cijk ¼Eθ ξ iΨ jΨk
� �

, (A.16)

Fk ¼Eθ ΨkF½ �, (A.17)

and,

K jk ¼
XM
i¼0

cijkKi, (A.18)

the stochastic FEM equation finally becomes, XP�1

j¼0

K jkU j ¼Fk k¼ 0,1…P�1: (A.19)

In this equation, everyU j is anN-dimensional vector, whereN is the number of degrees of freedom in the system. In total, the P
equations from above can be written as,

K00 … K0,P�1

K10 … K1,P�1

⋮ ⋮
KP�1,0 … KP�1,P�1

26664
37775

U0

U1

⋮
UP�1

26664
37775¼

F0

F1

⋮
FP�1

26664
37775: (A.20)

Having solved this system, for U j, samples U θð Þ can be generated by sampling ξ i θð Þ values and using Equation (A.10). Thus,
samples of the distribution of all displacements are generated. Solving this system is equivalent to solving the problem for every
potential value of the random parameters. The augmented matrices in Equation (A.20) are of dimension NP�NP, where N are the
degrees of freedom of the deterministic problem and P the order of the PCE. Solving such a system instead of a deterministic one is
much more computationally intense, that is, O N3P3

� �
. However, it might not be as computationally inefficient as a sufficient

number of Monte Carlo simulations. Solving the system yields samples and therefore distributions, establishing SFE models as
generative models.
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