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TORSION IN TENSOR POWERS OF MODULES

OLGUR CELIKBAS, SRIKANTH B. IYENGAR,
GREG PIEPMEYER, aAND ROGER WIEGAND

Abstract. Tensor products usually have nonzero torsion. This is a central
theme of Auslander’s 1961 paper; the theme continues in the work of Huneke
and Wiegand in the 1990s. The main focus in this article is on tensor powers
of a finitely generated module over a local ring. Also, we study torsion-free
modules N with the property that M ® g N has nonzero torsion unless M is
very special. An important example of such a module N is the Frobenius power
PR over a complete intersection domain R of characteristic p > 0.

81. Introduction

In a 1961 paper, Auslander [1] studied torsion in tensor products of
nonzero finitely generated modules M and N over unramified regular local
rings R. Under the assumption that M ®g N is torsion-free, he proved that

(1) M and N must be torsion-free, and
(2) M and N are Tor independent; that is, Tor?(M, N) =0 for all i > 1.

The two conclusions are cleverly intertwined in his proof, which we revisit
in Section 3 of the present paper. We show, over a reduced complete inter-
section ring R of positive characteristic p, that M ®p ¥R is torsion-free if
and only if M is torsion-free and of finite projective dimension, in which
case Torf*(M,%'R) =0 for all i > 1. (Here : R — R is the Frobenius endo-
morphism and #R is the module obtained from R by restriction of scalars
along ¢°.) When R is F-finite, we obtain a criterion for regularity: R is
regular if and only if (¥"M) ®g "R is torsion-free for some (equivalently,
every) nonzero finitely generated R-module M.

Our main results are in Section 2, where we study torsion in tensor pow-
ers. We obtain detailed information on annihilators of elements in ®%M
and draw several conclusions. Suppose, for example, that r =71,...,74 is a
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regular sequence in R and that M is the cokernel of the d x 1 matrix [r]".

We show in Theorem 2.5 that ®% M is torsion-free if and only ¢ < d. This
result should be compared with Auslander’s observation in [1, p. 638] that
the same holds when M is the (d — 1)st syzygy of a module of projective
dimension d over a d-dimensional regular local ring (see also [7, Proposi-
tion 3.1]). If R is local, the “only if” direction holds much more generally:
we show in Theorem 2.7 that, if we write M as the cokernel of an m x n
matrix 6 with entries in the maximal ideal of R, and if some entry of 4 is a
nonzerodivisor, then ®§2M has nonzero torsion for every t > m.
Throughout this article, R is a commutative, Noetherian ring.

§2. Torsion in tensor powers

In this section we establish results on annihilators of elements in tensor
powers of modules.

NOTATION 2.1. Given elements m :=mq,...,mg in an R-module M, we
consider the element in ®dRM defined by

T(m):= Z Sign(o)me(1) @ -+ ® Meg(q)-

oESy
PROPOSITION 2.2. Let M be an R-module. If elements m1,...,mq in M
and ri,...,rq in R satisfy
(2.2.1) rimy + -+ rgmg =0,

then (r1,...,rq) - 7(m) =0 in @LM.

Proof. The twisted shuffle product gives the graded R-algebra
D50 ®rM a strictly skew-commutative structure (see [11,‘Chapter X,
(12.4)]. Strictly skew-commutative means that for any a € @M and b e
®%%M there are equalities

axb=(-1)"bxa, and axa=0 when ¢ is odd.

By definition of the shuffle product, 7(m ) =m;j x--- * mg. Thus, for each j
we have

7 T(M) =M K- A M1 * TN M1 % -k My,

:—Zm(ml*---*mj_l*mi*mjﬂ*u-*mn):—ZWOZO.
i#i oy [
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There is a “universal” source for the element 7(m ) in the following sense.

REMARK 2.3. Consider the polynomial ring Z[z] on indeterminates z :=
x1,...,xq, and let U be the Z[z]-module with presentation

0 - z[z] Zod 71l LU o,

Let wq,...,uq be the generators of U corresponding to the standard basis for
Z[z]?, so that z1uy + --- 4+ zqug = 0; that is, z and u satisfy (2.2.1). Then
anng,) 7(u) 2 (x) by Proposition 2.2; we will see, in Theorem 2.5 below,
that in fact anng,) 7(u) = (z).

Given any R-module M with a syzygy relation (2.2.1), consider the ring
homomorphism Z[z] — R taking x; to r;, for each i, and extending the
structure homomorphism Z — R. The hypothesis on M implies that there
is a homomorphism of Z[z]-modules

f:U—=M with f(u;))=m; fori=1,...,d.
Under the induced map ®%f: ®%[$] U— ®dRM, the element 7(u) maps to
T(m).
This remark prompts the discussion below, culminating in Theorem 2.5.

First we review some notions regarding depth. For details, see [4, Chapter 1].

2.1. Depth
Let M be a finitely generated R-module, and let I be an ideal of R
satisfying IM # M. The I-depth of M is the number

depthy(I, M) =inf{n > 0| Extk(R/I,M)#0}.
The I-depth of M is always finite and is equal to the length of every maximal
M-regular sequence in 1.
If x:=x1,...,z4 is a sequence of elements in R, and if K is the Koszul

complex on z, then the (z)-depth of M may be computed from its Koszul
homology:

depthp((z), M) =d —sup{i >0 | H;(K ® M) #0}.

This is the depth sensitivity of the Koszul complex.
Suppose now that z is R-regular. Then K is a free resolution of R/(x),
and hence H,(K ®r M) = Tor?(R/(z), M). In this case, we have

(2.3.1) depthp((z), M) =d—sup{i > 0| Torf(R/(z), M) # 0}.

If R is local with maximal ideal m, we write depthp M for the m-depth
of M and call it the depth of M.
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2.2. A Koszul syzygy module
Let R be a Noetherian ring, and let r:=ry,...,7r4 be a regular sequence
in R with (r) # R. Consider the complex

[Tl 7~"7Td}t

F=0—R R* =0

concentrated in degrees 0 and 1. Set M = Hy(F); as r is a nonzerodivisor,
F is a free resolution of M.

LEMMA 2.4. Let M, d, and F be as in Section 2.2. For eachn=1,...,d,
the following statements hold:
(1) M and ®%_1M are Tor independent; and
(2) ®%F is a free resolution of @M, and pdr(REM) =n.

Proof. The base case is n =1, and then (1) and (2) are clear. Fix an
integer n with 2 <n <d, and assume that these statements hold for all
integers <n — 1. Set I = (r). Since ®7 'F is a free resolution of ®'% ' M,
we have

Torf(R/I, @5 ' M) = H.((R/1) ©r (97 ' F)) = (2 (R/T) ®r F)),,

where the last isomorphism holds because the complex in question has zero
differential. In particular, Tor’ ;(R/I,®% 'M)= R/I #0, so that

(2.4.1) sup{i >0 | Torf(R/(r),® 'M) #0} =n — 1.

We can now complete the induction step.
(1) The induction hypothesis implies that @7 'F is a free resolution of
®@% 1M, so (2.4.1) and (2.3.1) show that

(2.4.2) depthp(l,@% 'M)=d—(n—1)>1.

Moreover, Tor®(M,®% ' M) is the homology of the complex

Fop (@5 M):0—- @5 M2 @5 M) -0

(concentrated in degrees 0 and 1). By (2.4.2), some r; is a nonzerodivisor
on ®nR_1M , and it follows that M and ®"R_1M are Tor independent.

(2) By hypothesis, F' and ®"R_1F are free resolutions of M and ®’}{1M ,
respectively. We have already proved, in (1), that these modules are Tor
independent, so the complex F' ®g (®’}L{1F), that is, @, F, is a free resolu-
tion of ®@'; M. In particular, pdz(®'%M) < n; that the equality holds follows
from (2.4.1). 0
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2.3. Torsion submodule

Let Q(R) be the total quotient ring of R. The torsion submodule T gM
of M is the kernel of the natural homomorphism M — Q(R) ® g M. The
inclusion TrM C M gives rise to an exact sequence

(2.4.3) 0—=TrM —-M — LrM —0.

The module M is torsion if TrM =M (i.e., M, =0 for each p € Ass(R)),
and M is torsion-free if TrM = 0. Thus, M is torsion-free if and only if
|JAss M C|JAss R. The stronger condition, that Ass M C Ass R, is there-
fore a sufficient condition for M to be torsion-free. We will invoke this
criterion twice in the proof of the next theorem.

Part (1) of the next result is reminiscent of Auslander’s discussion in [1,
p. 638] (see also [7, Proposition 3.1]).

THEOREM 2.5. Let M and r be as in Section 2.2. The following state-
ments hold:
(1) ®FM is torsion-free if and only if n <d —1;
(2) the element T(m) in ®LM satisfies anng 7(m) = (r); and
(3) the map R/(r) — @%4M of R-modules with 1+ 7(m) induces a splitting

@M = (R/(r)) @ W,
where W is torsion-free; in particular, we have
Homp(R/(r), M) = Rr(m) # 0.

Proof. Set I =(r),let n <d—1, and fix a prime p € Ass(®}M). If I Cyp,
it follows from Lemma 2.4 that (®%F), is a minimal free resolution of
(®%M)p; therefore,

depthp (®M)y =depthRy —n>d—n>1,

which is a contradiction. Thus, I € p, and then the Ry,-module M, is a
nonzero free module; hence, so is (®%M),. Therefore, depthR, =
depthp, (®}M)y. We have shown that Ass(®jM) C Ass R, and hence that
Q%M is torsion-free. The “only if” direction of (1) will follow from (3).

For (2) and (3), by construction rymq + - - - +rgmg = 0, so Proposition 2.2
gives an inclusion I C anng 7(m). The reverse inclusion will follow, once we
ascertain that the map in (3) splits. Consider the homomorphisms of R-
modules

https://doi.org/10.1215/00277630-3140827 Published online by Cambridge University Press


https://doi.org/10.1215/00277630-3140827

118 O. CELIKBAS, S. B. IYENGAR, G. PIEPMEYER, AND R. WIEGAND

R (Fp) —» @FM — (M) @ R/I = Ho(RGF) @ R/I)
= ®(]1%(F0 ®R R/I)a

where the surjections are the natural ones; the isomorphism holds because
®%F is a free resolution of ®§%M , and the equality holds because the dif-
ferential on F' has its image in IF. Let e =eq,...,eq be the standard basis
for Fy = R%, in Section 2.2, and let ¢’ be the induced basis of the free R/I-
module Fy ®g R/I. Under the composite map, the element 7(e) maps to
7(€), and {r(€¢/)} extends to a basis of the R/I-module ®%(Fy ®g (R/I)).
Since 7(e) maps to 7(m) in ®%M, the map in (2) splits and gives a decom-
position

@bM = (R/I)® W.

It remains to verify that W is torsion-free; given the decomposition above,
the other parts of (3) are a consequence of this fact.

For p € Spec R with I € p, the Ry-module is M, free, and hence so is W,.
Assume now that I C p. The Koszul complex on r, viewed as elements
in Ry, is a minimal resolution of (R/I),, and so it is a direct summand
of (®%F)p, the minimal free resolution of (®}M),. The ranks of the free
modules in the top degree, d, of these complexes coincide (and equal 1),
whence pdp, Wy <d—1 and

deptth W, =depth R, — dep W, > 1.

These observations show that AssW C AssR, so W is torsion-free as
claimed. []

2.4. Local rings
Next we focus on local rings, where the preceding results can be strength-
ened to some extent.

LEMMA 2.6. Let M be a finitely generated module over a local ring (R, m),
and let myq,...,mq € M. If the images of {mq,...,mq} in M/mM are lin-
early independent, then T(m) is not in m(®%M).

Proof. Let m), be the image of m; in the k-vector space M/mM. Since
{m},...,m/} is linearly independent, 7(m') # 0. Hence, 7(m) ¢ m(2%M).
0
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Given an R-module M, we write I(M) for the ideal (r;;) defined by the
entries in a matrix in some minimal presentation

R* M>R”—>J\4—>0 where v =vr(M).

This ideal is independent of the presentation. Moreover, I(M) contains a
nonzerodivisor if and only if, over Q(R), the total quotient ring of R, the
module Q(R) ® g M can be generated by fewer than v elements. To see
this we note that, since Q(R) is semilocal, the module Q(R) ® g M needs v
generators if and only if vg, M}, = v for some p € Ass R; moreover, v, M, = v
if and only if the presentation remains minimal when localized at p, that is,
if and only if I(M) Cp. Thus, Q(R) ® g M needs v generators if and only
if I(M) Cp for some p € Ass R, that is to say, if and only if I(M) consists
of zerodivisors.

Recall that M is said to have rank r if Q(R) ®g M is free over Q(R)
of rank r (see [4, Proposition 1.4.3] for different characterizations of this
property).

THEOREM 2.7. Let R be a local ring, and let M be a nonzero finitely
generated R-module satisfying one of the following conditions:
(1) I(M) contains a nonzerodivisor; in this case, set b=vgr(M); or
(2) M has rank; in this case, set b=rankg(M)+ 1.
If M is not free, then for each nonzero finitely generated R-module N one
has

Tr((®EM)@r N)#0  for each n>b.

Proof. 1t suffices to prove the statement for n = b, since
(®RM) ®r N = (5M) ®r (©F "M) ©r N),

and N # 0 implies that (®%M) ®r N #£ 0 for each i > 0, by Nakayama’s
lemma.

(1) Let my,...,mp be a minimal generating set for the R-module M. The
element 7(m) in ®%M is annihilated by I(M), by Proposition 2.2, and is
not in m(®%M), by Lemma 2.6. It follows that, for each z in N\ mN, the
element 7(m) ® z in (2% M) ®g N is nonzero and is annihilated by I(M)
and hence is in the torsion submodule; this is where the hypothesis that
I(M) contains a nonzerodivisor is used.

(2) We claim that there exists a syzygy relation (2.2.1) with m a minimal
generating set for M, (r) Cm, and some r; a nonzerodivisor.
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Indeed, vg(M) > b since M is not free. Choose elements my,...,m; that
form part of a minimal generating set for M and such that mq,...,my_1
form a basis for Q(R) ® g M over Q(R). Then there is a syzygy relation as
in (2.2.1) in which ry is a nonzerodivisor.

The element 7(m) in ®% M is annihilated by (r), by Proposition 2.2, and
is not in m(®%M), by Lemma 2.6. Since (r) has a nonzerodivisor, it follows
as in (1) that the torsion submodule of (®%M) ®g N is nonzero. 0

We learned recently that in 2011, in response to a query on MathOverflow,
David Speyer gave a proof in [13] of (1) that is quite similar to ours when
R is a domain.

One cannot always expect torsion in tensor powers of nonfree modules,
as the following shows.

EXAMPLE 2.8. Let R = k|[[x,y]]/(xy), where k is a field. The torsion-free
R-module M := R/(x) is not free; however, ®3%M is isomorphic to R/(x)
for every n > 1 and hence is torsion-free.

The preceding results bring to the fore the following question:

QUESTION 2.9. Let R be a local domain. Is there an integer b, depending
only on R, such that ®%M has torsion for every finitely generated nonfree
R-module M and every integer n > b7

The condition that R be a domain is to avoid the situation of Example 2.8.
When R is regular, one can take b = dim R, by results of Auslander [1,
Theorem 3.2] and Lichtenbaum [10, Corollary 3].

83. Torsion “carriers”

Some modules, even though they are torsion-free, usually generate torsion
in tensor products. For example, over a local ring (R, m, k) of positive depth,
the maximal ideal m is such a module: for any finitely generated nonfree
R-module M, the tensor product m ® g M has torsion. To see this, observe
that the short exact sequence

O—-m—R—k—0

yields an injection from the torsion module Torft(k, M) into m ® g M ; more-
over, Torf(k, M) # 0 because M is not free.

We give two more examples of torsion carriers: the integral closure R of
a 1-dimensional analytically unramified ring R, and the Frobenius powers
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¢“R of a complete intersection R of characteristic p. Recall that a local ring
is analytically unramified provided that its completion is reduced. If R is
1-dimensional, an equivalent condition is that R be Cohen—Macaulay with
finitely generated integral closure R (see [9, Theorem 4.6]).

THEOREM 3.1. Let R be a l-dimensional analytically unramified local
ring, and let R be the integral closure of R in its total quotient ring. If M
is a finitely generated R-module for which R ®@g M is torsion-free, then M
1s free.

Proof. Let p1,...,ps be the minimal prime ideals of R, and for each i let
r; be the dimension of the Ry,-vector space M,,. Put n =vgM, the minimal
number of generators of the R-module M, and choose an exact sequence

0— K — R™ — M —0.

If we can show that r; = n for each ¢, we will know that K is torsion and
hence zero, and we will be done.

Put D; = m, the integral closure of the domain R/p;. Since R is
reduced, we have inclusions

R [[R/vi—= ] Di = [[QR/p:) =QR).
=1 i=1 =1

We see that R = [1;_, D;; moreover, each D; is a semilocal Dedekind domain
and therefore a principal ideal domain. Since R ® g M is torsion-free, it is
projective, in fact free of rank r; on the component D;. Therefore, setting
e; = vrD;, we have the equations

rie;+ -+ rees =vr(RQr M) = (vgR) - (VM) = (e1 + - + e5)n.

Since r; < n for each 1, it follows from these equations that r; = n for each 1.

O

Let R be a Noetherian ring of positive characteristic p, and let ¢: R — R
be the Frobenius endomorphism 7+ rP. Given an R-module M and a pos-
itive integer e, we write *"M for the R-module obtained from M by restric-
tion of scalars along (¢ thus, r-m =rP"m for r € R and m € M. Observe
that M is torsion-free if and only if ¥°M is torsion-free for some (equiv-
alently, all) e > 1. Following [12], we write F¢(M) for the tensor product
M ®@g¥R. One views F¢(M) as a right R-module: the action of R on F¢(M)
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comes from the right (ordinary) action of R on ¥"R. Thus, F¢(R) = R as
R-modules, and it follows that F¢(M) is finitely generated if M is finitely
generated.

THEOREM 3.2 ([12, Corollaire 1.10]). Let R be a local ring of characteris-
tic p, and let M be a finitely generated R-module. If M has finite projective
dimension, then Tor®(M,¥"R) =0 for all e >1 and all i > 1.

The converse of Theorem 3.2 is true and was proved by Herzog [5, The-
orem 3.1]. For complete intersections, the following strong converse was
proved by Avramov and Miller.

THEOREM 3.3 ([3, Main Theorem]). Let (R,m) be a complete intersec-
tion of characteristic p, and let M be a finitely generated R-module. If
Tor(M,9"R) =0 for some e > 1 and some i > 1, then M has finite projec-
tive dimension.

The proof that (1) = (2) in the next theorem follows many of the same
steps Auslander used in [1, proof of Lemma 3.1]. The main differences are
that we have to allow for the possibility that ¥"R is not finitely generated
and that we appeal to Theorems 3.2 and 3.3 for a replacement of rigidity
of Tor over regular local rings. Recall that a module M is generically free
provided that M, is a free Ry-module for each p € Ass R.

THEOREM 3.4. Let (R,m) be a complete intersection of characteristic p,
and let M be a finitely generated, generically free R-module. Fiz a positive
integer e. The following conditions are equivalent:

(1) F¢(M) is torsion-free, and
(2) M is torsion-free and of finite projective dimension.

Proof. Suppose that (1) holds, and apply — ®r #'R to the short exact
sequence (2.4.3), getting an exact sequence

Fe(TpM) - Fe(M) 25 Fe(LpM) — 0.
Since F¢(TrM) is torsion and F°(M) is torsion-free, we see that a =0,
whence 3 is an isomorphism. In particular, F¢(_L M) is torsion-free. Next,

consider the universal pushforward (see [6, Section 1)):

(3.4.1) 0— LrpM — R™ — N —0.
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Applying — ®g ?“R to this sequence, we obtain an injection
Torf{(N,?"R) — F*(LxrM).

Now L rM is clearly generically free, and from the construction of the uni-
versal pushforward in [6, Section 1], one checks that N is generically free as
well. It follows that Torf(N,%°R) is torsion. Since F¢(Lyy) is torsion-free,
we have Tor*(N,%R) = 0. Now we invoke Theorems 3.2 and 3.3 to see that

Tor{(N,?"R)=0 for all i >1

and, moreover, that N has finite projective dimension. From (3.4.1) it fol-
lows that Tor!*(LzM,¥"R) =0 for all i > 1 and that LM has finite pro-
jective dimension. Therefore, we will have (2) once we show that TrM =0.
For this, we apply — ®g ¥"R once again to (2.4.3), to get an injection

Fe(TpM) < F¢(M).

Since F¢(T rM) is torsion and F¢(M) is torsion-free, we have F'¢(T gM) = 0.
If TrM were nonzero, there would be a surjection TrM — R/m. But
then F¢(R/m) =0, that is, m¥"R = "R, an obvious contradiction, since
m? R Cm. Thus TrM =0, and the proof that (1) = (2) is complete.

Now assume that (2) holds. Since M is torsion-free, we can build the
universal pushforward (see [6, Section 1]):

0—M—RY N0,

where v = vgM™. Then N has finite projective dimension. Now Theorem 3.2
implies that Tor®(N,¥°R) =0 for all i > 1. Therefore, Torf(M,*'R) = 0,
and we get an injection F¢(M) < (¥°R)"), whence F¢(M) is torsion-free.

0

From Theorem 3.2 (alternatively, from the proof of Theorem 3.4), we get
Tor independence (item (2) in the Introduction), as follows.

COROLLARY 3.5. If R and M satisfy the equivalent conditions of Theo-
rem 3./, then TorB(M,9° R) =0 for every i >1 and every ¢’ > 1.

Of course, if M is torsion-free, the converse of Corollary 3.5 holds, by

Theorem 3.3. In fact, it suffices to check that Tor®(M, S"E/R) =0 for a single
¢ and a single i.
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Recall that R is F-finite provided that ¢ is a finite map, that is, that R
is module-finite over ¢(R). In this case, ¢° is a finite map for each e > 1.
Note that the action of R on the module (¥"M) in items (1) and (2) below

. . . €
is the Frobenius action m -r =mrP .

COROLLARY 3.6. Assume that (R,m) is a reduced local ring, is F-finite,
and is a complete intersection. The following conditions are equivalent:

(1) Fe(@e/M) is torsion-free for every torsion-free R-module M and every
pair e e’ of positive integers;

(2) F¢(¥" M) is torsion-free for some nonzero finitely generated R-module
M and some pair e, e’ of positive integers; and

(3) R is regular.

Proof. Obviously (1) = (2), and the implication (3) = (1) holds by
Kunz’s theorem [8, Theorem 2.1] that the R-module ¥R is flat when R is
regular.

To prove that (2) = (3), we note that #M is a finitely generated R-
module, by F-finiteness. Also, 906/M is generically free because R is reduced.

By Theorem 3.4, ¥ M has finite projective dimension, and now [2, Theo-
rem 1.1] implies that R is regular. U
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