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Abstract

In this paper we study discrete-time Markov decision processes with Borel state and
action spaces. The criterion is to minimize average expected costs, and the costs may
have neither upper nor lower bounds. We first provide two average optimality inequalities
of opposing directions and give conditions for the existence of solutions to them. Then,
using the two inequalities, we ensure the existence of an average optimal (deterministic)
stationary policy under additional continuity–compactness assumptions. Our conditions
are slightly weaker than those in the previous literature. Also, some new sufficient
conditions for the existence of an average optimal stationary policy are imposed on
the primitive data of the model. Moreover, our approach is slightly different from the
well-known ‘optimality inequality approach’ widely used in Markov decision processes.
Finally, we illustrate our results in two examples.
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1. Introduction

The long-run average expected criterion in discrete-time Markov decision processes has
been widely studied. As is well known, when the state and action spaces are both finite, the
existence of an average optimal stationary policy is indeed guaranteed [7, pp. 165–176], [6,
p. 71], [18, p. 450]. However, when a state space is countably infinite, an average optimal
policy may not exist even though the action space is compact [7, p. 178], [18, p. 413]. Thus,
the main goal has been to find optimality conditions (i.e. conditions for the existence of an
average optimal policy). Much work on this has been done; for instance, see [1], [2], [5],
[11], [18, pp. 414–416], [25], and [24, 132–135] for denumerable Markov decision processes
and [2], [7, p. 188], [8], [9], [10], [14, pp 67–69], [13, p. 86], [12, p. 128], [15], and [16]
for Markov decision processes in Borel spaces. In this paper, we will deal with the average
expected criterion for Markov decision processes in Borel spaces, so here we describe some
existing works on Markov decision processes in Borel spaces.
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(i) For costs/rewards that are bounded, the minorant condition for the existence of both a
bounded solution to the average optimality equation (AOE) and an average optimal stationary
policy was given in [7, p. 188]. The main results of [7] have been extended to the case with
ergodicity conditions in [9], [10], and [12, p. 56]. The methods used there to ensure the existence
of a bounded solution to the AOE employ Banach’s fixed-point theorem.

(ii) When the costs are nonnegative (or bounded below), one of the optimality conditions is that
the relative difference, hα(x) := V ∗

α (x)− V ∗
α (x0), of the discounted optimal value function,

V ∗
α (x), is assumed to be bounded below in both state, x, and discount factor,α, and the optimality

inequality approach used to prove the existence of an average optimal stationary policy employs
the Abelian theorem relating the average cost criterion to the discounted cost criterion; see [2],
[14, p. 128], and [13, p. 86], for instance. It should be noted that, in order to use the Abelian
theorem, the costs have to be nonnegative (or bounded below). Thus, the optimality inequality
approach above is not applicable when the costs have neither upper nor lower bounds.

(iii) For the much more general case in which the costs have neither upper nor lower bounds,
in order to establish the AOE and then prove the existence of an average optimal stationary
policy, the equicontinuity condition of hα(x) [8], [13, p. 96] or the irreducibility condition (e.g.
Assumption 10.3.5 of [14, p. 130]) is required. Also, under the slightly stronger condition that
transition laws have transition densities satisfying continuity–compactness, uniform ergodicity,
and uniform integrability hypotheses, stronger results (e.g. a Blackwell optimal policy) have
been established, in [15] and [16].

In this paper we study the general case further. We not only give another set of optimality
conditions slightly weaker than those in the previous literature, but also provide a new approach
to prove the existence of an average optimal stationary policy. More precisely, we require that
the function hα(x) is bounded only in the discount factor and remove both the equicontinuity
condition of hα(x) used in [8] and [13, p. 96] and the irreducibility condition used in [14,
p. 130]. Thus, we can neither ensure the existence of a solution to the AOE nor use the Abelian
theorem since in our model the state space may not be denumerable, the irreducibility condition
of [14] has been removed, and the costs may have neither upper nor lower bounds. Instead,
we first use two average optimality inequalities to replace the AOE used in [8], [14], and [13]
and ensure that solutions to them exist. Then we prove the existence of an average optimal
stationary policy using the two inequalities. Moreover, following the ergodicity conditions in
[1], [5], [14, p. 122], [15], and [16], we give new sufficient conditions for our assumptions to
hold. These conditions are imposed on the controlled system’s primitive data.

Finally, we use a generalized inventory system to show that all conditions in this paper are
satisfied, whereas some of the conditions in [1], [2], [3], [4], [7, p. 184], [5], [14, p. 128], [13,
p. 46], [12, p. 7], [18, p. 18], [19], [22], [20], [25], and [24, p. 15] fail to hold, and we also
apply our results to a controlled queueing model. It should be mentioned that the conditions of
[15] and [16] also apply to the generalized inventory system. It is a very interesting, and so far
unsolved, problem to find a real model for which all conditions in this paper are fulfilled, but
which does not satisfy the assumptions made in [15] and [16].

The rest of the paper is organized as follows. In Section 2 we introduce our control model and
the optimality problem. After giving optimality conditions and some technical preliminaries
in Section 3, we study the existence of an average optimal stationary policy in Section 4. In
Section 5 we use two examples to illustrate our results. We conclude in Section 6 with some
general remarks.
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2. The optimal control problem

In this section we first introduce the control model,

{S, (A(x) ⊂ A, x ∈ S),Q(· | x, a), c(x, a)},
where S and A are respectively the state and action spaces, which are assumed to be Borel
spaces, and A(x) denotes the set of available actions at state x ∈ S. Suppose that the set

K := {(x, a) : x ∈ S, a ∈ A(x)}
is also a Borel space. The functionQ(· | x, a)with (x, a) ∈ K , the transition law, is a stochastic
kernel on S given K . Finally, c(x, a) with (x, a) ∈ K , the cost function, is assumed to be a
real-valued and measurable function on K . (As c(x, a) is allowed to take both positive and
negative values, it can also be interpreted as a reward function.)

To introduce the optimal control problem that we are concerned with, we need to introduce
the policy classes. For each t ≥ 0, letHt be the family of admissible histories up to time t , that
is, H0 := S and Ht := K ×Ht−1 for each t ≥ 1.

Definition 2.1. A randomized history-dependent policy is a sequence π := (πt , t ≥ 0) of
stochastic kernels πt on A given Ht that satisfy

πt (A(x) | ht ) = 1 for all ht = (x0, a0, . . . , xt−1, at−1, x) ∈ Ht and t ≥ 0.

The class of all randomized history-dependent policies is denoted by�. A randomized history-
dependent policy π := (πt , t ≥ 0) ∈ � is called stationary if there exists a measurable
function f on S, with f (x) ∈ A(x) for all x ∈ S, such that

πt ({f (x)} | ht ) = πt ({f (x)} | x) = 1

for all ht = (x0, a0, . . . , xt−1, at−1, x) ∈ Ht and t ≥ 0.

For simplicity, we denote this stationary policy by f . The class of all stationary policies is
denoted byF , which means thatF is the set of all measurable functionsf onSwithf (x) ∈ A(x)
for all x ∈ S.

If X is a Borel space, we denote by B(X) its Borel σ -algebra.
For each x ∈ S and π ∈ �, by the well-known Tulcea theorem (see [7, p. 16], [14, p. 42],

and [12, p. 4]), there exist a unique probability measure space (�,F ,Pπx ) and discrete-time
stochastic processes {xt } and {at }, defined on �, such that, for each D ∈ B(S) and t ≥ 1,

Pπx (xt+1 ∈ D | ht , at ) = Q(D | xt , at ) (2.1)

for ht = (x0, a0, . . . , xt−1, at−1, xt ) ∈ Ht , where xt and at denote the state and action variables
at time t ≥ 1, respectively. The expectation operator with respect to Pπx is denoted by Eπx . In
particular, when the policy π := f is in F , the corresponding process, {xt } (with values in S),
is a Markov chain with transition law Q(· | x, f (x)).

Now we define the long-run average cost criterion, V̄ (·, ·), and the corresponding optimal
value function, V̄ ∗(·). For each x ∈ S and π ∈ �,

V̄ (x, π) := lim sup
n→∞

Eπx [∑n−1
t=0 c(xt , at )]
n

, V̄ ∗(x) := inf
π∈� V̄ (x, π).

A policy π∗ ∈ � is called average optimal if V̄ (x, π∗) = V̄ ∗(x) for all x ∈ S.
The main aim of this paper is to give new conditions for the existence of an average optimal

stationary policy.
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3. Optimality conditions

In this section we state conditions for the existence of an average optimal stationary policy
and give some preliminary lemmas that are needed to prove our main results.

Since the cost function, c(x, a), may be unbounded, to guarantee the finiteness of V̄ (x, π)
we first use the ‘expected growth’ condition, (3.1), below.

Assumption 3.1. (i) There exist positive constants, b and β < 1, and a (measurable) function,
w ≥ 1, on S such that∫

S

w(y)Q(dy | x, a) ≤ βw(x)+ b for all (x, a) ∈ K. (3.1)

(ii) There exists a constant, M > 0, such that |c(x, a)| ≤ Mw(x) for all (x, a) ∈ K .

Remark 3.1. Assumption 3.1(i) is well known as the statement of the ‘Lyapunov-like inequal-
ity’; see [14, p. 121], for instance. Obviously, the constant b in (3.1) can be replaced by
a bounded nonnegative measurable function, b(x), on S as in Assumption 10.2.1(f) of [14,
p. 121].

Lemma 3.1. Suppose that Assumption 3.1 holds. Then

(a) Eπx [w(xt )] ≤ βtw(x)+ [(1 − βt )/(1 − β)]b for all t ≥ 0, x ∈ S, and π ∈ �; and

(b) |V̄ (x, π)| ≤ bM/(1 − β) for all x ∈ S and π ∈ �.

Proof. (a) We prove Lemma 3.1(a) by induction. It is obviously valid for t = 0. For any
t ≥ 1, by Assumption 3.1(i) and (2.1) we have

Eπx [w(xt ) | x0, a0, x1, a1, . . . , xt−1, at−1] =
∫
S

w(y)Q(dy | xt−1, at−1) ≤ βw(xt−1)+ b

and, so,

Eπx [w(xt )] ≤ β Eπx [w(xt−1)] + b

≤ β2 Eπx [w(xt−2)] + b + bβ ≤ · · · ≤ βtw(x)+ b + bβ + · · · + bβt−1

= βtw(x)+ 1 − βt

1 − β
b.

Lemma 3.1(a) follows.

(b) Since 0 < β < 1, (b) follows from (a) and Assumption 3.1(ii).

To state our optimality conditions, we require some results about the discounted cost criterion.
To present them we use the following notation. For each fixed discount factor α, 0 < α < 1,
each x ∈ S, and each π ∈ �, the discounted cost, Vα(x, π), and the corresponding discounted
optimal value function, V ∗

α (x), are as follows:

Vα(x, π) := Eπx

[ ∞∑
t=0

αtc(xt , at )

]
, V ∗

α (x) := inf
π∈�Vα(x, π).

To establish the α-discount optimality equation, we also use the following standard continuity–
compactness conditions; see, for instance, [14, p. 44], [18, p. 90], and [24, p. 15] and their
references.
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Assumption 3.2. (i) For each x ∈ S, A(x) is compact.

(ii) For each fixed x ∈ S, c(x, a) is lower semicontinuous in a ∈ A(x), and the function∫
S
u(y)Q(dy | x, a) is continuous in a ∈ A(x) both for all bounded measurable functions u

on S and for u := w as in Assumption 3.1.

Remark 3.2. Assumptions 3.2(i) and 3.2(ii) are the same as Assumption 10.2.1 of [14, p. 121].
Obviously, Assumption 3.2 holds when A(x) is finite for each x ∈ S.

Lemma 3.2. Under Assumptions 3.1 and 3.2, for each α ∈ (0, 1) the following statements
hold.

(a) |Vα(x, π)| ≤ Mw(x)/(1 − α)+Mb/[(1 − β)(1 − α)] for all x ∈ S and π ∈ �.

(b) The discounted optimal value function, V ∗
α (x), satisfies the discounted cost optimality

equation:

V ∗
α (x) = min

a∈A(x)

{
c(x, a)+ α

∫
S

V ∗
α (y)Q(dy | x, a)

}
for all x ∈ S. (3.2)

(c) For each α, 0 < α < 1, there exists a stationary policy f ∗
α (depending on α) such that

Vα(x, f
∗
α ) = V ∗

α (x) for all x ∈ S.

Proof. By Lemma 3.1 and Assumption 3.1(ii), we have

|Vα(x, π)| ≤ M

∞∑
t=0

αt Eπx [w(xt )]

≤ M

∞∑
t=0

αt
(
βtw(x)+ 1 − βt

1 − β
b

)

≤ M

∞∑
t=0

αt
(
w(x)+ b

1 − β

)

= Mw(x)

1 − α
+ Mb

(1 − β)(1 − α)
.

Part (a) follows.
Parts (b) and (c) follow from Theorem 8.3.6 and Remark 8.3.5 of [14, p. 46, p. 47].

To prove the existence of an average optimal stationary policy, in addition toAssumptions 3.1
and 3.2, we give a new condition (Assumption 3.3, below). To state this assumption, we
introduce the following notation. For the function w ≥ 1 in Assumption 3.1, we define both
the weighted supremum norm, ‖u‖w, of a real-valued function u on S, by

‖u‖w := sup
x∈S

w(x)−1|u(x)|,

and the Banach space Bw(S) := {u : ‖u‖w < ∞}.
Assumption 3.3. There exist two functions, v1, v2 ∈ Bw(S), and some state, x0 ∈ S, such that

v1(x) ≤ hα(x) ≤ v2(x) for all x ∈ S and α ∈ (0, 1),

where hα(x) := V ∗
α (x)− V ∗

α (x0) is, recall, the so-called relative difference of the function
V ∗
α (x).
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Remark 3.3. (a) Assumption 3.3 is new because the function v1(x) might not be bounded
below. Moreover, Assumption 3.3 is the generalization of (SEN2) of [24, p. 132] and of
Assumption 5.4.1(b) of [13, p. 86], because hα(x) is assumed to be bounded below in those
references.

(b) Assumption 3.3 holds if Assumptions 3.1 and 3.2 and the following condition (which is
Assumption 10.2.2 of [14, p. 122]) are satisfied: for each f ∈ F there exists a probability
measure, µf , such that

sup
| u | ≤w

| Efx [u(xt )] − µf (u)| ≤ Lρtw(x) for all x ∈ S and t ≥ 0,

where

µf (u) :=
∫
S

u(y)µf (dy)

and L > 0 and ρ, 0 < ρ < 1, are constants independent of f .

To verify Assumption 3.3, we now provide some new sufficient conditions, and, for ease of
reference, also state some existing conditions.

Lemma 3.3. Let the functionw be as in Assumption 3.1. Then, under Assumptions 3.1 and 3.2,
each of the following five sets of conditions guarantees Assumption 3.3 to hold.

(a) For each f ∈ F , the corresponding Markov processes {xt } are uniformly w-exponentially
ergodic; that is, there exists a probability measure, µf (depending on f ), such that

∞∑
t=0

rt‖Qt
f (· | x)− µf (·)‖w ≤ Lw(x)+ b′ for all x ∈ S, (3.3)

where
‖Qt

f (· | x)− µf (·)‖w := sup
|u|≤w

| Efx [u(xt )] − µf (u)|

and L > 0, r > 1, and b′ ≥ 0 are constants independent of f .

(b) S = [0,∞)d for some integer d ≥ 1, and the following conditions are satisfied.

(i) The process {xt } with transition lawQ(· | x, f (x)) is stochastically ordered (monotonic)
for each f ∈ F .

(ii) The function w is nondecreasing and satisfies∫
S

w(y)Q(dy | x, f (x)) ≤ βw(x)+ b 1{0}(x) for all f ∈ F and x ≥ 0,

where 1D denotes the indicator function of any setD andβ and b are as in Assumption 3.1.

(c) For each f ∈ F , there exist an ‘atom’, cf (depending on f ), in B(S) (such that,
e.g. Q(· | x, f (x)) ≡ Q(· | cf ) is independent of x ∈ cf ) and constants, δ1, b1 > 0, and
β1, 0 < β1 < 1, independent of f , such that

Q(cf | cf ) ≥ δ1,∫
S

w(y)Q(dy | x, f (x)) ≤ β1w(x)+ b1 1cf (x) for all x ∈ S.
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(d) For each f ∈ F , the transition law Q(· | x, f (x)) has a unique invariant probability
measure, µf , and, moreover, there exist a measure function, lf , 0 ≤ lf ≤ 1 (depending on f ),
on S, a probability measure, ν, on S, and constants, δ2 > 0 and β2, 0 < β2 < 1, independent
of f , such that

(i) Q(B | x, f (x)) ≥ lf (x)ν(B) for all B ∈ B(S) and x ∈ S,

(ii)
∫
S
lf (y)ν(dy) ≥ δ2,

(iii) ν(w) := ∫
S
w(y)ν(dy) < ∞,

(iv)
∫
S
w(y)Q(dy | x, f (x)) ≤ β2w(x)+ lf (x)ν(w) for all x ∈ S.

(e) For each (x, a) ∈ K , Q(· | x, a) has a density function, q(x, a, y), on K × S with respect
to a measure m, and there exist two sets, D1 and D2, with m(Dk) > 0, k = 1, 2, and positive
constants δ3 > 0, b3 > 0, and β3, 0 < β3 < 1, such that

(i) q(x, a, y) ≥ δ3 for all x ∈ D1, a ∈ A(x), and y ∈ D2,

(ii)
∫
S
w(y)q(x, a, y)m(dy) ≤ β3w(x)+ b3 1D1(x) for all (x, a) ∈ K ,

(iii) there exists an integer, N , such that Pfx (xN ∈ D1) ≥ δ3 for all f ∈ F and x ∈ {x ∈
S : w(x) ≤ c} for all c ≥ 0.

Proof. (a) As |c(x, a)| ≤ Mw(x) withw(x) ≥ 1, using Assumptions 3.1 and 3.2, it follows
from Lemma 3.2(c) and (3.3) that, for each x ∈ S and α, 0 < α < 1,

|hα(x)| =
∣∣∣∣Ef

∗
α
x

[ ∞∑
t=0

αtc(xt , f
∗
α (xt ))

]
− E

f ∗
α
x0

[ ∞∑
t=0

αtc(xt , f
∗
α (xt ))

]∣∣∣∣

≤
∞∑
t=0

αt | E
f ∗
α
x [c(xt , f ∗

α (xt ))] − E
f ∗
α
x0 [c(xt , f ∗

α (xt ))]|

≤
∞∑
t=0

rt | E
f ∗
α
x [c(xt , f ∗

α (xt ))] − E
f ∗
α
x0 [c(xt , f ∗

α (xt ))]|

= M

∞∑
t=0

rt
∣∣∣∣Ef

∗
α
x

[
c(xt , f

∗
α (xt ))

M

]
− E

f ∗
α
x0

[
c(xt , f

∗
α (xt ))

M

]∣∣∣∣
≤ ML

(
1 + w(x0)+ 2b′

L

)
w(x)

=: v2(x),

which yields Assumption 3.3 with v1(x) = −ML(1 + w(x0)+ 2b′/L)w(x).

(b) From the proof of Equation (14) of [23], for each x ∈ S, f ∈ F , and r , 1 < r ≤ β−1, we
have ∞∑

t=0

rt‖Qt
f (· | x)− µf (·)‖w ≤ 2

1 − βr

[
w(x)+ b

1 − β

]
,

which, together with (a), yields Assumption 3.3.

(c) By Theorem 2.2 of [17], we see that (c) implies (a) and, thus, yields Assumption 3.3.
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(d) By Proposition 10.2.5 of [14, p. 126], we see that (d) implies (a) and, thus, yields Assump-
tion 3.3.

(e) By Theorem 5.1 and Lemma 5.1 of [16], we see that (e) implies (a) and, thus, yields
Assumption 3.3.

Remark 3.4. (a) Conditions (a) and (b) in Lemma 3.3 are different from those in [2], [7,
p. 188], [8], [14, p. 122], [13, p. 96], [12, p. 56], [15], and [16]. In particular, the stochastic
monotonicity condition (b)(i) has been used to verify Assumption 3.3. These conditions are the
generalization of ergodic conditions of [12, p. 56] and the minorant conditions of [7, p. 188].

(b) Condition (c) in Lemma 3.3 is a variant of those of Theorem 2.2 of [17], and conditions (d)
and (e) in Lemma 3.3 follow from Proposition 10.2.5 of [14, p. 126] and Theorem 5.1 of [16],
respectively.

4. Existence of average optimal stationary policies

In this section we provide our main results.

Theorem 4.1. Under Assumptions 3.1, 3.2, and 3.3, the following assertions hold.

(a) There exist a unique constant, g∗, two functions, h∗
1, h

∗
2 ∈ Bw(S), and a stationary policy,

f ∗ ∈ F , satisfying the two average optimality inequalities

ρ + h∗
1(x) ≤ min

a∈A

{
c(x, a)+

∫
S

h∗
1(y)Q(dy | x, a)

}
for all x ∈ S, (4.1)

g∗ + h∗
2(x) ≥ min

a∈A(x)

{
c(x, a)+

∫
S

h∗
2(y)Q(dy | x, a)

}
(4.2)

= c(x, f ∗(x))+
∫
S

h∗
2(y)Q(dy | x, f ∗(x)) for all x ∈ S. (4.3)

(b) g∗ = infπ∈� V̄ (x, π) for all x ∈ S.

(c) Any stationary policy, f ∈ F , realizing the minimum of (4.2) is average optimal; thus, f ∗
in (4.3) is an average optimal stationary policy.

Proof. (a) Let x0 be as in Assumption 3.3, and let {αn} be any sequence of increasing
discount factors such that αn → 1 as n → ∞. By Lemma 3.2(a), (1 − αn)V

∗
αn
(x0) is bounded

for n ≥ 1. Therefore, there exist a subsequence, {αk}, of {αn} and a constant, g∗, satisfying

lim
k→∞(1 − αk)V

∗
αk
(x0) = g∗, h∗

1(x) := lim sup
k→∞

hαk (x). (4.4)

Since |hαk | ≤ |v1| + |v2|, h∗
1 belongs to Bw(x) (by Assumption 3.3). Recalling that hα(x) =

V ∗
α (x)− V ∗

α (x0), from (3.2) we have

(1 − α)V ∗
α (x0)+ hα(x) = min

a∈A(x)

{
c(x, a)+ α

∫
S

hα(y)Q(dy | x, a)
}

for all x ∈ S,

which yields

(1−αk)V ∗
αk
(x0)+hαk (x) ≤ c(x, a)+

∫
S

αkhαk (y)Q(dy | x, a) for all x ∈ S and a ∈ A(x).
(4.5)

https://doi.org/10.1239/jap/1152413725 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413725


326 X. P. GUO AND Q. X. ZHU

By applying Lemma 8.3.7 of [14, p. 48] (an ‘extension of Fatou’s lemma’) and letting k → ∞
in (4.5), by (4.4) we have

g∗ + h∗
1(x) ≤ c(x, a)+

∫
S

h∗
1(y)Q(dy | x, a) for all x ∈ S and a ∈ A(x),

which yields

g∗ + h∗
1(x) ≤ min

a∈A(x)

{
c(x, a)+

∫
S

h∗
1(y)Q(dy | x, a)

}
for all x ∈ S.

Equation (4.1) follows from this.
Now we prove (4.2). For each x ∈ S, let

h∗
2(x) := lim inf

k→∞ hαk (x) ∈ Bw(S),

whence
h∗

2(x) = lim
k→∞ gαk (x) with

gαk (x) := inf{hαm(x) : m ≥ k} ≤ hαk (x) for all k ≥ 1.

Similarly, by (3.2) and hαk ≥ gαk , we have

(1 − αk)V
∗
αk
(x0)+ hαk (x) = min

a∈A(x)

{
c(x, a)+ αk

∫
S

hαk (y)Q(dy | x, a)
}

≥ min
a∈A(x)

{
c(x, a)+ αk

∫
S

gαk (y)Q(dy | x, a)
}
. (4.6)

Since αk+1 ≥ αk > 0 and gαk+1 − gα1 ≥ gαk − gα1 ≥ 0, we see that the limits

lim
k→∞ min

a∈A(x)

{
c(x, a)+ αk

∫
S

(gαk (y)− gα1(y))Q(dy | x, a)
}

and

lim
k→∞ min

a∈A(x)

{
c(x, a)+ αk

∫
S

gαk (y)Q(dy | x, a)
}

(4.7)

exist. By (4.4) and (4.6), we then have

g∗ + h∗
2(x) ≥ lim

k→∞ min
a∈A(x)

{
c(x, a)+ αk

∫
S

gαk (y)Q(dy | x, a)
}
. (4.8)

On the other hand, for each fixed k ≥ 1, by Assumption 3.2, there exists an ak(x) ∈ A(x)

(depending on k and x) such that

min
a∈A(x)

{
c(x, a)+ αk

∫
S

gαk (y)Q(dy | x, a)
}

= c(x, ak(x))+ αk

∫
S

gαk (y)Q(dy | x, ak(x)). (4.9)

https://doi.org/10.1239/jap/1152413725 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413725


Average optimality for Markov decision processes 327

Since A(x) is compact, there exists a subsequence, {aki (x)}, of {ak(x)} such that the limit
limi→∞ aki (x) exists; we denote it by a′(x) ∈ A(x). Noting that ‖gαk‖w ≤ ‖v1‖w + ‖v2‖w
for all k ≥ 1, from Assumption 3.2(ii), (4.7)–(4.9), and Lemma 8.3.7 of [14, p. 48] we obtain

g∗ + h∗
2(x) ≥ lim

i→∞ min
a∈A(x)

{
c(x, a)+ αki

∫
S

gαki
(y)Q(dy | x, a)

}

= lim
i→∞

[
c(x, aki (x))+ αki

∫
S

gαki
(y)Q(dy | x, aki (x))

]

≥ c(x, a′(x))+
∫
S

h∗
2(y)Q(dy | x, a′(x))

≥ min
a∈A(x)

{
c(x, a)+

∫
S

h∗
2(y)Q(dy | x, a)

}
.

Equation (4.2) follows from this. Moreover, (4.2) together with the well-known ‘measurable
selection theorem’ [14, p. 50] implies the existence of an f ∗ ∈ F satisfying (4.3). Thus, the
proof of part (a) is complete.

(b) For each π ∈ � and x ∈ S, from (4.1) we obtain

g∗ + h∗
1(xt ) ≤ c(xt , at )+

∫
S

h∗
1(y)Q(dy | xt , at ) for all xt ∈ S, at ∈ A(xt ), and t ≥ 0,

which, together with (2.1), yields

g∗ + Eπx [h∗
1(xt )] ≤ Eπx [c(xt , at )] + Eπx [h∗

1(xt+1)] for all t ≥ 0

and, thus,

g∗ + h∗
1(x)

N
≤ Eπx [∑N−1

t=0 c(xt , at )]
N

+ Eπx [h∗
1(xN)]
N

for all N ≥ 1. (4.10)

However, by Lemma 3.1(a) we have

Eπx [|h∗
1(xN)|] ≤ ‖h∗

1‖w
[
βNw(x)+ 1 − βN

1 − β
b

]
.

Hence, we have limN→∞ Eπx [h∗
1(xN)]/N = 0, which, together with (4.10), yields

g∗ ≤ V̄ (x, π) for all x ∈ S and π ∈ �. (4.11)

Thus,
g∗ ≤ inf

π∈� V̄ (x, π) for all x ∈ S. (4.12)

Similarly, by (4.3) we have

g∗ +h∗
2(xt ) ≥ c(xt , f

∗(xt ))+
∫
S

h∗
2(y)Q(dy | xt , f ∗(xt )) for all xt ∈ S and t ≥ 0. (4.13)

Then, as in the proof of (4.11), by (4.13) we have

g∗ ≥ V̄ (x, f ∗) for all x ∈ S. (4.14)

By (4.12) and (4.14), we have g∗ = V̄ (x, f ∗) = infπ∈� V̄ (x, π), completing the proof of
part (b).
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(c) The proof of part (c) follows obviously from the proofs of parts (a) and (b).

Remark 4.1. (a) It should be mentioned that there are two key steps in the ‘optimality inequality
approach’ used, for instance, in [14], [13], [18], [25], and [24]. The first step is to obtain an
inequality such as (4.12) by the Abelian theorem relating the average cost, V̄ (x, π), to the
discounted cost, Vα(x, π), and the other is to obtain an inequality such as (4.14) from an
optimality inequality such as (4.3). To guarantee the applicability of the Abelian theorem, the
costs have to be nonnegative. Thus, the Abelian theorem used in the optimality inequality
approach in the previous literature is not applicable to our case, because the costs in our model
may have neither upper nor lower bounds. Therefore, the approach provided in this paper may
be regarded as a modification of the optimality inequality approach taken in previous works
cited.

(b) When the state space S is denumerable, under Assumptions 3.1, 3.2, and 3.3 the standard
diagonalization argument serves to show the existence of a sequence, {hαk (x)}, such that the
limit h∗(x) := limk→∞ hαk (x) exists for all x ∈ S. Hence, h∗

1(x) = h∗
2(x) = h∗(x) for all

x ∈ S, the inequalities (4.1) and (4.2) thus coincide, and the AOE is obtained. Moreover for a
denumerable state space, under suitable conditions some stronger results have been obtained;
see, for instance, [5] for the existence of a Blackwell optimal policy and [1] for a condition
sufficient and necessary for an optimal policy.

(c) To establish the AOE in Borel spaces, in addition to our Assumptions 3.1, 3.2 and 3.3, an
additional condition is required; see, for instance, the irreducibility condition (e.g. Assumption
10.3.5 of [14, p. 130].) On the other hand, under the slightly stronger conditions of [15] and
[16], not only can the AOE be established using Lemmas 5.1, 6.1, and 6.3 of [15] (or by
Theorem 10.3.6 of [14, p. 130]), but the existence of average and Blackwell optimal policies
can also be shown.

5. Examples

In this section we first illustrate our assumptions with a generalized inventory system and
then apply our results to a controlled queueing model.

Example 5.1. (A generalized inventory system.) Consider a control system of the form

xt+1 = (xt + atηt − ξt )
+, t = 0, 1, . . . , (5.1)

with a state space S := [0,∞). This model can in fact have several interesting interpretations,
such as, as a random-release dam model or a single-server queueing system (of general type
GI/GI/1) with controllable service rates. Here, we interpret (5.1) as a generalized inventory
system. Thus, xt and ηt respectively denote the stock level and amount of ‘base product’ordered
(and immediately supplied) at the beginning of period t , while ξt denotes the demand during
period t . The control variable, at , denotes the reciprocal of the amount of base product ordered
at the beginning of period t . We denote by c(x, a) an associated cost function for this system.

For the average optimality of system (5.1), we consider the following hypotheses.

Assumption 5.1. (On Example 5.1.) (i) For each x ∈ S, the action set A(x) is a compact
subset of an interval (0, θ ], for some finite θ > 0.

(ii) {ηt } and {ξt } are independent sequences of independent, identically distributed random
variables.
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(iii) η0 takes finite values bi ≥ 0, 1 ≤ i ≤ N < ∞, and has probability distribution
pi := P(η0 = bi)with

∑N
i=1 pi = 1, while ξ0 has a continuous and bounded density function q.

In particular, system (5.1) is the well-known inventory system of a random-release dam model
when P(η0 = 1) = 1.

(iv) E[zθ ] < 0 andψθ(r̄) < ∞ for some r̄ > 0, where E[za] andψa(r) := E[erza ] respectively
denote the mean and a moment generating function of the random variable za := aη0 − ξ0
with a ∈ (0, θ ]. (Thus, ψθ(0) = 1 and ψ ′

θ (0) = E[zθ ] < 0, and, so, there exists a constant, ρ,
0 < ρ < r̄ , such that ψθ(ρ) < 1.)

(v) There exists a constant, M > 0, such that |c(x, a)| ≤ Meρx for all x ∈ S and a ∈ A(x),
with ρ as in part (iv).

(vi) ψa(ρ) is continuous in a ∈ A(x) for each x ∈ S, and c(x, a) is lower semicontinuous
in a ∈ A(x).

We now define the weight function w(x) := eρx for all x ∈ S, and proceed to verify
Assumptions 3.1, 3.2, and 3.3. By Assumptions 5.1(vi) and 5.1(v) and the description of the
model, we find that Assumptions 3.1(ii) and 3.2(i) are automatically satisfied. Thus, it only
remains to verify Assumptions 3.2(ii), 3.1(i), and 3.3.

Verification of Assumption 3.2(ii). For each a ∈ A(x), we have za = aη0 − ξ0 ≤ zθ (as
0 < a ≤ θ for all a ∈ A). Thus, by Assumptions 5.1(ii) and 5.1(iii), we can derive the
distribution function G(a, y) of za , as follows:

G(a, y) := P(za ≤ y) =
N∑
i=1

P(abi − ξ0 ≤ y)pi =
N∑
i=1

∫ ∞

abi−y
q(v)pi dv. (5.2)

Hence, from Assumption 5.1(iii) and (5.2) we see that the density function of za ,

g(a, y) =
N∑
i=1

q(abi − y)pi, (5.3)

is a bounded, continuous function of a ∈ A(x), and it follows from (5.2) that G(a, y) is also
bounded and continuous in a ∈ A(x). Thus, for each measurable bounded function u on S, by
(5.1) and (5.3) we see that

∫
S

u(y)Q(dy | x, a) = u(0)G(a,−x)+
∫ ∞

−x
u(x + y)g(a, y) dy (5.4)

is also bounded and continuous in a ∈ A(x). Moreover, by replacing u in (5.4) by the weight
function w above, and noting that za ≤ zθ , we obtain

∫
S

w(y)Q(dy | x, a) = G(a,−x)+
∫ ∞

−x
w(x + y)g(a, y) dy

= G(a,−x)+ w(x)

∫ ∞

−x
eρyg(a, y) dy

= G(a,−x)+ w(x)

[
ψa(ρ)−

∫ −x

−∞
eρyg(a, y) dy

]
(5.5)

≤ ψθ(ρ)w(x)+G(a,−x). (5.6)
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Since g(a, y) is bounded and continuous in a ∈ A(x), by Assumption 5.1(vi) and (5.5) we see
that

∫
S
w(y)Q(dy | x, a) is continuous in a ∈ A(x), and Assumption 3.2(ii) thus follows.

Verification of Assumption 3.1(i). By (5.6) we can verify Assumption 3.1(i) with β ≡ ψθ(ρ)

and b ≡ 1.
Verification of Assumption 3.3. We use Lemma 3.3(d) to verify Assumption 3.3. To do so,

let f ∈ F , let ν be the Dirac measure at x = 0, and define

la(x) := G(a,−x) for all x ∈ S and a ∈ A(x),
lf (x) := G(f (x),−x) for all x ∈ S.

Then, as 0 < f (x) ≤ θ for all x ∈ S, we have

lf (x) = G(f (x),−x) = P(f (x)η0 − ξ0 ≤ −x) ≥ P(θη0 − ξ0 ≤ −x) = G(θ,−x),
which, together with (5.4) and (5.6), yields

Q(B | x, f (x)) ≥ lf (x)ν(B) for all B ∈ B(S) and x ∈ S,∫
S

w(y)Q(dy | x, f (x)) ≤ ψθ(ρ)w(x)+ lf (x) for all x ∈ S,

from which parts (d)(i) and (d)(iv) of Lemma 3.3 follow.
Moreover, by the definitions of ν and lf , we have

∫
S

lf (y)ν(dy) = lf (0) ≥ G(θ, 0) > 0 for all f ∈ F,

ν(w) :=
∫
S

w(y) dν(dy) = 1,

from which parts (d)(ii) and (d)(iii) of Lemma 3.3 follow. Hence, all conditions in Lemma 3.3(d)
have been verified.

Exactly as in Lemma 10.9.4 of [14, p. 159], we can also verify thatQ(· | x, f (x)) (for each
fixed f ∈ F ) has a unique invariant probability measure, µf . Thus, Assumption 3.3 follows
from Lemma 3.3.

In summary, we have the following result.

Proposition 5.1. Under Assumption 5.1, the generalized inventory system above satisfies As-
sumptions 3.1, 3.2, and 3.3. Therefore (by Theorem 4.1), there exists an average optimal
stationary policy.

Remark 5.1. (a)According to the discussions above, we see that for Example 5.1 all conditions
in this paper are satisfied. It should be noted that in Example 5.1 the state space is not
denumerable and that we can easily give a cost function (for this example) that might have
neither upper nor lower bounds. Therefore, the earlier conditions in [1], [2], [3], [4], [7,
p. 184], [5], [14, p. 128], [13, p. 46], [12, p. 7], [18, p. 18], [19], [22], [20], [25], and [24,
p. 15] fail to hold. This is because the state spaces considered in the previous literature are all
denumerable, except in [2], [7], [14], [13], [12], [19], and [22], where the cost functions are
assumed to be bounded below.

(b) Although the conditions in this paper are slightly weaker than those in [15] and [16],
a straightforward calculation together with the Radon–Nikodým theorem can show that the
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results of [15] and [16] also apply to Example 5.1. Moreover, it should be mentioned that it
is very interesting and difficult to find a real model for which all conditions in this paper are
fulfilled, but which does not satisfy the assumptions of [15] and [16].

We now apply our results to a queueing system.

Example 5.2. (A controlled queueing system.) Consider a controlled queueing system in which
the state variable denotes the number of customers in the system. When there is more than
one customer in the system, we suppose that an arriving customer will be rejected from the
system with probability p1 > 0 and admitted to the system with probability p2 := 1 − p1.
The arrival rate is assumed to be a fixed constant, λ > 0, and the service rates a are assumed to
be controlled by a decision-maker. Here, we interpret the service rates as the control actions.
When the system’s state is x ∈ S := {0, 1, . . . }, the decision-maker takes an action a from a
given set A(x) ≡ [µ1, µ2] with µ2 > µ1 > 0, which increases or decreases the service rates
given by (5.7)–(5.9), below. The action incurs a cost c̄(x, a). In addition, the decision-maker
obtains a reward px during the time in which the system remains in state x (p > 0 denotes the
unit reward produced by a customer).

We now formulate this system as a discrete-time Markov decision process. The correspond-
ing transition law, Q(· | x, a), and cost function, c(x, a), are given as follows. When there
is at most one customer in the system, it is natural to assume that no control of the system is
necessary. Thus, for each a ∈ A(x) with x = 0, 1, we have

Q(0 | 0, a) = µ2

λ+ µ2
, Q(1 | 0, a) = λ

λ+ µ2
, (5.7)

Q(0 | 1, a) = µ2

λ+ µ2
, Q(1 | 1, a) = p1λ

λ+ µ2
, Q(2 | 1, a) = p2λ

λ+ µ2
. (5.8)

Moreover, for each x ≥ 2 and a ∈ A(x),

Q(y | x, a) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a

λ+ µ2
if y = x − 2,

µ2 − a

λ+ µ2
if y = x − 1,

p1λ

λ+ µ2
if y = x,

p2λ

λ+ µ2
if y = x + 1,

0 otherwise,

(5.9)

c(x, a) := c̄(x, a)− px for (x, a) ∈ K := {(x, a) : x ∈ S, a ∈ A(x)}. (5.10)

We aim to find conditions that ensure the existence of an average optimal stationary policy. To
do this, we consider the following assumptions.

Assumption 5.2. The parameter λ is such that (e − 1)µ2 > p2λe2.

Assumption 5.3. The function c̄(x, a) is continuous in a ∈ A(x) for each fixed x ∈ S, and
such that |c̄(x, a)| ≤ Lex for all (x, a) ∈ K and some constant, L > 0.
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Under these conditions, we have the following result.

Proposition 5.2. Under Assumptions 5.2 and 5.3, the controlled queueing system above satis-
fies Assumptions 3.1, 3.2, and 3.3. Therefore (by Theorem 4.1), there exists an average optimal
stationary policy.

Proof. We shall first verify Assumption 3.1. Let ρ = [µ2 + p1λe + p2λe2]/[e(λ + µ2)]
and let w(x) = ex for all x ∈ S. By Assumption 5.2 we see that 0 < ρ < 1. Then, combining
(5.7) and (5.8), we have

∑
y∈S

Q(y | 0, a)w(y) = µ2

λ+ µ2
+ λe

λ+ µ2

≤ ρw(0)+ µ2 + λe

λ+ µ2
, (5.11)

∑
y∈S

Q(y | 1, a)w(y) = µ2

λ+ µ2
+ p1λ

λ+ µ2
e + p2λ

λ+ µ2
e2

= ρw(1). (5.12)

Moreover, for each x ≥ 2 and a ∈ A(x), from (5.9) it follows that

∑
y∈S

Q(y | x, a)w(y) = a

λ+ µ2
ex−2 + µ2 − a

λ+ µ2
ex−1 + p1λ

λ+ µ2
ex + p2λ

λ+ µ2
ex+1

= a + e(µ2 − a)+ p1λe2 + p2λe3

e2(λ+ µ2)
w(x)

≤ eµ2 + µ1(1 − e)+ p1λe2 + p2λe3

e2(λ+ µ2)
w(x)

≤ ρw(x). (5.13)

Thus, for each x ∈ S and a ∈ A(x), by (5.11)–(5.13) we have

∑
y∈S

Q(y | x, a)w(y) ≤ ρw(x)+ µ2 + λe

λ+ µ2
1{0}(x) (5.14)

≤ ρw(x)+ µ2 + λe

λ+ µ2
,

which gives Assumption 3.1(i) with b = (µ2 +λe)/(λ+µ2) and β = ρ < 1 defined as above.
On the other hand, since ex ≥ x, from (5.10) and Assumption 5.3 we have

|c(x, a)| ≤ (p + L)w(x) for all x ∈ S,
which verifies Assumption 3.1(ii) with M := p + L. Assumption 3.1 is thus satisfied.

By (5.7)–(5.9), the model’s description, and Assumption 5.3, Assumption 3.2 is obviously
satisfied.

Finally, we verify Assumption 3.3. By (5.7)–(5.9), for each fixed f ∈ F we have
∑
y≥k

Q(y | x, f (x)) ≤
∑
y≥k

Q(y | x′, f (x′)) for all x, x′, k ∈ S and x < x′,
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which, together with Theorem 7.4.1 of [21, p. 298], implies that the corresponding Markov
process, {xt }, is stochastically monotone (for each f ∈ F ). Thus, by (5.14) and Lemma 3.3(b)
we see that Assumption 3.3 is satisfied.

6. Concluding remarks

In the previous sections we have studied the average optimality problem for discrete-time
Markov decision processes in Borel spaces. Under suitable assumptions we have shown the
existence of an average optimal stationary policy. The approach developed in this paper is
different from the optimality inequality approach widely used in the previous literature, and
may be regarded as a modification thereof. We believe that our formulation and approach can
be used to analyse other important problems, such as that of stochastic games and average
sample path optimality for discrete-time Markov processes in Borel spaces.
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