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1. Definitions and results

Let E be a vector lattice in the sense of Birkhoff [1]. We use the follow-
ing notations:

2t=200, == (—2)t and |z|=att+x".

A subset I is called an ideal if (i) I is a linear subset and (ii) « € I and
lyl = = imply yel.

An ideal is said to be maximal if it is a proper ideal and is not a proper
subset of another proper ideal.

E is said to be semi-simple if the intersection of all maximal ideals
consists of only zero element.

E is said to be radical if there exist no maximal ideals.

An element 4 is said to be atomic if

|a| = a;+a, and a; N ay, = 0 imply either a;, = 0 or g, = 0.
For any a € E, the set
I(a) = {ge E| |2 A |a] = 0}
is an ideal. The following theorem can be proved easily.
THEOREM 1. If the ideal I(a) is maximal, the element a is atomic.
The converse of this theorem is not true. For example, let us consider
the space (C) of all real-valued continuous functions defined on the interval

[0, 1]. This space (C) is a vector lattice, if we define, for z(¢) and y(¢) in
(C), the vector lattice structure as follows:

(1) (ex+By)(t) = ax(t)+B(y)¢ for every t e [0, 1];

(ii) # = y if and only if z(f) = y(¢) for every ¢ € [0, 1].
Now, let us take, for example, the following element:

at) =0 if 0=t} =t—3% if 3<t=1,
then a is atomic and the ideal I (2) is not maximal, because
32
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I{a) = {z e (C) lx(i) =0 for te (4, 1]}
C{ze(C)|z(t) =0 for te (% 1]}

(We owe this example to Professor P. Conrad.)

As is well-known, this vector lattice (C) is not conditionally complete.
A vector lattice is said to be conditionally complete if every subset which is
bounded from above has the least upper bound. We can prove the following
theorem.

THEOREM 2. If E 1is conditionally complete, the ideal I(a) is maximal
whenever a s atomic.

A vector lattice E is said to be afomic if the set A(E) of all atomic
elements is dense: if x N a = 0 for every a € A(E), then « = 0. E is said
to be non-atomic if A (E) is empty.

The following theorem follows immediately from Theorem 1 and 2.

THEOREM 3. I} E is conditionally complete,

1. E is atomic if and only if the intersection of all closed ideals consists
of only zero element.

2. E is non-atomic if and only if there are no closed maximal ideals.

An ideal I is said to be closed if, for any increasing set 2, eI (Ae ),
2 = Upc 4 %, implies € I. (cf. [1], p. 232) The ideal I (a) is closed, because,
it z,el(@)(icd) and o= Urszu I2l A lal < Useq (122l o fal) = 0.
Maximal ideals are not always closed. As an example of vector lattices in
which every maximal ideal is closed, we take BK-spaces which have been
introduced by [2].

A conditionally complete vector lattice E is said to be a BK-space
if it is a normed lattice with a norm ||z|| (x € E) which satisfies the following
two conditions:

(i) lim,,, ®, = O in order convergence implies lim,,,  ||z,|| = 0;
(ii) If {=,}is increasing and is not bounded from abovethenlim,, ,  \|x,||= .
(The condition (ii) has been studied in detail in [4].) Then, the following

theorem, which is the main theorem of this paper, is an easy consequence
of Theorem 3.

THEOREM 4. Let E be a BK-space. Then,

1. E is semi-simple if and only if E is atomic.
2. E is radical if and only if E is non-atomic.

Most of the standard function spaces which appear in Functional
Analysis are BK-spaces. For example, the sequence space /, (p = 1) and
the function space L,[0,1] (p = 1) are BK-spaces, because they are
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conditionally complete vector lattices under the usual definitions of vector
lattice structure and the norms:
* .
izl = (3 lz,|7)V7 for @ = (z,) €l,
n=1

and
llzll = ([ le(t)2dt)"” for = = 2(t) € L,
satisfy the above conditions (i) and (ii). The space / is atomic, because
the elements:
e, = (ex) where eg = 0if R £nand ¢ =1ifk=n

are atomic and ¢, n |z} =0 (=1, 2,---) implies £ = 0. The space L,
is non-atomic, because, since a function which is not zero only on a set of
measure zero is regarded as a zero function, every non-zero function can

be expressed as the sum of two non-zero functions which are mutually
disjoint.
2. Proof of theorem 1
Assume that @ is not atomic, then there exist a pair of positive (non-
zero) elements 4, and &, such that
la| = a;+ay and a; nay, = 0.
Let us consider the ideal I which is generated by I(a) and a,. Obviously,

I(a) is a proper subset of I, because 4, is not in I (a). Moreover, I is a proper
ideal. In fact, if a, € I, then

a, < z+na, for some z el(a) and integer .

Since a, n a, = 0, we have a, < z, from which it follows that a, €I (a).
This is a contradiction, because 0 < a, < |a].

3. Proof of theorem 2

The vector lattice E is assumed to be conditionally complete.

LeEMMa 1. (Theorem 19, p. 233, [1]) Let J be a closed ideal and J* be
its orthogonal complement:

Jtr=1{xeE||z|nlyl =0 for every ye J}.
Then,

L=
2. E = J4+J*, in other words, for any x € E there exists uniquely a
pair of elements x(J) € J and z(J*) € J* such that x = z(J)+=z(J*).
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LemMA 2. If a is atomic, for the ideal I generated by I(a) and a, we have
I=E.

Proor. Take an arbitrary element 5. Without loss of generality, we can
assume that @ and & are positive. Let us denote by J, the ideals
I((b—mna)*)* . Then,

na(J,) <b(J,) =bforevery n=12,---,

b (.In) —na (.,n)
= (b—na)(J,) = (b—na)* = .

because

Therefore, since a(J,) < b/n for every n and E is conditionally complete,
the sequence {a(J,)} converges to zero in order convergence. On the other
hand, since a is atomic and

a=a(],)+a(Jz)
we have either a(J,) = 0 or a(J£) = 0. Assume that
a(J,) >0
for an infinite number of 7, then, for such #, we have
a=a(],) -0,

which is a contradiction. Therefore, there exists n, such that a(J, ) =0,

which means that
a = a(Jy) eI((d—nya)*).

Now, let us consider the set
J@)=I@)t={xeE||z|n |yl =0 for every yel(a)}.
Then, J(a) is a closed ideal and, since

b—noga = (b—nga)t— (b—nya)~
and
(b—mnga)* el(a) = J(a)*,
we have (b—nya)t(J(a)) = 0 and

b(J(a))—mya
= b(J(a))—noa(J (@) = (b—n4a)(J(a))
= (b—moa)*(J(a)) —(b—npa)=(] (a))
= —(b—mya)=(J(a)) =0,

from which it follows that, for the ideal I which is generated by I(2) and
a, b(J(a)) =mnya e I. Therefore, b(J(a)) eI. Since b(J(a)*) € I(a), we have
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b =b(J(a))+b(J(@)") €1,

hence it follows that I = E.

Now, assume that I(a) is not maximal, then there exists a proper
ideal I such that I(2) is a proper subset of I. Therefore, we can find a
positive element 4 such that bel and b ¢I(a). Then, for J(b) = I(b)*,
since @ = a(J(b))+a(J(b)*) and a is atomic, we have

a=a(J(?))
because b ¢ I(a).
Next, we consider the set B of the elements b(J(x)), for J(z) = I(z)*,
such that
€| N |aj =0 and J(z) CJ(b).
Since the set B is bounded from above by b, there exists the least upper
bound, which is denoted by ¢. Obviously, ¢ is orthogonal to a. Now, put

by = b—b(J(c)) = d(J()*"),

then, we can prove that b is an atomic element.
Assume that
by = by+b;, and b Nb,=0,
then
a(J (b)) = a(J (8))—(a(J(®))(J(c)) = a(J (b)) = a.

a = a(J (b)) = a(J (81))+a(J (B2)-

Since 4 is atomic, either a(J(b,)) or a(J(b,)) is zero. Let us assume that
a(J(b,)) = 0. Then, since

byna=0 and J(b)CJ(b),
we have 5(J(b;)) < c. On the other hand, since
by = by = 5(J(e)7),

we have b(J(b,)) = 0, from which it follows that b, = 0, because b n b, = 0
and 0 <5, = 0.

Finally, since b is atomic, we can prove that a e I by the same method
asin the proof of Lemma 2, if we denote by ], the closed ideals I ( (@ —nby)*)™*.

Therefore,

4. Proof of theorem 3

We need the following lemma.

LEMMA 3. Let E be conditionally complete and I be a closed maximal
ideal. Then, there exists an atomic element a such that I = I (a).
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ProoF. Since I is closed, by Lemma 1, we have I = (I*)*. Since I is
a proper ideal, (I*)* S E, hence it follows that there exists an element ¢ > 0
such that a € I'*. Therefore, I C I(a). The maximality of I implies I = I(a)
and hence a is atomic by Theorem 1.

Now, let us prove our theorem.

1. From Theorem 2 and Lemma 3, it follows that

N I(a)

ac A(E)

is exactly the intersection of all closed maximal ideals. Moreover,

ze () I(a)

acA(E)
is equivalent to that

| njal =0 for every aeA(E).

Therefore, E is atomic if and only if ;e (g, I (2)={0}.
2. If there exists a closed maximal ideal, then A(E) # ¢ by Lemma 3.
If A(E) # ¢, then there exists a maximal ideal by Theorem 2.

5. Proof of theorem 4

We have only to prove that every maximal ideal is closed. Let I be a
maximal ideal. Then, by [3], Proposition 2], I is the kernel of a real-
valued function f(z) on E which satisfies the following conditions:
(i) Floaw+-By) = of @) +Bf(); (i) = = O implies f() = 0; (iii) Izl A [y] = 0
implies f(z)}f(y) = 0. Therefore, f is a positive linear functional on E. By
[Theorem 8, p. 245 and Theorem 10, p. 248 [1]], f is a norm-continuous
linear functional. Now, assume that {x, € I (A € 4)} is an increasing set and
2 = Jaea %2. By the condition (i) in the definition of BK-spaces, we can
select a sequence z; (n=1,2,---) such that = = [J;2, , . Since [ is
norm-continuous, we have

f(z) = lim f(z, ) = 0,

71— 00

which means that I is closed.
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