MINIMAL TERM RANK OF A CLASS OF (0, 1)-MATRICES

ROBERT M. HABER

Let $\mathfrak{A}(R,S)$ be the class of $m \times n$ matrices all of whose entries are either 0 or 1 where every matrix A in the class $\mathfrak{A}(R,S)$ satisfies the conditions that row i of A has r_i ones, i = 1, 2, ..., m; and column j of A has s_j ones, j = 1, 2, ..., n. We let $R = (r_1, ..., r_m), S = (s_1, ..., s_n),$ and assume that $r_1 \geqslant r_2 \geqslant \ldots \geqslant r_m \geqslant 0$; $s_1 \geqslant s_2 \geqslant \ldots \geqslant s_n \geqslant 0$. When this is the case we say the class $\mathfrak{A}(R, S)$ is normalized. We find a formula for the minimal term rank of $\mathfrak{A}(R,S)$ analogous to formulas for maximal term rank, minimal and maximal trace, and minimal column width already developed by Ryser and Fulkerson (1, 3, 4, 5, 6). (For definitions and a more complete bibliography see **(6)**.)

1. A normal form for matrices in the class $\mathfrak{A}(R,S)$

Theorem 1.1 Consider the normalized class $\mathfrak{A}(R, S)$. Then for every e, f satisfying $1 \le e \le m$, $1 \le f \le n$, there exists an A in $\mathfrak{A}(R, S)$ which has one of the following two forms:

(a)
$$\begin{bmatrix} S & S & S & \\ \hline S & O & O & \\ \hline S & O & O & O \end{bmatrix}$$
 (b)
$$\begin{bmatrix} S & S & \\ \hline S & S & \\ \hline O & O & O \end{bmatrix}$$

Here the block

$$\left[\begin{array}{c|c} S & \\ \hline O \end{array}\right]$$

in the upper left-hand corner of (a) is a submatrix of size $e \times f$ and the one block in the upper left-hand corner of (b) is a submatrix of size $e \times f$. Here, as in what follows, S denotes a block of solid ones and O a block of solid zeros. Also any of the blocks in the decomposition may have one or both dimensions zero.

The proof is by induction. For e = f = 1, if $\mathfrak{A}(R, S)$ has an invariant 1, then every A in $\mathfrak{A}(R, S)$ has form (b). (See 2 or 4 or 6.) If there are no invariant ones, then there is a matrix A in $\mathfrak{A}(R,S)$ with a 0 in the 1-1 position and this matrix has form (a) with the S blocks not appearing and the O block in the lower right-hand corner of dimension 0×0 . We assume the theorem true for e, f-1 and prove it for e, f. Interchanging the roles of rows and

Received March 16, 1962.

columns will then imply that the theorem for e-1, f will imply the theorem for e, f and will complete the proof.

We first note that degenerate forms of (b), namely

(b')
$$\left[\begin{array}{c|c} & S & \\ \hline & O \end{array} \right] \text{ and } \left[\begin{array}{c|c} \hline S & \\ \hline & O \end{array} \right],$$

are both of form (a), where in both matrices the block in the upper left-hand corner is a submatrix of size $e \times f$.

Suppose now that for e, f-1 there is a matrix A of form (b) which is not of the degenerate forms (b'). Then

$$A = \left[\begin{array}{c|c} B & S_1 \\ \hline S_2 & S \\ \hline O \end{array} \right],$$

where B is $e \times (f-1)$ and both S_1 and S_2 are blocks of ones with no dimension 0, and A already has the required form (b) for e, f.

We may now assume that there is a matrix A of form (a) for e, f-1 and show that this implies that there is a matrix A of form (a) or (b) for e, f to complete the proof.

The following diagram will prove helpful.

Here the second A in the first row of the decomposition consists of one column and is in the fth column of Z. The bottom row of K is in the eth row of Z.

By induction we may assume the existence of a matrix of form (c) satisfying

$$(1) A = S, B = O.$$

(The A's and B's are not necessarily the same size but the A's are solid ones and the B's solid zeros.)

Of all matrices satisfying (1), let $\mathfrak{A}_1(R, S)$ be the subclass of $\mathfrak{A}(R, S)$ which has the maximum number of zeros in the leading $e \times f$ minor. We shall restrict our attention to $\mathfrak{A}_1(R, S)$.

Suppose that in all matrices of $\mathfrak{A}_1(R, S)$

$$(2) C = O.$$

We assume for the moment that C has at least one row and handle the contrary case subsequently.

Let $A_1 \in \mathfrak{A}_1(R, S)$ and suppose A_1 satisfies

$$D$$
 has 1 in its last row.

(The case in which D has 0 rows would be trivial.) Suppose that all matrices in $\mathfrak{A}_1(R, S)$ which satisfy (3) have

$$(4) E = S.$$

Let $A_2 \in \mathfrak{A}_1(R, S)$, satisfy (3), and satisfy

(5) F has a 0 in its first column, which we may assume to be in the last row of F.

Now suppose in A_2 that there is a 1 in G. We may assume this to be in the first column of G, but then an interchange (see 3) would give a matrix in $\mathfrak{A}_1(R,S)$ with $C \neq O$. Hence A_2 has

$$(6) G = O.$$

Suppose A_2 has a 1 in H. Then there is an interchange which will put a 1 in G and still satisfy all previous conditions, which is a contradiction. Thus A_2 has

$$(7) H = O.$$

We now consider the class $\mathfrak{A}_2(R, S)$ which consists of all matrices in $\mathfrak{A}_1(R, S)$ with conditions (2) to (7) holding. Suppose that in all matrices of $\mathfrak{A}_2(R, S)$

$$(8) J = O.$$

Let A_3 be a matrix in \mathfrak{A}_2 with a 1 in the last column of K. We may assume this 1 to be in the first row of K. Thus we assume that A_3 satisfies

If A_3 has a 0 in L, by interchanges we can get the 0 in the last row, last column of L. (This may put the 0 in the first column of F outside the last row.) Now an interchange gives a matrix in \mathfrak{A}_1 with $C \neq O$. Hence we assume that A_3 has

$$(10) L = S.$$

Let $\mathfrak{A}_3(R, S)$ be the subclass of $\mathfrak{A}_2(R, S)$ satisfying (8), (9), (10). Suppose that all matrices of \mathfrak{A}_3 have

$$(11) M = O.$$

Let A_4 be a matrix in \mathfrak{A}_3 which satisfies

(12) N has a 1 in its last row, which we may assume to be in the first column of N.

Suppose that in A_4 , P has a 0. Then by interchanges we get this 0 into the

last row, last column of P. Then an interchange gives a matrix in \mathfrak{A}_2 with $J \neq O$. Hence

$$(13) P = S.$$

We now have a matrix of form (a) for e, f.

We return now to the case when C has 0 rows. The matrices in the class \mathfrak{A}_1 have the form

$$W = \begin{bmatrix} S & & S & S & & \\ & O & D & E & F & O \\ \hline S & U & Q & T & G & O \\ \hline & R & & H & O \\ \hline & O & O & O & O \end{bmatrix},$$

where the last row of D is in the eth row of W, and D consists of one column, which is in the fth column of W.

We may choose $A_5 \in \mathfrak{A}_1$ such that

$$D$$
 has a 1 in its last row.

Again suppose that all matrices in \mathfrak{A}_1 with (14) holding have

$$(15) E = S.$$

There is a matrix A_6 in \mathfrak{A}_1 with (14) holding and

Interchange if necessary to get rows with all zeros below any other rows in the block made up of G and H. Then we assume A_{5} is such that

(17)
$$H = O$$
, G has a 1 in every row.

Then we must have

$$(18) Q = S,$$

for otherwise an interchange removes a 1 from D to give a matrix satisfying (1) with more 0's in the leading $e \times f$ minor than those in \mathfrak{A}_1 . Also

$$(19) T = S,$$

for otherwise we could remove a 1 from E. Also

$$(20) U = S,$$

for otherwise an interchange would put a 0 in Q. Hence we have found a matrix of form (b) for e, f. Our proof is now complete.

2. A formula for $\tilde{\rho}$

Theorem 2.1. If $\mathfrak{A}(R,S)$ has minimal term rank $\tilde{\rho}$, then there is a matrix

A in $\mathfrak{A}(R, S)$ where the leading e rows and leading f columns of A will exhaust all 1's of A with $e + f = \tilde{\rho}$.

This has been shown in (2).

Let $t_{ef} = ef + (r_{e+1} + r_{e+2} + \ldots + r_m) - (s_1 + \ldots + s_f)$ for $1 \le e \le m$, $1 \le f \le n$. Let A in $\mathfrak{A}(R, S)$ be of the form

(d)
$$A = \begin{bmatrix} W & X \\ Y & Z \end{bmatrix}$$

with W of size $e \times f$. Then t_{ef} is the number of zeros in W plus the number of 1's in Z. (See 4 or 6.)

Let $\psi(e, f) = \min t_{ij}$, where min is over $e \le i \le m$, $f \le j \le n$. Let $\phi(e, f) = \min(t_{ik} + t_{gj} + (e - i)(f - j))$ where min is over

$$1 \leqslant i \leqslant e$$
, $f \leqslant k \leqslant n$, $1 \leqslant j \leqslant f$, $e \leqslant q \leqslant m$.

Let H(e, f) be the maximum number of 0's which any matrix in $\mathfrak{A}(R, S)$ can contain in its leading $e \times f$ minor. Then

Theorem 2.2.
$$H(e,f) = \min[\psi(e,f), \phi(e,f)], 1 \leqslant e \leqslant m, 1 \leqslant f \leqslant n.$$

Clearly $H(e,f) \leq \psi(e,f)$ and $H(e,f) \leq \phi(e,f)$, but the normal form (a) of § 1 gives a matrix with $H(e,f) = \phi(e,f)$ and the normal form (b) gives a matrix with $H(e,f) = \psi(e,f)$.

THEOREM 2.3. $\tilde{\rho} = \min(\min(e+f), m, n)$, where the second min is over those e, f for which $t_{ef} = H(e, f)$.

This is clear, for if A is of the form (d) (with $t_{ef} = H(e, f)$) and W has H(e, f) ones, then Z = O, and the first e rows and f columns of A exhaust all 1's of A. Because of Theorem 2.1, the proof is complete.

We remark that neither $\phi(e, f)$ nor $\psi(e, f)$ is enough by itself to give H(e, f). We also remark that the computations here are not excessive. The t_{ef} are easily computed by a recursion formula (4) and one knows precisely for what e, $\min_i t_{iq} = t_{eq}$.

References

- D. R. Fulkerson and H. J. Ryser, Widths and heights of (0, 1) matrices, Can. J. Math., 13 (1961), 239-255.
- 2. R. M. Haber, Term rank of 0, 1 matrices, Rend. Sem. Mat. Padova, 30 (1960), 24-51.
- 3. H. J. Ryser, Combinational properties of matrices of zeros and ones, Can. J. Math. 9 (1957), 371-377.
- 4. The term rank of a matrix, Can. J. Math. 10 (1958), 57-65.
- 5. Traces of matrices of zeros and ones, Can. J. Math. 12 (1960), 463-476.
- 6. Matrices of zeros and ones, Bull. Amer. Math. Soc. 66 (1960), 442-464.

Case Institute of Technology