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Let 3ï(i?, S) be the class of m X n matrices all of whose entries are either 
0 or 1 where every matrix A in the class %(R, S) satisfies the conditions that 
row i of A has rt ones, i = 1, 2, . . . , m\ and column j of A has sj ones, 
j = 1, 2, . . . , n. We let i£ = (ru . . . , rm), S = (si, . . . , sn), and assume 
that ri > r2 > . . . > rm > 0; si > s2 > . . . > sw > 0. When this is the case we 
say the class %(R} S) is normalized. We find a formula for the minimal term 
rank of %(R, S) analogous to formulas for maximal term rank, minimal and 
maximal trace, and minimal column width already developed by Ryser and 
Fulkerson (1, 3, 4, 5, 6). (For definitions and a more complete bibliography 
see (6).) 

1. A normal form for matrices in the class %(R, S) 

THEOREM 1.1 Consider the normalized class Sl(i^, S). Then for every e,f satis­
fying 1 < e < m, 1 < / < ^ z , there exists an A in 2ï(i^, S) which has one of the 
following two forms: 

s s 
0 0 

s 0 
0 0 0 

Here the block 

[-4Ô-] 
in the upper left-hand corner of (a) is a submatrix of size e X / and the one 
block in the upper left-hand corner of (b) is a submatrix of size e X / . Here, as 
in what follows, S denotes a block of solid ones and 0 a block of solid zeros. Also 
any of the blocks in the decomposition may have one or both dimensions zero. 

The proof is by induction. For e = f = 1, if 21 (R, S) has an invariant 1, 
then every A in tyL(R, S) has form (b). (See 2 or 4 or 6.) If there are no in­
variant ones, then there is a matrix A in §I(i?, S) with a 0 in the 1-1 position 
and this matrix has form (a) with the S blocks not appearing and the 0 block 
in the lower right-hand corner of dimension 0 X 0 . We assume the theorem 
true for e,f — 1 and prove it for e,f. Interchanging the roles of rows and 
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columns will then imply that the theorem for e — 1 , / will imply the theorem 
for e, f and will complete the proof. 

We first note that degenerate forms of (b), namely 

(b') 
O 

and 1 s 
_ 0 1 

are both of form (a), where in both matrices the block in the upper left-hand 
corner is a submatrix of size e X / . 

Suppose now that for e,f — 1 there is a matrix A of form (b) which is not 
of the degenerate forms (b')- Then 

A = 
B Si 

s2 s 
0 J 

where B is e X (f — 1) and both Si and 52 are blocks of ones with no dimension 
0, and A already has the required form (b) for e,f. 

We may now assume that there is a matrix A of form (a) for e,f — 1 and 
show that this implies that there is a matrix A of form (a) or (b) for e,f to 
complete the proof. 

The following diagram will prove helpful. 

(c) Z = 

A A A A 
L 

B 
D E F 

B 
K J B C G 

B 

A 
B 

H B 
P N 

B B B B B 
M 

B B B B B 

Here the second A in the first row of the decomposition consists of one column 
and is in the / th column of Z. The bottom row of K is in the eth row of Z. 

By induction we may assume the existence of a matrix of form (c) satisfying 

(1) 5, B = 0. 

(The .4's and B's are not necessarily the same size but the ^4's are solid ones 
and the B's solid zeros.) 

Of all matrices satisfying (1), let %i(R, S) be the subclass of 21 (i£, S) which 
has the maximum number of zeros in the leading e X / minor. We shall 
restrict our attention to 2ti(i£, S). 

Suppose that in all matrices of %i(R, S) 

(2) C = 0. 

We assume for the moment that Chas at least one row and handle the contrary 
case subsequently. 
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Let Ai G %i(R, S) and suppose Ai satisfies 

(3) D has 1 in its last row. 

(The case in which D has 0 rows would be trivial.) 
Suppose that all matrices in %i{R, S) which satisfy (3) have 

(4) E = S. 

Let A 2 e 8UCR, S), satisfy (3), and satisfy 

(5) F has a 0 in its first column, which we may assume to be in the last 
row of F. 

Now suppose in A 2 that there is a 1 in G. We may assume this to be in the 
first column of G, but then an interchange (see 3) would give a matrix in 
SliCR, S) with C j* 0. Hence A2 has 

(6) G =0. 

Suppose A 2 has a 1 in II. Then there is an interchange which will put a 1 
in G and still satisfy all previous conditions, which is a contradiction. Thus 
A 2 has 
(7) H = 0. 

We now consider the class ^(R, S) which consists of all matrices in Sli(i?, S) 
with conditions (2) to (7) holding. Suppose that in all matrices of SUCK, S) 

(8) J = 0. 

Let A 3 be a matrix in 2Ï2 with a 1 in the last column of K. We may assume 
this 1 to be in the first row of K. Thus we assume that Az satisfies 

(9) K has a 1 in its first row, last column. 

If A% has a 0 in L, by interchanges we can get the 0 in the last row, last 
column of L. (This may put the 0 in the first column of F outside the last 
row.) Now an interchange gives a matrix in 211 with C 9^ 0. Llence we assume 
that Az has 

(10) L = S. 

Let »3CR,S) be the subclass of %2(R, S) satisfying (8), (9), (10). Suppose 
that all matrices of §l3 have 

(11) M = 0. 

Let i 4 be a matrix in 2l3 which satisfies 

(12) N has a 1 in its last row, which we may assume to be in the first column 
oî N. 

Suppose that in A4, P has a 0. Then by interchanges we get this 0 into the 
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last row, last column of P. Then an interchange gives a matrix in 2I2 with 
J 9^ 0. Hence 

(13) P = S. 

We now have a matrix of form (a) for e,f. 
We return now to the case when C has 0 rows. The matrices in the class 2ïi 

have the form 

W = 

where the last row of D is in the eth row of W, and D consists of one column, 
which is in the fth. column of W. 

We may choose A$ G 211 such that 

(14) D has a 1 in its last row. 

Again suppose that all matrices in 311 with (14) holding have 

(15) E = S. 

There is a matrix A$ in 2ïi with (14) holding and 

(16) F has a zero in its first column, last row. 

Interchange if necessary to get rows with all zeros below any other rows 
in the block made up of G and H. Then we assume A 5 is such that 

(17) H = 0, G has a 1 in every row. 

Then we must have 

(18) Q = S, 

for otherwise an interchange removes a 1 from D to give a matrix satisfying 
(1) with more O's in the leading e X / minor than those in SIi. Also 

(19) T = S, 

for otherwise we could remove a 1 from E. Also 

(20) U = S, 

for otherwise an interchange would put a 0 in Q. Hence we have found a 
matrix of form (b) for e,f. Our proof is now complete. 

2. A formula for p 

THEOREM 2.1. If 21 (i?, S) has minimal term rank p, then there is a matrix 

s s S 
0 D E F 0 

s u Q T G 
0 s 

R H 
0 

0 0 0 0 
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A in % (R, S) where the leading e rows and leading f columns of A will exhaust 
all Vs of A with e + / = p. 

This has been shown in (2). 
Let tef = ef + (re+1 + re+2 + . . . + rm) — Oi + . . . + sf) for 1 < e < m, 

1 < / < n. Let A in %(R, S) be of the form 

A - [- I] 
with W of size e X / . Then tef is the number of zeros in W plus the number 
of l's in Z. (See 4 or 6.) 

Let ip(e,f) = min tti, where min is over e < i < m, f < j < n. Let 
<t>(e,f) — vam{tik + tqj + (e — i){f — j)) where min is over 

1 < i < e, f < k < ny 1 < j < / , e < g < m. 

Let H(e,f) be the maximum number of O's which any matrix in 31 (R, S) can 
contain in its leading e X / minor. Then 

THEOREM 2.2. H(eJ) = min[^(e,/), 0(e, /)] , l < e < m , 1 < / < W . 

Clearly H(e,f) < t(e,f) and H(e,f) < <Ke,/), but the normal form (a) 
of § 1 gives a matrix with H(e,f) = <t>(e,f) and the normal form (b) gives 
a matrix with H(e,f) = ^ (e , / ) . 

THEOREM 2.3. p = min (min (e + / ) , m, w), where the second min i^ ^y^r /̂ <95̂  
e,f for which tef = H(e,f). 

This is clear, for if A is of the form (d) (with tef = H(e,f)) and W has 
H(e,f) ones, then Z = 0, and the first e rows and / columns of A exhaust 
all l's of A. Because of Theorem 2.1, the proof is complete. 

We remark that neither 4>(e,f) nor \l/(e,f) is enough by itself to give H(e,f). 
We also remark that the computations here are not excessive. The tef are 
easily computed by a recursion formula (4) and one knows precisely for 
what e, min i tiq = teq. 
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