MINIMAL TERM RANK OF A CLASS OF
(0, 1)-MATRICES

ROBERT M. HABER

Let (R, S) be the class of m X n matrices all of whose entries are either
0 or 1 where every matrix 4 in the class A (R, S) satisfies the conditions that
row 7 of 4 has 7, ones, ¢ =1,2,...,m; and column j of 4 has s; ones,
i=L4L2,...,n We let R=(ry,...,7n), S= (s1,...,5,), and assume
that vy > 72> ... 27, >0; 51> 52> ...> 5, >0. When this is the case we
say the class A (R, S) is normalized. We find a formula for the minimal term
rank of A(R,.S) analogous to formulas for maximal term rank, minimal and
maximal trace, and minimal column width already developed by Ryser and
Fulkerson (1, 3, 4, 5, 6). (For definitions and a more complete bibliography
see (6).)

1. A normal form for matrices in the class A(R, S)

TueoreM 1.1 Consider the normalized class A (R, S). Then for every e, f satis-
fyimgl < e<m,1 < f < n,there exists an A in (R, S) which has one of the
following two forms:

S S

(a) 5 | S| S

ollele

IIere the block

in the upper left-hand corner of (a) 1s a submatrix of size e X f and the one
block in the upper left-hand corner of (b) is a submatrix of size e X f. Here, as
in what follows, S denotes a block of solid ones and O a block of solid zeros. Also
any of the blocks in the decomposition may have one or both dimensions zero.

The proof is by induction. For ¢ = f = 1, if A(R,S) has an invariant 1,
then every 4 in A(R, S) has form (b). (See 2 or 4 or 6.) If there are no in-
variant ones, then there is a matrix 4 in (R, S) with a 0 in the 1-1 position
and this matrix has form (a) with the S blocks not appearing and the O block
in the lower right-hand corner of dimension 0 X 0. We assume the theorem
true for ¢,f — 1 and prove it for e, f. Interchanging the roles of rows and
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columns will then imply that the theorem for e — 1, f will imply the theorem
for e, f and will complete the proof.
We first note that degenerate forms of (b), namely

’ S Ir"_‘*—
(b") ——~°———~O—" and S ,
[~ o
are both of form (a), where in both matrices the block in the upper left-hand
corner is a submatrix of size ¢ X f.

Suppose now that for e, f — 1 there is a matrix 4 of form (b) which is not
of the degenerate forms (b’). Then

BSI]
4 = SzSOJ,

where Bise X (f — 1) and both .Sy and S are blocks of ones with no dimension
0, and 4 already has the required form (b) for e, f.

We may now assume that there is a matrix 4 of form (a) for ¢, f — 1 and
show that this implies that there is a matrix 4 of form (a) or (b) for e, f to
complete the proof.

The following diagram will prove helpful.

4 A 4|4
L D E F|,
(c) Zz=| K| J |B|C G
A H | B
N
v B|B|B|B | B

Here the second 4 in the first row of the decomposition consists of one column
and is in the fth column of Z. The bottom row of K is in the eth row of Z.
By induction we may assume the existence of a matrix of form (c) satisfying

1) A=S B=0.

(The A’s and B’s are not necessarily the same size but the 4’s are solid ones
and the B’s solid zeros.)

Of all matrices satisfying (1), let %, (R, S) be the subclass of (R, .S) which
has the maximum number of zeros in the leading e¢ X f minor. We shall
restrict our attention to A;(R,.S).

Suppose that in all matrices of (R, S)

2) C = 0.

We assume for the moment that Chas at least one row and handle the contrary
case subsequently.
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Let 4; € A1 (R, .S) and suppose 4, satisfies
3) D has 1 in its last row.
(The case in which D has 0 rows would be trivial.)

Suppose that all matrices in %;(R,S) which satisfy (3) have
(4) E=S.

Let 4, € A (R, S), satisfy (3), and satisfy

(5) F has a 0 in its first column, which we may assume to be in the last
row of F.

Now suppose in 4, that there is a 1 in G. We may assume this to be in the
first column of G, but then an interchange (see 3) would give a matrix in
A (R, S) with C % 0. Hence A4, has

(6) G =0.
Suppose A5 has a 1 in H. Then there is an interchange which will put a 1
in G and still satisfy all previous conditions, which is a contradiction. Thus

4, has
(7) H = 0.

We now consider the class (R, .S) which consists of all matrices in A; (R, S)
with conditions (2) to (7) holding. Suppose that in all matrices of A2(R,.S)
(®) J=0.

Let 43 be a matrix in A, with a 1 in the last column of K. We may assume
this 1 to be in the first row of K. Thus we assume that 4, satisfies

9) K has a 1 in its first row, last column.

If A3 has a 0 in L, by interchanges we can get the 0 in the last row, last
column of L. (This may put the O in the first column of F outside the last
row.) Now an interchange gives a matrix in 9; with C # O. Hence we assume
that 43 has

(10) L=3S

Let %A;(R, S) be the subclass of A2(R, S) satisfying (8), (9), (10). Suppose
that all matrices of A; have

(11) M = 0.
Let A4 be a matrix in 2; which satisfies

(12) N hasa1linits last row, which we may assume to be in the first column
of N.

Suppose that in 44, P has a 0. Then by interchanges we get this 0 into the
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last row, last column of P. Then an interchange gives a matrix in 9, with
J # 0. Hence

(13) P=3S.
We now have a matrix of form (a) for e, f.

We return now to the case when C has 0 rows. The matrices in the class A;
have the form

S S S
O|D|E|F|O
W = vujio| TG
S R H o1
o1l 0 0 0

where the last row of D is in the eth row of W, and D consists of one column,
which is in the fth column of W.
We may choose A5 € Ay such that

(14) D has a 1 in its last row.

Again suppose that all matrices in ; with (14) holding have
(15) E=S.

There is a matrix A¢ in U; with (14) holding and
(16) F has a zero in its first column, last row.

Interchange if necessary to get rows with all zeros below any other rows
in the block made up of G and H. Then we assume A5 is such that

a7 H =0, G has a 1 in every row.
Then we must have

for otherwise an interchange removes a 1 from D to give a matrix satisfying
(1) with more 0’s in the leading e X f minor than those in A;. Also

(19) T =S,
for otherwise we could remove a 1 from E. Also
(20) U =23,
for otherwise an interchange would put a 0 in Q. Hence we have found a
matrix of form (b) for e, f. Our proof is now complete.
2. A formula for ;5

TaeorEM 2.1. If A(R, S) has minimal term rank 5, then there is a matrix
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A in A(R, S) where the leading e rows and leading [ columns of A will exhaust
all U's of A with e + f = 5.

This has been shown in (2).
Let to, =€ + (rex1 + 712+ ...+ 7rm) — (51 + ...+ s, for 1 <e < m,
1 <f<n Let 4in A(R, S) be of the form

7 7]

with W of size e X f. Then ¢,, is the number of zeros in W plus the number
of 1'sin Z. (See 4 or 6.)

Let ¢(e, f) = min ¢;;, where min is over e<i<m, f<j<n Let
ole, f) = min(ty + t,; + (e — 2)(f — 7)) where min is over

1<i<e [f<k<mn 1 <</, e< g < m

Let H (e, f) be the maximum number of 0’s which any matrix in A(R, S) can
contain in its leading e X f minor. Then

TaeoreMm 2.2. H(e,f) = min[¢(e, f), ¢(e, )], 1 <e<m, 1 < f<n

Clearly H(e, f) < ¢(e, f) and Hle, f) < ¢(e, f), but the normal form (a)
of § 1 gives a matrix with H(e, f) = ¢(e,f) and the normal form (b) gives
a matrix with H(e, f) = ¢ (e, f).

TuEOREM 2.3. 5 = min(min(e + f), m, n), where the second min is over those
e, [ for which t,, = H(e, f).

This is clear, for if 4 is of the form (d) (with ¢,, = H(e, f)) and W has
H(e, f) ones, then Z = O, and the first e¢ rows and f columns of 4 exhaust
all 1's of A. Because of Theorem 2.1, the proof is complete.

We remark that neither ¢ (e, f) nor ¢ (e, f) is enough by itself to give H (e, f).
We also remark that the computations here are not excessive. The ¢,, are
easily computed by a recursion formula (4) and one knows precisely for
what e, min; t;, = t,,.
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