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Abstract
This paper proposes a new type of hybrid manipulator that can be of extensive use in industries where translational
motion is required while maintaining an arbitrary end-effector orientation. It consists of two serially connected
parallel mechanisms, each having three degrees of freedom, of which the upper platform performs a pure transla-
tional motion with respect to the mid-platform. Closed-form forward and inverse kinematic analysis of the proposed
manipulator has been carried out. It is followed by the determination of all of its singular configurations. The the-
oretical results have been verified numerically, and the 3D modeling and simulation of the manipulator have also
been performed. A simple optimal design is presented based on optimizing the kinematic manipulability, which
further demonstrates the potential of the proposed hybrid manipulator.

1. Introduction
Serial and parallel robot manipulators have had significant attention from academia. Serial manipulators
are based on open kinematic chains, with the links being connected serially via different types of joints.
They have been used in various industrial applications and elsewhere where there is a demand for large
workspaces. On the other hand, parallel manipulators are based on closed-loop kinematic chains with
a standard topological structure of two platforms (fixed base and moving) connected via multiple legs,
where each leg is yet another serial chain. Owing to their parallel structure, they offer the advantages of
higher stiffness, better operating speeds, and higher payload. However, they suffer from reduced as well
as more complex overall workspace. A significant amount of research has been done on the design and
kinematic analysis [1–5], as well as on the determination of workspace and singularities [1, 3, 5–13] of
parallel manipulators. Based on different applications, numerous lower mobility parallel manipulators
have been designed [1–5, 12, 13], in which the moving platform either purely translates [1–3, 12], or
purely rotates [4, 5, 13], or else performs a combined translational and rotational motion [14]. A purely
translational 3-DOF parallel manipulator named 3-UPU was first proposed by Tsai [2]. Di Gregorio
et al. [1] further studied the geometric and assembly conditions necessary for the translational nature
of a more general 3-RRPRR parallel manipulator in detail, with the 3-UPU being a special case of 3-
RRPRR. The 3-UPU manipulator has three identical legs, each with two universal joints and a prismatic
pair in U-P-U order. The 3-UPU wrist, having a pure spherical rotation of the platform with respect to
the base, was proposed by Karouia et al. [4], which was further analyzed by Di Gregorio [5, 13].

A hybrid manipulator combines the advantages of serial and parallel manipulators in terms of hav-
ing higher rigidity and a significantly larger workspace than a parallel manipulator, thereby offering a
way to perform complex tasks. Due to this, there has been a growing interest in hybrid manipulators
over the past few decades, even though the available literature is currently limited compared to serial
and parallel manipulators. A hybrid manipulator is generally formed by combining serial and parallel
structures. Quite a few serial–parallel-type hybrid manipulators have been proposed in the literature,
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which are made up of parallel mechanisms connected in series. However, there are other type of hybrid
manipulators as well consisting of multiple serial chains linked to a single parallel “base” (commonly
seen in robotics). Shahinpoor [15] presented the kinematic analysis of a novel hybrid manipulator made
by serially connecting two parallel manipulators. The inverse kinematics was completed by obtaining
a set of nonlinear equations that must be solved numerically. Singh et al. [16] developed the complete
kinematic model and determined the jacobian matrix of a 7-DOF spatial hybrid robotic arm for use in
assisting a surgeon during medical surgery. Verification of the model was performed via a physical pro-
totype. Maier and Woernle [17] presented a generalized inverse kinematic analysis of a cable-suspension
hybrid manipulator comprising a 3-DOF cable-driven parallel mechanism and a 3-DOF serial mecha-
nism. However, these hybrid manipulators require numerical solutions. A 6-DOF spatial manipulator
with a novel architecture, designated as H6A (i.e., Hybrid 6-Axis), is discussed in ref. [18]. The manip-
ulator consists of two arm-like branches attached to a rigid waist at one end and coupled through a wrist
at the other end.

Romdhane [19] presented the kinematic analysis of a hybrid manipulator, again made up of two
serially connected 3-DOF parallel mechanisms. The three successive prismatic joints in the lower
mechanism restricted the motion of the mid-platform only to three translations. At the same time, the
top platform performed spherical rotation about the mid-platform due to the existence of a spherical
joint between the two platforms. Eight inverse kinematic solutions in closed form were obtained for
the upper platform. Tanio Tanev [20] proposed a novel 6-DOF hybrid manipulator made up of two
novel tripod mechanisms involving prismatic, revolute, and spherical joints. Closed-form forward and
inverse kinematics were presented. Tanev obtained four forward kinematic solutions each for both the
tripod mechanisms. Zheng et al. [21] utilized the two special 3-UPU mechanisms, which are the pure
translational 3-UPU [2] and the pure rotational 3-UPU [4], and combined them serially such that the
translational 3-UPU becomes the lower mechanism and the rotational 3-UPU becomes the upper mech-
anism. The forward position analysis of this new hybrid manipulator was carried out using quaternions,
and two and eight solutions for the lower and upper mechanisms were obtained, respectively.

Gallardo-Alvarado et al. [22, 23] presented a novel topology for the 2(3-RPS) hybrid manipulator and
approached its kinematic and dynamic analysis using screw theory. The simplicity and compactness of
the expressions derived in the study were noted. Hu [24] presented a general approach to derive the
unified forward and inverse Jacobian matrices for hybrid manipulators composed of lower mobility par-
allel manipulators connected serially. Huang et al. [25] proposed using a 3-DOF parallel mechanism as
the main body of the 5-DOF “TriVariant” hybrid robot and discussed its design and synthesis. Its kine-
matic analysis was done, and observations about its performance were made. Lu et al. [26] proposed
a novel hybrid manipulator composed of a 5-DOF parallel mechanism with two composite equivalent
universal joints and three 1-DOF finger mechanisms. Its kinematics and dynamics are derived, and a 3D
prototype of the proposed hybrid manipulator is also constructed and analyzed. Sangveraphunsiri and
Chooprasird [27] proposed a 5-DOF hybrid manipulator having three translational and one rotational
movement, with a single-axis rotating table. Its kinematics and dynamics are derived, where the latter
is derived using the Lagrange formulation. Lingmin Xu et al. [28] presented a one-of-its-kind 3T1R
2-(PRR)-2-RH hybrid manipulator that uses two helical joints, having an equal but opposite pitch, con-
nected to the moving platform, which imparts it full rotational capability. Peng Xu et al. [29] presented
the kinematic analysis of a novel hybrid manipulator composed of mainly three parts: a 3-DOF trans-
lational parallel mechanism, a 2-DOF serial mechanism, and a turntable providing a redundant DOF.
They noted its essential application in computer-controlled ultra-precision freeform polishing. A novel
5-DOF hybrid manipulator was proposed by Guo et al. [30], and its closed-form kinematic solutions
were presented. More recently, He et al. [31] proposed a foldable 7-DOF hybrid manipulator to capture
a noncooperative target in space. It has two parts, the upper part being a 4R serial mechanism and the
lower part being a three-legged parallel manipulator with one UP leg and 2 UPS legs. In another work
[32], a hybrid parallel–serial manipulator named CaHyMan (Cassino Hybrid Manipulator) is analyzed
in terms of stiffness characteristics. From all these hybrid manipulators, it is clear that some hybrid

https://doi.org/10.1017/S0263574723001662 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001662


Robotica 581

Figure 1. Conceptual representation of the motivation for the proposed hybrid manipulator. (a) 3-DOF
pure translational capability of the upper platform H (it is a representative (i.e., conceptual) image since
the platforms are, in reality, triangular and not rectangular). (b) Desired translational motion parallel
to the oblique plane.

manipulators [19, 21] make it possible for the upper platform to have a pure 3-DOF rotational motion
while maintaining some desired translation with respect to the base (due to the lower parallel mechanism
being of pure translatory nature), but not the other way round.

However, in industries and manufacturing facilities, there is a frequent requirement of having a pure
translational motion of the top platform with respect to an oblique plane at some arbitrary desired
orientation with respect to the fixed base, such as in polishing, finishing, painting, or cleaning oper-
ations, especially where large structures are involved. One specific case could be of polyhedral domes
or surfaces such as the geodesic dome or even the polyhedral structures used in deep space technology,
including telescopes and satellites. Based on this motivation, this paper proposes a novel 6-DOF hybrid
manipulator in which the top platform can perform 3-DOF pure translational motion with respect to
any desired oblique plane (i.e., the mid-platform). This hybrid manipulator utilizes two 3-DOF parallel
mechanisms: the lower one being the 1-RRR 2-SPS mechanism that resembles the tripod mechanism
proposed by Tanev [20], and the upper one being the 3-UPU translational parallel manipulator (TPM)
[2]. Although, the upper platform H of the proposed hybrid manipulator can perform a general 3-DOF
pure translational motion with respect to the mid-platform while maintaining a constant orientation
with respect to the fixed base as shown in Fig. 1(a), however, of particular interest and usefulness could
be the special case of planar translation along a specified direction in a plane parallel to the desired
oblique plane (i.e., mid-platform M) which is at some specified offset and orientation with respect to the
fixed base. The schematic of this case is shown in Fig. 1(b). This desired motion can be decoupled and
expressed in four parameters: the desired orientation + offset of the mid-platform with respect to the
base, the perpendicular distance between the middle and the upper platform, and the desired translation
direction. So, first, the lower parallel mechanism orients and translates simultaneously to achieve the
desired pose (orientation and offset). After that, the upper parallel mechanism first attains the required
perpendicular distance and then performs the desired translational motion in the specified direction in a
plane parallel to the desired oblique plane. Note that the maximum possible offset value is constrained
by the value of the revolute limb length of the lower parallel mechanism. The structure and configuration
of the proposed hybrid manipulator allow for a convenient decoupling in its inverse kinematic analysis,
which facilitates the attainment of closed-form solutions that, in turn, would make the control of this
manipulator computationally efficient.

https://doi.org/10.1017/S0263574723001662 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001662


582 Sadanand Modak and Rama Krishna K

The remainder of this paper is organized as follows. The geometry and structure of the hybrid manipu-
lator are described in Section 2. It is followed by its forward and inverse kinematic analysis in Sections 3
and 4, respectively. The 3D modeling, simulation, and numerical verification are presented in Section 5.
Section 6 presents the singularities, while Section 7 lays the ground for more rigorous studies to get
better optimal designs for the proposed hybrid manipulator.

2. Description of novel 6-DOF hybrid manipulator
2.1. Geometry and structure
The proposed hybrid manipulator, as shown in Fig. 2(a), consists of two 3-DOF parallel mecha-
nisms connected serially, making it an overall 6-DOF hybrid manipulator. All the prismatic pairs
(P2, P3, P4, P5, P6) and the R2 revolute joint are actuated (active). The two platforms, M and H, are taken to
be equilateral, with circumradii of h1 and h2 ( �= h1)1, respectively. The lower parallel mechanism resem-
bles the upper parallel mechanism used by Tanev [20] in his hybrid manipulator. The lower parallel
mechanism connects the base to the mid-platform M and comprises one RRR and two SPS legs. Here,
axis(R1)2 ⊥ axis(R2) ⊥ axis(R3) and also axis(R1) ⊥ B1B2 edge of the lower triangular base. Further,
axis(R3) ‖ M1M2 edge of the mid-platform. The upper parallel mechanism between the mid-platform
M and the upper platform H (end-effector) is the standard 3-UPU TPM (also called the Tsai [2] manip-
ulator) having three identical UPU legs. Tsai [2] first proposed the conditions required for the 3-UPU
manipulator to perform pure translation, and later Gregorio et al. [1] derived the general TPM condi-
tions using the proximal (modified) D-H convention [33], starting from the generic RRPRR3 leg. This
paper uses the distal (classical) D-H convention [34]. The distal form of the TPM conditions [1, 2] are
imposed on the upper parallel mechanism in the following manner:

• U1,1 ‖ U4,1, U1,2 ‖ U4,2, U2,1 ‖ U5,1, U2,2 ‖ U5,2, and U3,1 ‖ U6,1, U3,2 ‖ U6,2, where Ui,j denotes the
jth revolute joint axis (while traversing a limb upward, i.e., from bottom to the top) of the ith
universal joint

• For each of the three UPU legs, θ3 = −θ2 and θ4 = −θ1, where θi is the rotation about the ith
revolute joint of that particular limb while traversing upward

• U1,2, U2,2, and U3,2 point toward the circumcenter of platform M
• U4,1, U5,1, and U6,1 point toward the circumcenter of platform H
• U1,2 and U4,1 are ⊥ axis(P4), U2,2 and U5,1 are ⊥ axis(P5) leg, and U3,2 and U6,1 are ⊥ axis(P6) leg

The TPM conditions ensure that platform H does pure translation with respect to platform M.
Thus, this structure of the hybrid manipulator allows the upper mechanism to perform pure transla-
tion motion while being in any desired orientation defined by the mid-platform M, with respect to the
base. Furthermore, since the lower parallel mechanism can also translate, platform H can perform pure
translation motion even in an oblique plane having some offset with respect to the base.

It is important to note that the choice of the lower mechanism as a 1-RRR 2-SPS mechanism provides
the benefit of a straightforward and convenient interpretation for the Euler angles of the mid-platform M
in terms of R1, R2, and R3 revolute joint angles. From the point of view of controlling the manipulator,
this can be pretty useful as encoder feedback from the three revolute joints would directly give the
orientation. Furthermore, choosing the upper mechanism as a translational 3-UPU mechanism decouples
the orientation and translation of the top platform H, as now the orientation part is entirely governed by
the lower mechanism actuators. This helps it achieve a fully closed-form solution structure. In addition to
the various applications mentioned in Section 1, this proposed hybrid manipulator offers much flexibility

1Since h1 = h2 gives a design singularity, as will be shown in Section 6.1.
2Where axis(Ri) is read as the axis of the joint Ri.
3Since a universal joint is equivalent to two perpendicular and intersecting revolute joints, UPU becomes a special case of

RRPRR.

https://doi.org/10.1017/S0263574723001662 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001662


Robotica 583

Figure 2. Proposed hybrid manipulator: (a) schematic (the centers of upper joints of the lower mech-
anism (i.e., R3, S4, and S3) coincide, respectively, with the centers of the lower joints of the upper
mechanism (i.e., U1, U2, and U3). However, they have been depicted as separate for clarity), and (b)
B1M1H1 limb with D-H frames.

as it can be converted to a standard 3-UPU manipulator just by fixing the lower mechanism, further
diversifying its use cases. Finally, as seen in Section 7, even a basic optimization leads to a pretty good
design obtaining relatively high manipulability for large parts of the motion range.

2.2. D-H analysis
The B1M1H1 limb of the hybrid manipulator with all the attached D-H coordinate frames is shown in
Fig. 2(b). The frame 1 (X1Y1Z1) is attached to the fixed base (link #0), while the frame 8 is attached to
the top moving platform H (link #7). Two separate frames 4l and 4u fixed to the middle platform M (link
#3) are used for convenience in the analysis, which will be discussed in subsequent sections. Since the
axes of the two revolute joints in a universal joint intersect, the lengths of links #4 and #6 are taken to be
zero as they are the imaginary links connecting the two intersecting revolute joints of a universal joint.
Let L1 = B1M1, L2 = B2M2, L3 = B3M3, L4 = M1H1, L5 = M2H2, and L6 = M3H3.4

Now, Table I represents the D-H table for the B1M1 leg of the lower mechanism, and it transforms
frame 4l to frame 1. Table II represents the D-H table for the M1H1 leg of the upper mechanism after
imposing the TPM conditions as listed in Section 2.1, and it transforms frame 8 to frame 4u. The
intermediate (constant) rigid transformation matrix, which transforms frame 4u to 4l is

4Since L1 is a fixed limb length, it has to be positive always, but the prismatic limb lengths L2, L3, L4, L5, and L6 are signed
variables and can take both positive and negative values, in theory. However, once the mechanism is assembled in a configuration
with the prismatic limb lengths being positive, the negative limb lengths cannot be obtained physically without reassembling the
manipulator. Henceforth, only the positive limb lengths have been considered in this paper.
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Table I. D-H table for lower mechanism (along B1M1 limb)
of the proposed hybrid manipulator.

Link #i bi(cm) θi(rad) ai(cm) αi(rad)
1 0 θ1 0 −π/2
2 L1 θ2 0 −π/2
3 0 θ3 0 0

Table II. D-H table for upper mechanism (along M1H1 limb)
of the proposed hybrid manipulator.

Link #i bi(cm) θi(rad) ai(cm) αi(rad)
4 0 θ4 0 π/2
5 0 θ5 L4 0
6 0 −θ5 0 −π/2
7 0 −θ4 0 0

Cl
u =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2
0 −

√
3

2
0

0 1 0 0
√

3

2
0

1

2
0

0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Now, T1 = f (θ1, θ2, θ3) corresponds to the D-H Table I, while T2 = f (θ4, θ5, L4) corresponds to the D-H
Table II. Therefore, the overall transformation matrix is written using the D-H Tables I and II as (details
in Section A.1):

T = T1Cl
uT2 =

⎡
⎢⎢⎢⎢⎣

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (2)

Now, any position vector of a point expressed5 in frame 8 can be transformed to the base frame using T
from Eq. (2) as:

1p = T 8p = T1Cl
uT2

8p (3)

It is to be noticed that the orientation part6 of T depends only on θ1, θ2, and θ3, owing to the pure
translational nature of the upper mechanism, which in turn facilitates the decoupling as shown later in
Section 4.

3. Closed-form forward position analysis
In the direct kinematics problem, the values of all the active joints (here θ2, L2, L3, L4, L5, L6) are speci-
fied, and the pose (position + orientation) of the end-effector (upper platform H) needs to be determined.
The pose of the end-effector can be entirely described by the overall transformation matrix T because

5In this paper, the left superscript denotes the frame of reference.
6The “orientation part” refers to the matrix made up of the three mutually orthogonal vectors that together determine the rota-

tion/orientation of the moving frame with respect to the fixed frame, and it constitutes the 3 × 3 (top-left) submatrix of the 4 × 4
homogeneous transformation matrix.
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once T is determined, the position vector7 of the vertex H1 ≡ O8 as well as the orientation of the upper
platform can be extracted from it. Using these two quantities, the position vector of the center of the upper
platform can then easily be calculated, which effectively completes the description of the end-effector
pose. Now, it is known from Section 2.2 that T contains both active (known) and passive (unknown) joint
variables. The passive joint variables can be determined using the leg constraints for the other two limbs,
that is, B2M2H2 and B3M3H3. A two-stage procedure is adopted as discussed below – first determining
the passive joint variables θ1 and θ3 of the lower mechanism in terms of the active joint variables (the
values of which are given) and then using the determined values along with the active joint variables to
solve for the passive joint variables θ4 and θ5 of the upper mechanism. The overall transformation matrix
T can now be fully determined using these values.

3.1. Lower parallel (1-RRR 2-SPS) mechanism
The values of θ2, L2, L3 are given, and the values of the passive joint variables θ1 and θ3 are required.
Now, from the geometry of the manipulator, the following vectors8 can be written:

1O1B2 = [b2, 0, 0, 1]T (4)
1O1B3 = [

b3x , 0, b3z , 1
]T (5)

4lO4M2 =
[
0, 0,

√
3h1, 1

]T
(6)

4lO4M3 =
[√

3h1 sin
π

3
, 0,

√
3h1 cos

π

3
, 1

]T

=
[

3h1

2
, 0,

√
3h1

2
, 1

]T

(7)

Now the vectors in Eqs. (6) and (7) are transformed to frame 1 as:
1O1M2 = T1

4lO4M2 (8)
1O1M3 = T1

4lO4M3 (9)

The leg vectors 1L2 and 1L3 are written as:
1L2 = 1O1M2 − 1O1B2 (10)
1L3 = 1O1M3 − 1O1B3 (11)

Using the given leg lengths:
1L2 · 1L2 − L2

2 = 0 (12)
1L3 · 1L3 − L2

3 = 0 (13)

Using Eqs. (4)–(11), the above two equations are written in the following form:

p1c1 + p2s1 + p3 = 0 (14)
q1c1 + q2s1 + q3c3 + q4s3 + q5c1c3 + q6s1s3 + q7 = 0 (15)

where,

p1 = 2
√

3b2h1s2; p2 = 2L1b2; p3 = L2
1 − L2

2 + b2
2 + 3h2

1

q1 = √
3h1b3x s2; q2 = 2L1b3x ; q3 = 3h1b3z ; q4 = −3h1L1; q5 = −3h1b3x c2

q6 = −3h1b3x ; q7 = √
3h1b3z c2 + L2

1 − L2
3 + b2

3x
+ b2

3z
+ 3h2

1

(16)

7By definition of the homogeneous transformation matrix, this is the 3 × 1 vector formed using the components in the first three
rows of the fourth column of T.

8Where the fourth coordinate represents the homogeneous coordinate.
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Since Eq. (14) is only a function of θ1, it can be solved by using half-angle substitution to get two
solutions (corresponding to ±) for θ1 as:

θ11,2 = 2 tan−1

(
p2 ±√

p2
1 + p2

2 − p2
3

p1 − p3

)
(17)

Here, tan−1 gives a solution in the range
(
−π

2
,
π

2

)
. Substituting the obtained value of θ1 in Eq. (15)

gives the following equation:

k1c3 + k2s3 + k3 = 0 (18)

where,

k1 = q5c1 + q3; k2 = q6s1 + q4; k3 = q1c1 + q2s1 + q7 (19)

The solution for θ3 using Eq. (18) is given as:

θ31,2 = 2 tan−1

(
k2 ±√

k2
1 + k2

2 − k2
3

k1 − k3

)
(20)

In total, 2 × 2 = 4 solution sets of θ1 and θ3 are obtained. For each solution set, the transformation matrix
T1 can be fully determined, which completes the forward kinematics of the lower parallel mechanism.

3.2. Upper parallel 3-UPU TPM mechanism
For analyzing the 3-UPU mechanism, a similar procedure is adopted as done for the lower parallel
mechanism. Here, the values of L4, L5, L6 are given, and the values of the passive joint variables θ4 and θ5

are determined. The components of the relevant vectors obtained from the geometry of the manipulator
are given below:

4uO4M2 =
[√

3h1 cos
π

6
, 0,

√
3h1 sin

π

6
, 1

]T

=
[

3h1

2
, 0,

√
3h1

2
, 1

]T

(21)

4uO4M3 =
[√

3h1 cos
π

6
, 0, −√

3h1 sin
π

6
, 1

]T

=
[

3h1

2
, 0, −

√
3h1

2
, 1

]T

(22)

8O8H2 =
[√

3h2 cos
π

6
, 0,

√
3h2 sin

π

6
, 1

]T

=
[

3h2

2
, 0,

√
3h2

2
, 1

]T

(23)

8O8H3 =
[√

3h2 cos
π

6
, 0, −√

3h2 sin
π

6
, 1

]T

=
[

3h2

2
, 0, −

√
3h2

2
, 1

]T

(24)

Now, the vectors in Eqs. (23) and (24) can be transformed to frame 4u as:

4uO4H2 = T2
8O8H2 (25)

4uO4H3 = T2
8O8H3 (26)

The leg vectors 4uL5 and 4uL6 can be written as:

4uL5 = 4uO4H2 − 4uO4M2 (27)
4uL6 = 4uO4H3 − 4uO4M3 (28)
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The leg length constraint equations are:
4uL5 · 4uL5 − L2

5 = 0 (29)
4uL6 · 4uL6 − L2

6 = 0 (30)

Using Eqs. (21)–(28) in Eqs. (29) and (30), then adding Eqs. (29) and (30), and subtracting Eqs. (30)
from (29), yields the following two equations:

f1s5 + f2 = 0 (31)
g1c4c5 + g2 = 0 (32)

where
f1 = −2

√
3L4(h1 − h2); f2 = L2

6 − L2
5

g1 = −6L4(h1 − h2); g2 = 2L2
4 − L2

5 − L2
6 + 6(h1 − h2)2

(33)

Since Eq. (31) is only a function of θ5, the two solutions are written as:

θ51,2 = sin−1

(
− f2

f1

)
(34)

Now substituting the value of θ5 obtained in Eq. (32), the following equation is obtained:

w1c4 + w2 = 0 (35)

where,

w1 = g1c5; w2 = g2 (36)

The two solutions for θ4 from the above equation are written as:

θ41,2 = cos−1

(
−w2

w1

)
(37)

In total, 2 × 2 = 4 solution sets of θ4 and θ5 are obtained. For each solution set, the transformation
matrix T2 can be fully determined, which completes the forward kinematics of the upper parallel mech-
anism. However, these four distinct joint space solution sets for the upper parallel mechanism result in
only two distinct poses, that is, only two distinct task space configurations. The reason for this lies in the
interdependence of the four joint space solution sets, that is, say the first solution set is {θ4 = β4, θ5 = β5},
then the other three solution sets are given as {(β4 − π ), (π − β5)}, {−β4, β5}, {(π − β4), (π − β5)}. So
rotating about the two revolute axes of the universal joint U1 following the first solution set values for
θ4 and θ5, and then again following the second solution set values leads to the same final configuration.

Similarly, the third and the fourth solution sets lead to the same final configuration, but it is different
from the one attained by the first two solution sets. Therefore, only two distinct task space configurations
are obtained, as would be numerically illustrated later in Section 5.2.1 as well. This fact can also be
directly deduced easily by substituting the solution sets into the symbolic form of T2 and observing
that there are indeed only two distinct T2 matrices, and hence only two distinct poses. Moreover, the
two obtained task space configurations are related to each other – if the upper mechanism of one of the
configurations is reflected in the mid-plane, the other configuration is obtained. In other words, both
task space configurations are just the reflection of the upper mechanism in the mid-plane, with the lower
mechanism configuration being the same.

3.3. Determining the overall transformation matrix
Overall, 4 × 4 = 16 distinct solution sets of (θ1, θ3, θ4, θ5) quadruplet of passive variables are obtained
that correspond to a total of 16 possible direct kinematic solutions in joint space for the complete hybrid
manipulator. However, for the above-mentioned reason in Section 3.2, there are only 4 × 2 = 8 direct
kinematic solutions in task space.
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Having determined all the passive variables and consequently evaluating the matrices T1 and T2, the
overall transformation matrix T2 can be determined using Eq. (2). Further, the position vector of vertex
H1, as well as the orientation of the upper platform, can be extracted from it, which can be used to get the
position vector of any other point (including the center) of the upper platform. Therefore, this completes
the forward kinematic analysis of the proposed hybrid manipulator.

4. Closed-form inverse position analysis
The most crucial part in the control of any manipulator is the efficient and accurate calculation of the
inverse kinematics of the manipulator, in which the required joint motions are to be found from the
given pose of the end-effector. In the context of the present hybrid manipulator, given the pose of the
upper platform H [i.e., given the overall transformation matrix T of Eq. (2)], the active joint variables
θ2, L2, L3, L4, L5, L6 need to be determined. Owing to the particular structure of the hybrid manipulator,
the orientation part of T contains the active and the passive variables of only the lower parallel mech-
anism; this facilitates the decoupling of the inverse kinematic analysis into two separate parts: one for
the lower mechanism and the other for the upper mechanism, as discussed below. Now, let the given
numerical overall transformation matrix be Tnum.

4.1. Lower parallel (1-RRR 2-SPS) mechanism
Let the orientation part of Tnum be:

Qnum =
⎡
⎢⎣

q11 q12 q13

q21 q22 q23

q31 q32 q33

⎤
⎥⎦ (38)

From the components of T described in symbolic form in Section 2.2, the components of the orientation
part are extracted to get the orientation matrix Q in symbolic form, which can then be compared with
the given numerical orientation matrix Qnum to solve for the active and the passive variables of the lower
mechanism. So using the fact that Q ≡ Qnum, and comparing their (3,1), (3,2), and (3,3) elements, the
following three equations are obtained:

q31 = − s2c3

2
−

√
3 c2

2
(39)

q32 = s2s3 (40)

q33 =
√

3 s2c3

2
− c2

2
(41)

where the RHS9 is known, while the LHS is unknown. Multiplying Eq. (39) by
√

3 and adding it to Eq.
(41), followed by suitable manipulation gives

c2 = −1

2

(√
3 q31 + q33

)
(42)

s2c3 = −1

2

(
q31 − √

3 q33

)
(43)

Now, dividing the RHS of Eq. (40) by LHS of Eq. (43) (provided s2 �= 0) gives

θ31,2 = arctan

⎛
⎝− 2 q32(

q31 − √
3 q33

)
⎞
⎠ (44)

9RHS and LHS refer to the right-hand side and the left-hand side of the equation under consideration, respectively.
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Therefore, two solutions10 (having a difference of π ) are obtained for θ3. In order to get θ2, the obtained
θ3 value is substituted in Eq. (40) to get:

s2 = q32

s3

(45)

From Eqs. (42) and (45), the value of θ2 can be obtained:

θ2 = Atan2(s2, c2) (46)

Now, in order to get θ1, the (1,2) and (2,2) elements of Q and Qnum are compared and the calculated
values of θ2 and θ3 are substituted to get the following two equations in s1 and c1:

q12 = s1c3 − c1c2s3 (47)
q22 = −c1c3 − s1c2s3 (48)

Eliminating c1 using Eqs. (47) and (48), an equation in s1 of the following form is obtained:

a1s1 + a2 = 0 =⇒ s1 = −a2

a1

(49)

where the coefficients are in terms of the known quantities,

a1 = c2
3 + c2

2s2
3; a2 = −c3q12 + c2s3q22 (50)

Substituting back s1 in Eq. (47), an equation in c1 is obtained:

b1c1 + b2 = 0 =⇒ c1 = −b2

b1

(51)

where the coefficients are in terms of the known quantities,

b1 = c2
3 + c2

2s2
3; b2 = c2s3q12 + c3q22 (52)

From Eqs. (49) and (51), the value of θ1 can be obtained:

θ1 = Atan2(s1, c1) (53)

Finally, overall, two solutions are obtained, since for each of the two possible θ3 values, unique solu-
tions for θ1 and θ2 exist. Also, now the values of θ1, θ2, and θ3 can be substituted into Eqs. (10) and
(11) to obtain the leg length vectors, and then L2 and L3 can be calculated using Eqs. (12) and (13),
respectively, as:

L2 =√
1L2 · 1L2 (54)

L3 =√
1L3 · 1L3 (55)

It is to be noted that, for the reasons stated earlier6 on Page 6, the limb lengths L2 and L3 are only taken
to be positive.11

This completes the inverse kinematics for the lower parallel mechanism since there are now the values
for θ1, θ2, θ3, L2 and L3. Further, the numeric T1num matrix can be obtained by substituting all these values
in the symbolic form of T1.

4.2. Upper parallel 3-UPU TPM mechanism
Now, since the inverse kinematics is solved for the lower parallel mechanism, we can decouple the
overall numeric transformation matrix Tnum using Eq. (2) and get the transformation matrix T2num having

10Each of the θ ’s can take any value from [−π , π ], and thus, the second solution as tan has a period of π .
11Moreover, L2 and L3 can only be negative together at the same time, that is, it cannot be that one of them is negative and the

other is positive. So for each of the two values of θ3, two solutions are seen where one has positive L2 and L3, while the other has
negative L2 and L3. Thus, four solutions exist for the inverse kinematics of the lower mechanism. However, as only the positive
L2 and L3 solutions are considered, it results in just two solutions of the total 4.
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the following form as:

T2num = (
T1numCl

u

)−1 Tnum =

⎡
⎢⎢⎢⎢⎣

1 0 0 rx

0 1 0 ry

0 0 1 rz

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (56)

Moreover, the symbolic form of T2 matrix found out using the D-H Table II is

T2 =

⎡
⎢⎢⎢⎢⎣

1 0 0 L4c4c5

0 1 0 L4s4c5

0 0 1 L4s5

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (57)

Thus, exploiting the fact that T2 ≡ T2num , and comparing their (1,4), (2,4) and (3,4) elements, the
following three equations are seen:

rx = L4c4c5 (58)
ry = L4s4c5 (59)
rz = L4s5 (60)

Squaring and adding Eqs. (58), (59) and (60), L4 is obtained as:

L4 =
√

r2
x + r2

y + r2
z (61)

Also, dividing Eqs. (59) and (58), two solutions for θ4 are obtained as:

θ41,2 = arctan

(
ry

rx

)
(62)

Now, using the values of L4 and θ4 in Eqs. (59) and (60), s5 and c5, and therefore, θ5 are found out as:

s5 = rz

L4

(63)

c5 = ry

L4s4

(64)

=⇒ θ5 = Atan2(s5, c5) (65)

So, again, there are overall two solutions, since for each of the two possible θ4 values, there exist
unique solutions for L4 and θ5. However, the two solution sets of θ4 and θ5 are of the form {β4, β5}
and {(β4 − π ), (π − β5)}, which again lead to same task space configuration, for reasons mentioned
earlier in Section 3.2. Thus, only one distinct task space configuration exists corresponding to the two
inverse kinematic solutions of the upper parallel mechanism.

Now, the values of θ4, θ5, and L4 can be substituted into Eqs. (27) and (28) to obtain the leg length
vectors, and then L5 and L6 can be calculated using Eqs. (29) and (30), respectively, as:

L5 =√
4uL5 · 4uL5 (66)

L6 =√
4uL6 · 4uL6 (67)

It is to be noted that, here also, for the reasons stated earlier6 on Page 6, the limb lengths L4, L5, and L6

are only taken to be positive.12

12Again, for each of the two values of θ4, two solutions are seen where one of them has positive L4, L5 and L6, while the other
has negative L4, L5 and L6. Thus, there are four solutions in total for the inverse kinematics of the upper mechanism. However,
only the positive L4, L5, and L6 solutions are considered, leaving just the two solutions of the total 4.
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Figure 3. Simulated 3D model of the hybrid manipulator in Simscape Multibody (in Simscape
Multibody models, joints are not displayed in the final simulated 3D model).

Finally, 2 × 2 = 4 possible inverse kinematic solutions are obtained for the complete hybrid manip-
ulator in joint space. However, only 2 × 1 = 2 inverse kinematic solutions are seen with distinct task
space configurations. This fact will also be numerically illustrated later in Section 5.2.2.

Thus, this completes the inverse kinematic analysis of the hybrid manipulator as all the actuated joint
variables θ2, L2, L3, L4, L5, L6 have been obtained from the given pose of the end-effector.

5. 3D modeling, numerical verification, and simulation
5.1. Model
In the literature, different simulation environments have been developed and used, some of which,
such as the RoboSim and RoboAnalyzer�, are specialized in robotics. In contrast, others are generic
3D simulation software, such as AdamsTM, MapleSimTM, and SimscapeTM MultibodyTM (earlier
SimMechanicsTM). In this paper, the proposed hybrid manipulator is modeled and simulated using
Simscape Multibody, which is based on Simulink� and MATLAB�. The advantage of using Simscape
Multibody is that sensing various signals, including joint movements and displacements, torques, and
forces, becomes much more accessible.

The 3D model of the hybrid manipulator is shown in Fig. 3, while Fig. 4(a) shows the complete
hybrid manipulator block diagram built in Simscape Multibody. The whole model is made up of five
parts: base, lower parallel mechanism, platform M, upper parallel mechanism, and platform H, where
the lower mechanism and upper mechanism models, as shown in Fig. 4(b) and (c), respectively, have
been built in accordance with the geometry and structure presented in Section 2.1.

5.2. Numerical example
Consider the following numerical example with the chosen design parameters:

b2 = 40
√

3 cm = 69.28 cm; b3x = 20
√

3 cm = 34.64 cm; b3z = 60 cm

h1 = 40 cm; h2 = 30 cm; L1 = 60 cm
(68)
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Figure 4. Model of the proposed hybrid manipulator built in Simscape Multibody.

5.2.1. Forward kinematics
The following active joint variable values are noted:

θ2 = π

3
rad; L2 = 49 cm; L3 = 81 cm

L4 = 60 cm; L5 = 59 cm; L6 = 70 cm
(69)
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Table III. All 16 solutions for the DK of the hybrid manipulator,
with each pair of it corresponding to a single configuration.

Lower Upper
i θ1(rad) θ3(rad) θ4(rad) θ5(rad)
1 −2.7628 −2.7336 1.7935 0.7515
2 −2.7628 −2.7336 −1.3481 2.3901
3 −2.7628 −2.7336 −1.7935 0.7515
4 −2.7628 −2.7336 1.3481 2.3901
5 −2.7628 1.5209 1.7935 0.7515
6 −2.7628 1.5209 −1.3481 2.3901
7 −2.7628 1.5209 −1.7935 0.7515
8 −2.7628 1.5209 1.3481 2.3901
9 −1.9496 −2.5702 1.7935 0.7515
10 −1.9496 −2.5702 −1.3481 2.3901
11 −1.9496 −2.5702 −1.7935 0.7515
12 −1.9496 −2.5702 1.3481 2.3901
13 −1.9496 1.6808 1.7935 0.7515
14 −1.9496 1.6808 −1.3481 2.3901
15 −1.9496 1.6808 −1.7935 0.7515
16 −1.9496 1.6808 1.3481 2.3901

Figure 5. Eight distinct task space solutions, with each representing a pair of joint space solutions in
Table III.

Solving Eq. (14), two solutions are obtained as θ11 = −2.7628 rad and θ12 = −1.9496 rad. Further, solv-
ing Eq. (18) with θ11 as the solution leads to θ 1

31
= −2.7336 rad and θ 1

32
= 1.5209 rad, while with θ12 as

the solution, it gives θ 2
31

= −2.5702 rad and θ 2
32

= 1.6808 rad.
For θ5, Eq. (31) is solved to get θ51 = 0.7515 rad and θ52 = 2.3901 rad. Solving Eq. (35) with θ51 as

the solution, it gives θ 1
41

= 1.7935 rad and θ 1
42

= −1.7935 rad, while with θ52 as the solution, it gives
θ 2

41
= 1.3481 rad and θ 2

42
= −1.3481 rad. As can be seen, the solutions for θ4 are symmetric about the

mid-platform M. All the 16 possible joint space solutions to the forward kinematics have been listed
in Table III. Also, as was stated earlier in Section 3.2, on calculating the overall transformation matrix
T for each of the 16 solutions, only 8 distinct task space configurations are obtained, which have been
depicted in Fig. 5.

5.2.2. Inverse kinematics
Consider the 4th solution {θ11 = −2.7628 rad, θ 1

31
= −2.7336 rad, θ52 = 2.3901 rad, θ 2

41
= 1.3481 rad}

of the 16 total solutions for the direct kinematics presented above. For this solution, the numerical overall
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Table IV. All four solutions to the inverse kinematics of the hybrid manipulator, with each pair of it
corresponding to a single configuration.

Lower Upper
i θ1(rad) θ2(rad) θ3(rad) L2(cm) L3(cm) θ4(rad) θ5(rad) L4(cm) L5(cm) L6(cm)
1 0.3788 −1.0472 0.4080 92.467 62.623 1.3642 −0.0039 68.855 67.986 67.916
2 0.3788 −1.0472 0.4080 92.467 62.623 −1.7774 3.1455 68.855 67.986 67.916
3 −2.7628 1.0472 −2.7336 49.0 81.0 1.3481 2.3901 60.0 59.0 70.0
4 −2.7628 1.0472 −2.7336 49.0 81.0 −1.7935 0.7515 60.0 59.0 70.0

transformation matrix Tnum is

Tnum =

⎡
⎢⎢⎢⎢⎣

0.9834 0.1551 −0.0941 2.181

0.1778 −0.9262 0.3324 −4.249

−0.0355 −0.3436 −0.9384 −23.403

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (70)

Given this matrix, the inverse kinematics involves solving for the joint variables. So, solving for θ3, two
solutions are seen as θ31 = 0.4080 rad and θ32 = −2.7336 rad. Corresponding to θ31 , θ 1

2 = −1.0472 rad
and θ 1

1 = 0.3788 rad are seen, while for θ32 , θ 2
2 = 1.0472 rad and θ 2

1 = −2.7628 rad are seen. Thus, two
solutions are obtained here for lower parallel mechanism. Now, for instance, for the solution, which is
{θ31 = 0.4080 rad, θ 1

2 = −1.0472 rad, θ 1
1 = 0.3788 rad}, the decoupled T2num matrix is obtained as:

T2num =

⎡
⎢⎢⎢⎢⎣

1 0 0 14.124

0 1 0 67.390

0 0 1 −0.274

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (71)

From this, L4 is obtained as 68.855 cm. Further, the two solutions are obtained as θ41 = 1.3642 rad
and θ42 = −1.7774 rad, and corresponding to them θ 1

5 = −0.0039 rad and θ 2
5 = 3.1455 rad are seen,

respectively. Therefore, again, there are two solutions for the upper parallel mechanism for any given
solution to the lower one. Hence, four possible joint space solutions are obtained to the inverse kinemat-
ics problem of the complete hybrid manipulator and are listed in Table IV.13 Also, as was stated earlier in
Section 4.2, there are only two distinct configurations, as depicted in Fig. 6.

5.3. Simulation example: translation in a specific direction in a plane parallel to an oblique plane
Consider the following example in which a planar translation of the upper platform is desired along a
specified translational direction while maintaining some constant orientation with respect to the base.
As described in Section 1, four parameters can be specified, of which the offset distance and the required
orientation of the mid-platform are embedded in the given T1num matrix:

T1num =

⎡
⎢⎢⎢⎢⎣

−0.125 0.6495 0.75 30.0

−0.6495 −0.625 0.4330 −51.961

0.75 −0.4330 0.5 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (72)

13It is to be noted that the forward kinematic solution from Table III, from which we started, is obtained back in the form of the
inverse kinematic solution here. This also cross-verifies both the DK and IK analyses.
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Figure 6. Two distinct configurations, with each representing a pair of solutions in Table IV.

The desired perpendicular distance is 50 cm. The translational motion is expected to be along the X8 ≡
X4u axis, such that it first translates 50 cm along −X8 axis, and then from that point onward it translates
100 cm along the +X8 axis, effectively ending the motion at a displacement of 50 cm along +X8 axis.
Furthermore, the same design parameters were used as mentioned in Eq. (68) in Section 5.2.

For the simulation, inverse kinematics was performed on the desired motion to get the actuated joint
values, which were then fed to the model. The resulting simulation is presented in Fig. 7, showing the
three stages of motions. Also, the simulated translational motion measured using the Transform Sensor
Block in Simscape Multibody is shown in Fig. 8, and it clearly matches the desired motion.

During the simulation, the joint limits were added appropriately to only allow for feasible motions.

6. Singularity analysis
Singularity analysis of serial and parallel manipulators has been quite extensively studied in the lit-
erature, and different types of singularities have been identified [6]. In the following subsections, the
singularity analysis of the proposed hybrid manipulator is presented, and all of its singularities in the
joint space of active joints are determined. Consider the following vectors defined as:

� = [θ2(t), L2(t), L3(t), L4(t), L5(t), L6(t)]T : vector of all active joint variables

� = [θ1(t), θ3(t), θ4(t), θ5(t)]
T : vector of all passive joint variables in the formulation, i.e.,

along limb B1M1H1

q = [θ1(t), θ2(t), θ3(t), θ4(t), θ5(t), L4(t)]T : vector of all the joint variables (active + passive)

in the formulation, i.e., along limb B1M1H1

$ = [
ωx, ωy, ωz, vx, vy, vz

]T : the twist vector of the end-effector (platform H)

First, the singularities occurring due to the parallel structure of the hybrid manipulator are determined,
which we loosely call the “parallel singularities.” Differentiating the closed-loop constraint equations
(12), (13), (29), and (30) with respect to time, and also introducing two dummy equations: θ̇2(t) = θ̇2(t)

https://doi.org/10.1017/S0263574723001662 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001662


596 Sadanand Modak and Rama Krishna K

Figure 7. Simulation of the numerical example, showing the three different stages of motion.

Figure 8. Simulated translational motion.

and L̇4(t) = L̇4(t), which are trivially satisfied, a convenient and compact matrix form for the six equations
is as follows:

D �̇(t) = Jp q̇(t). (73)

Here, D = D (�(t)) is a diagonal matrix with the diagonal as [1, L2(t), L3(t), 1, L5(t), L6(t)], and Jp =
Jp (q(t)) is a 6 × 6 jacobian matrix having the following form (details in Section A.2):

https://doi.org/10.1017/S0263574723001662 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723001662


Robotica 597

Jp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

jp21 jp22 0 0 0 0

jp31 jp32 jp33 0 0 0

0 0 0 0 0 1

0 0 0 jp54 jp55 jp56

0 0 0 jp64 jp65 jp66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(74)

It is to be noted that the Jp matrix as defined here is closely related to the K∗ matrix definition given by
Ghosal [35] in their analysis of the gain singularities. More specifically, det(Jp) = det(K∗), and thus in
accordance with [35], det(Jp) = 0 gives Type A (gain) singularity.

6.1. Type A singularity: DOF-gain singularity
For the gain singularity to occur, det(Jp) = 0 should hold. From Eq. (74), it is known that:

det(Jp) = jp21 jp33

(
jp64 jp55 − jp54 jp65

)= 0 (75)

So, from Eq. (75), the following different cases are seen for the gain singularity to occur:

Case 1: jp21 = 0
Consider

jp21 = b2

(
L1 cos(θ1) − √

3 h1 sin(θ1) sin(θ2)
)

= 0 (76)

Here, b2 = 0 is a design singularity, which, however, seems practically infeasible. Now, from Eqs. (76)
and (14), there are two equations in θ1, θ2, and L2:

w1c1 + w2s1s2 = 0 (77)
e1s1 + e2c1s2 + e3 = L2

2 (78)

where the coefficients are in terms of the known quantities,

w1 = L1; w2 = −√
3h1

e1 = 2L1b2; e2 = 2
√

3b2h1; e3 = L2
1 + b2

2 + 3h2
1

(79)

Solving Eq. (77) to get two solutions (with a difference of π ) for θ1:

θ1 = − arctan

(
w1

w2 sin θ2

)
(80)

Substituting each value of θ1 in Eq. (78), two separate implicit equations are obtained for the two
branches of the singularity curve in θ2-L2 plane. For the numerical example presented earlier in Section
5.2, the two branches of the singularity curve are depicted in Fig. 9.

Case 2: jp33 = 0

jp33 = −3

2
h1

((
s1b3x + L1

)
c3 + (

b3z s2 − b3x c1c2

)
s3

)= 0 (81)

Here, again, h1 = 0 is a design singularity, which is not feasible practically. Again Eq. (14) ≡ f (θ1, θ2, L2)
is used to get two solutions for θ1 ≡ f (θ2, L2). Substituting θ1 back in Eq. (81) ≡ f (θ1, θ2, θ3), there
are now two solutions for θ3 ≡ f (θ2, L2). Finally, putting the values of θ1 and θ3 into Eq. (15) ≡
f (θ1, θ2, θ3, L3), an equation for a branch of the singularity surface in actuated joint space of θ2, L2, and
L3 is obtained. Since 2 × 2 = 4 overall solutions for θ1 and θ3 exist, a total of four branches are seen of
the singularity surface in θ2-L2-L3 actuated joint space. For the numerical example presented earlier in
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Figure 9. The two branches of the singularity curve in θ2-L2 plane.

Section 5.2, the four branches of the singularity surface in θ2-L2-L3 actuated joint space are depicted in
Fig. 10.

Case 3:
(
jp64 jp55 − jp54 jp65

)= 0

(
jp64 jp55 − jp54 jp65

)= −3
√

3

2
(h1 − h2)2 L2

4 cos2 (θ5) sin(θ4) = 0 (82)

Clearly, h1 = h2 gives a feasible design singularity. Additionally, the following singularities are also
obtained:

(1) L4 = 0

(2) θ5 = (
n + 1

2

)
π where n = 0, ±1, ±2, . . ., occurs when M1H1 limb becomes parallel or antipar-

allel to the U11 axis
(3) θ4 = nπ where n = 0, ±1, ±2, . . ., occurs when M1H1 limb comes in the plane of

mid-platform M
Here, (b) yields the same singularity surface in L4-L5-L6 actuated joint space as shown in Fig. 12. From
(c), |cos(θ4)| = 1. So, using Eqs. (31) and (32):

s5 = − f2

f1

(83)

c5 = − g2

g1c4

(84)

=⇒ s2
5 + c2

5 =
(

f2

f1

)2

+
(

g2

g1

)2

= 1 (85)

Thus, Eq. (85) gives the singularity surface in L4-L5-L6 actuated joint space. For the numerical example
presented earlier in Section 5.2, the singularity surface is shown in Fig. 11.

Now, the “serial singularities” are analyzed occurring because the two platforms are serially con-
nected by a serial kinematic chain. Consider the end-effector point to be at the centroid of platform H.
The right-invariant angular velocity matrix 1�e is written as:

1�e = Q̇(t) Q(t)T (86)
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Figure 10. The four branches (left) and the overall singularity surface (right) in θ2-L2-L3 actuated joint
space.
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Figure 11. The singularity surface in L4-L5-L6 actuated joint space.

and extract from it the angular velocity vector of the end-effector 1ωe = [
1�e3,2 , 1�e1,3 , 1�e2,1

]T since:

1�e =
⎡
⎢⎣

0 −1ωez
1ωey

1ωez 0 −1ωex

−1ωey
1ωex 0

⎤
⎥⎦ (87)

Now, the position vector of the end-effector is written as 8pe = [h2, 0, 0, 1]T and is transformed into
base frame as 1pe = T 8pe. Differentiating 1pe with respect to time, the velocity 1ve of end-effector 1ve

is finally obtained as the first three entries (i.e., ignoring the fourth homogeneous coordinate) of ˙1pe.
Thus, now the twist $e of the platform H about the global coordinate system at the end-effector point can
be found out by concatenating 1ωe and 1ve. Further simplification and rearranging gives the following
equation:

$e = Js q̇(t) (88)

where Js = Js(q(t)) is another 6 × 6 jacobian matrix with the following form (details in Section A.2):

Js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 js12 js13 0 0 0

0 js22 js23 0 0 0

1 0 js33 0 0 0

js41 js42 js43 js44 js45 js46

js51 js52 js53 js54 js55 js56

0 js62 js63 js64 js65 js66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(89)

Combining Eqs. (73) and (88), while assuming Jp as nonsingular:

$e = Js Jp
−1 D �̇(t) (90)

Again, the matrix Js Jp
−1 D ≡ Jeq matrix definition given by Ghosal [35]. Thus, in accordance with the

condition described in ref. [35], since det(Jeq) = 0 if any one of Js or D is singular, det(Js) = 0 and
det(D) = 0 give Type B (loss) singularity.
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Figure 12. The two branches of the singularity surface in L4-L5-L6 actuated joint space.

6.2. Type B singularity: DOF-loss singularity
From D matrix definition, det(D) = L2 L3 L5 L6 = 0 gives the trivial conditions Li = 0 for i = 2, 3, 5, 6
having obvious geometric interpretation (i.e., corresponding limb length becomes zero). Now, from Eq.
(89), the determinant of Js matrix is

det(Js) = ((
js44 js55 − js45 js54

)
js66 + (

js54 js65 − js55 js64

)
js46 + (

js45 js64 − js44 js65

)
js56

)
(91)

· (js12 js23 − js13 js22

)
(92)

Substituting the expressions presented earlier for jsxy and further simplifying, the condition for singularity
is written as:

det(Js) = L2
4 sin(θ2) cos(θ5) = 0 (93)

Again, L4 = 0 is the trivial case. For the case sin(θ2) = 0, the condition on θ2 is

θ2 = nπ where n = 0, ±1, ±2, . . . (94)

This has a straightforward geometric interpretation that whenever the R2 revolute joint (i.e., θ2) is actu-
ated such that the axes of R1 and R3 (i.e., Z1 and Z3) become parallel or antiparallel, this type of singularity
occurs.
For the case cos(θ5) = 0, the condition on θ5 is

θ5 =
(

n + 1

2

)
π where n = 0, ±1, ±2, . . . (95)

which implies that sin(θ5) = ±1. Substituting in Eq. (31), two branches of the singularity surface in
L4-L5-L6 actuated joint space are seen:

f1 + f2 = 0 (96)
−f1 + f2 = 0 (97)

since f1 and f2, as defined in Eq. (33), are f (L4, L5, L6). For the numerical example presented earlier in
Section 5.2, the two branches of the singularity surface are depicted in Fig. 12. Geometrically, this type
of singularity is seen when M1H1 limb becomes parallel or antiparallel to the U11 axis.
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Figure 13. Manipulability index as a function of lower mechanism’s active joint variables for three
different values of θ2.

6.3. Type C singularity: special case

As can be seen from Sections 6.1 and 6.2, singularities L4 = 0 and θ5 =
(

n + 1

2

)
π satisfy the DOF-gain

and DOF-loss conditions simultaneously. Hence, they are termed as the “special case” of singularities.
This concludes the determination of the singularity conditions for the proposed hybrid manipulator.

7. Kinematic manipulability and optimal design
As seen in Section 6, the manipulator is in a singularity when the determinant of the Jacobian approaches
zero. However, it is not desirable to even go close to being at a singularity when the manipulator is in
motion. We use performance indicators such as dexterity and manipulability to quantify this “closeness”
to a singularity. Dexterity (denoted as wd) is defined as the determinant of the manipulator Jacobian Jeq,
while manipulability (denoted as wm) is the square root of the determinant of the product of the manip-
ulator Jacobian Jeq by its transpose. However, since Jeq is square, the dexterity and the manipulability
are equal in magnitude:

wm = ∣∣det(Jeq)
∣∣ (98)
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Figure 14. Manipulability index as a function of upper mechanism’s active joint variables for three
different values of L4.

The manipulability14 index gets its importance from the fact that it represents the volume of the manipu-
lability ellipsoid formed by the end-effector. A higher volume indicates it is more toward isotropy, while
a vanishing volume signifies a singularity.

Consider the same design parameters and the active joint variables for the upper mechanism as in
Section 5.2. The manipulability index as a function of the active joint variables of the lower mechanism
for three different values of θ2 has been plotted in Fig. 13.

Similarly, taking the same active joint variables for the lower mechanism as in Section 5.2, the manip-
ulability index as a function of the active joint variables of the upper mechanism for three different values
of L4 has been plotted in Fig. 14.

While a more rigorous optimization analysis could be done as in ref. [3] taking into account the
workspace and condition number as well, we present, in this paper, a preliminary analysis to obtain an
optimal design for the proposed hybrid manipulator considering just the kinematic manipulability as
the determining factor. As can be seen from Figs. 13 and 14, for a given set of parameters, we have
the manipulability varying in order of magnitude throughout the motion range. We define “optimal”
design as the set of parameters with the highest minimum value of manipulability throughout the motion
range, that is, which is farthest away from singularity for the entirety of its motion range. Therefore, we
formulate the problem of optimal design as a bilevel nested continuous maximization–minimization
problem:

max
L1,b2,b3x ,b3z ,h1,h2

min
L2,L3,L4,L5,L6,θ2

wm = max
params

min
active

wm (99)

14As reported here, it uses meters-seconds-radians in its units, specifically to maintain direct comparability with existing
literature.
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Figure 15. Manipulability index as a function of lower mechanism’s active joint variables for three
different values of θ2, for optimal parameters.

This is clearly a high-dimensional complex problem. To make the analysis a bit simpler at the cost of
losing full optimality, we split it into two lower-dimensional optimization problems as follows:

max
L1,b2,b3x

min
L2,L3,θ2

wm = max
params1

min
activelower

wm (100)

max
b3z ,h1,h2

min
L4,L5,L6

wm = max
params2

min
activeupper

wm (101)

where params = params1 ∪ params2, active = activelower ∪ activeupper, wherein params1 = {L1, b2, b3x},
params2 = {b3z , h1, h2}, activelower = {L2, L3, θ2}, and activeupper = {L4, L5, L6}. Furthermore, we perform
optimization using the MATLAB� Global Optimization Toolbox’s Genetic Algorithm solver. To fur-
ther reduce computational complexity, we discretize the optimization with a small enough step size, and
the parameters and the active variables are taken to be in a reasonably wide parameter range and motion
range, respectively. For the optimization in Eq. (100), the parameters in params2 are assigned heuris-
tically selected suitable values, and then for the optimization in Eq. (101), params1 are assigned their
optimal values from Eq. (100). The optimization was carried out, resulting in the following solution:

L1 = 51.90 cm; b2 = 65.90 cm; b3x = 20.00 cm

b3z = 62.70 cm; h1 = 42.40 cm; h2 = 34.80 cm
(102)
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Figure 16. Manipulability index as a function of upper mechanism’s active joint variables for three
different values of L4, for optimal parameters.

Figures 15 and 16 show the manipulability index variation for the motion range for optimal parameters.
It shows that the manipulability is pretty high in an appreciably large region of the motion range and
how superior it is compared to Figs. 13 and 14 for the nonoptimal parameters.

8. Conclusion
This paper introduces a new 6-DOF hybrid manipulator, which uniquely combines a 1-RRR 2-SPS
mechanism with a 3-UPU mechanism. This novel architecture holds promise for industrial settings that
demand both translational motion and adjustable end-effector orientation. We have provided closed-form
solutions for its forward and inverse kinematics, facilitating easier control and real-time applica-
tions. Performance and singularity analyses have also been conducted, leading us to a preliminary,
near-optimal manipulator design.

Looking ahead, the manipulator’s potential can be further explored through real-time control algo-
rithms and trajectory planning. A comprehensive workspace analysis could offer further insights into
its practical applications. Lastly, a comparative study with other hybrid manipulators in the field would
help benchmark its performance and identify improvement areas.
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A. Appendix

A.1. Calculating overall transformation matrix
The overall transformation matrix is written using the D-H Tables I and II as:15

T1 ≡ 1
4l
[T] = 1

2[T]2
3[T]3

4l
[T] (A1)

T2 ≡ 4u
8 [T] = 4u

5 [T]5
6[T]6

7[T]7
8[T] (A2)

∴ T = T1Cl
uT2 =

⎡
⎢⎢⎢⎢⎣

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (A3)

where,

t11 = 1

2
(c1c2c3 + s1s3 − √

3c1s2);

t12 = s1c3 − c1c2s3;

t13 = −1

2

(
c1s2 + √

3(c1c2c3 + s1s3)
)

;

t21 = 1

2
(s1c2c3 − c1s3 − √

3s1s2);

t22 = −c1c3 − s1c2s3;

t23 = −1

2

(
s1s2 − √

3(c1s3 − s1c2c3)
)

;

t31 = −1

2
(
√

3c2 + s2c3);

t32 = s2s3;

t33 = 1

2
(
√

3s2c3 − c2);

15In this paper, the shorthand notation ck = cos θk and sk = sin θk is adopted. All the symbolic and numerical computations
presented have been performed using MapleTM.
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t14 = (((c3c4 − 2s3s4)c2c5 − s2s5) c1 + (2c3s4 + s3c4)s1c5)
L4

2
− L1s1

−
√

3

2
((c2c3s5 + s2c4c5)c1 + s1s3s5) L4;

t24 = (((c3c4 − 2s3s4)s1c2 − (2c3s4 + s3c4)c1) c5 − s1s2s5)
L4

2
+ L1c1

+
√

3

2
((c1s3 − s1c2c3)s5 − s1s2c4c5) L4;

t34 = −
(√

3(c2c4c5 − s2c3s5) + (c3c4 − 2s3s4)s2c5 + c2s5

) L4

2
; (A4)

A.2. Singularity matrices
The Jp = Jp(q(t)) is a 6 × 6 jacobian matrix having the following form:

Jp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

jp21 jp22 0 0 0 0

jp31 jp32 jp33 0 0 0

0 0 0 0 0 1

0 0 0 jp54 jp55 jp56

0 0 0 jp64 jp65 jp66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A5)

wherein,

jp21 = b2(L1c1 − √
3h1s1s2);

jp31 = b3x

2

(
−√

3h1s1s2 + 3h1s1c2c3 − 3h1c1s3 + 2L1c1

)
;

jp22 = √
3h1b2c1c2;

jp32 = h1

2

(√
3b3x c1c2 + 3b3x c1s2c3 − √

3b3z s2 + 3b3z c2c3

)
;

jp33 = −3h1

2

(
(b3x s1 + L1)c3 + ( − b3x c1c2 + b3z s2)s3

)
;

jp54 = 3

2
(h1 − h2)L4s4c5;

jp55 = L4

2
(h1 − h2)

(
3c4s5 − √

3c5

)
;

jp56 = 1

2

(
2L4 − √

3(h1 − h2)s5 − 3(h1 − h2)c4c5

)
;

jp64 = 3

2
(h1 − h2)L4s4c5;

jp65 = L4

2
(h1 − h2)

(
3c4s5 + √

3c5

)
;

jp66 = 1

2

(
2L4 + √

3(h1 − h2)s5 − 3(h1 − h2)c4c5

)
; (A6)
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The Js = Js(q(t)) is another 6 × 6 jacobian matrix with the following form:

Js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 js12 js13 0 0 0

0 js22 js23 0 0 0

1 0 js33 0 0 0

js41 js42 js43 js44 js45 js46

js51 js52 js53 js54 js55 js56

0 js62 js63 js64 js65 js66

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A7)

wherein,

js12 = −s1;

js13 = −c1s2;

js22 = c1;

js23 = −s1s2;

js33 = −c2;

js41 = 1

2

(√
3 (((c2c3s5 + s2c4c5)s1 − c1s3s5) L4 + h2s1s2) − h2s1c2c3 + (h2s3 − 2L1)c1

)

+ L4

2
(((2s3s4 − c3c4)c2c5 + s2s5) s1 + (2c3s4 + s3c4)c1c5) ;

js42 = −c1

2

(√
3L4(c2c4c5 − s2c3s5) + L4(s2c3c4c5 + c2s5 − 2s2s3s4c5) + h2(

√
3c2 + s2c3)

)
;

js43 = 1

2

((√
3L4s5 − h2

)
(c1c2s3 − s1c3) − L4c5 (c1c2(2c3s4 + s3c4) − s1(c3c4 − 2s3s4))

)
;

js44 = 1

2
L4c5

(√
3c1s2s4 − (c3s4 + 2s3c4)c1c2 − (s3s4 − 2c3c4)s1

)
;

js45 = −L4

2

(√
3 ((c2c3c5 − s2c4s5)c1 + s1s3c5) + ((c3c4 − 2s3s4)c2s5 + s2c5) c1

)

− L4

2
((2c3s4 + s3c4)s1s5) ; (A8)

js46 = 1

2

(
(2c3s4 + s3c4)s1c5 − √

3 ((c2c3s5 + s2c4c5)c1 + s1s3s5)
)

+ 1

2
(((c3c4 − 2s3s4)c2c5 − s2s5) c1) ;

js51 = 1

2

(
(c1c2c3 + s1s3)h2 − √

3 (((c2c3s5 + s2c4c5)c1 + s1s3s5) L4 + h2c1s2)
)

+ 1

2
((((c3c4 − 2s3s4)c2c5 − s2s5) c1 + (2c3s4 + s3c4)s1c5) L4 − 2L1s1) ;

js52 = − s1

2

(√
3L4(c2c4c5 − s2c3s5) + L4(s2c3c4c5 + c2s5 − 2s2s3s4c5) + h2(

√
3c2 + s2c3)

)
;
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js53 = 1

2

((√
3L4s5 − h2

)
(s1c2s3 + c1c3) − L4c5 (2s4(s1c2c3 − c1s3) + c4(s1c2s3 + c1c3))

)
;

js54 = 1

2
L4c5

(√
3s1s2s4 − (c3s4 + 2s3c4)s1c2 + (s3s4 − 2c3c4)c1

)
;

js55 = −L4

2

(√
3 ((c2c3c5 − s2c4s5)s1 − c1s3c5) + ((c3c4 − 2s3s4)c2s5 + s2c5) s1

)

+ L4

2
((2c3s4 + s3c4)c1s5) ;

js56 = 1

2

(√
3 ((c1s3 − s1c2c3)s5 − s1s2c4c5) + ((c3c4 − 2s3s4)s1c2 − (2c3s4 + s3c4)c1) c5

)

− 1

2
(s1s2s5) ;

js62 = 1

2

(√
3 ((c2c3s5 + s2c4c5)L4 + h2s2) + (s2s5 − (c3c4 − 2s3s4)c2c5) L4 − h2c2c3

)
;

js63 = s2

2

(
(c4c5 − √

3s5)L4s3 + 2L4c3s4c5 + h2s3

)
;

js64 = 1

2
L4c5

(√
3c2s4 + s2c3s4 + 2s2s3c4

)
;

js65 = L4

2

(√
3(c2c4s5 + s2c3c5) + (c3c4 − 2s3s4)s2s5 − c2c5

)
;

js66 = 1

2

(√
3(s2c3s5 − c2c4c5) − (c3c4 − 2s3s4)s2c5 − c2s5

)
(A9)
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