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POLARIZED PAIRS, LOG MINIMAL MODELS, AND
ZARISKI DECOMPOSITIONS

CAUCHER BIRKAR and ZHENGYU HU

Abstract. We continue our study of the relation between log minimal models
and various types of Zariski decompositions. Let (X,B) be a projective log
canonical pair. We will show that (X,B) has a log minimal model if eitherKX+
B birationally has a Nakayama–Zariski decomposition with nef positive part, or
if KX +B is big and birationally has a Fujita–Zariski or Cutkosky–Kawamata–
Moriwaki–Zariski decomposition. Along the way we introduce polarized pairs
(X,B+P ), where (X,B) is a usual projective pair and where P is nef, and we
study the birational geometry of such pairs.

§1. Introduction

We will work over an algebraically closed field k of characteristic zero.

In this paper, we continue our study of the relation between log minimal

models and various types of Zariski decompositions. Let (X,B) be a pro-

jective log canonical (LC) pair. The main result of [3] states that if KX +B

birationally has a weak Zariski decomposition, then the pair has a log min-

imal model, assuming that the log minimal model program (LMMP) holds

in lower dimension; in particular, this assumes termination of log flips in

lower dimension. In this paper, we show that if we take a stronger form of

Zariski decomposition, then we can construct a log minimal model with-

out any extra assumptions in lower dimension. (For simplicity we state our

results in the absolute projective case but everything can be formulated and

proved in a similar way in the relative setting.) More precisely, we state the

following.

Theorem 1.1. Let (X,B) be a projective LC pair with KX +B pseudoef-

fective. If KX +B birationally has a Nakayama–Zariski decomposition with

nef positive part, then (X,B) has a log minimal model.
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204 C. BIRKAR AND Z. HU

The assumption of the theorem is that on some resolution f : W → X

we have the Nakayama–Zariski decomposition f∗(KX +B) = Pσ +Nσ with

Pσ nef. (In general, Pσ is only pseudoeffective.) For more details on the

terminology and the proof, see Section 4.

Our next result concerns the Fujita–Zariski and Cutkosky–Kawamata–

Moriwaki (CKM)–Zariski decompositions.

Theorem 1.2. Let (X,B) be a projective LC pair such that KX +B is

big. Then, the following are equivalent:

(1) KX +B birationally has a Fujita–Zariski decomposition;

(2) KX +B birationally has a CKM–Zariski decomposition;

(3) (X,B) has a log minimal model.

The theorem is similar to the main result of Kawamata in [11] for Kawa-

mata log terminal (KLT) pairs. For the proof, see Section 5.

In order to prove the above theorems, we consider a class of pairs beyond

the traditional LC pairs. We look at pairs (X,B + P ) in which (X,B) is

a usual projective pair and where P is a nef R-divisor; we call the pair a

polarized pair. Besides this article, polarized pairs appear in other contexts,

for example, the base-point-free theorem, canonical bundle formulas in [13]

and [9], proof of [5, Theorem 1.2], [6], and so forth. It is interesting to see

if one can extend the birational geometry of usual pairs to the setting of

polarized pairs. For example, the cone and contraction theorems and the

existence of log flips hold for polarized pairs. One can ask whether one can

run an LMMP on KX +B +P which terminates. One can ask many other

questions, some of which are treated in Section 3.

Conjecture 1.3. Let (X,B + P ) be a Q-factorial divisorially log ter-

minal (DLT) polarized pair. Then, we can run an LMMP on KX +B + P

which terminates.

By saying that (X,B + P ) is Q-factorial DLT, we mean that (X,B) is

Q-factorial DLT. Our first result concerning the conjecture is the following.

Theorem 1.4. Let (X,B + P ) be a Q-factorial DLT polarized pair.

Assume either that P or N =KX + B − P is a Q-divisor, or that N ≥ 0

with SuppN ⊆ SuppB. Moreover, assume that every LMMP on KX + B

terminates. Then, for any α ≥ 0 we can run an LMMP on KX +B + αP

which terminates. Moreover, if α� 0, then the LMMP is P -trivial.
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Here P -trivial means that P is numerically trivial on every extremal ray

in the process; in particular, this means that the nefness of P is preserved

in this case.

Corollary 1.5. Let (X,B + P ) be a Q-factorial DLT polarized pair of

dimension at most 3. Assume either that P or N =KX + B − P is a Q-

divisor, or that N ≥ 0 with SuppN ⊆ SuppB. Then, for any α≥ 0 we can

run an LMMP on KX +B+αP which terminates. Moreover, if α� 0, then

the LMMP is P -trivial.

Most probably the Q-divisor condition in these results is unnecessary. In

Section 3 we also touch upon limiting pairs, which are more general than

polarized pairs. The following theorem shows that [6, Conjecture 1] hold.

Theorem 1.6. Let (X,B + P ) be an LC polarized pair where B,P are

Q-divisors, and assume that KX +B + P is big. Further, assume that the

augmented base locus B+(KX +B + P ) does not contain any LC center of

(X,B). If KX +B+P birationally has a CKM–Zariski decomposition, then

the section ring R(KX +B + P ) is a finitely generated k-algebra.

The proof is given in Section 5. If (X,B + P ) is Q-factorial DLT, the

proof is trivial, so the difficulty has to do with LC singularities.

In Section 6 of this paper, we outline a strategy to show that if every

pseudoeffective LC pair of dimension less than or equal to d has a weak

Zariski decomposition, then every such pair has a log minimal model. This

is an attempt to remove the termination assumption in the main theorem

of [3].

§2. Preliminaries

Let k be an algebraically closed field of characteristic zero fixed through-

out this article. All the varieties will be over k unless stated otherwise. For

an R-divisor M =
∑

miMi on some variety, we define ‖M‖=max{mi}.

Pairs

A pair (X,B) consists of a normal quasiprojective variety X and an

R-divisor B on X with coefficients in [0,1] such that KX +B is R-Cartier.

For a prime divisor D on some birational model of X with a nonempty

center on X , a(D,X,B) denotes the log discrepancy. For definitions and

standard results on singularities of pairs, see [14].
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206 C. BIRKAR AND Z. HU

Log minimal models and Mori fiber spaces

A projective pair (Y,BY ) is a log birational model of a projective pair

(X,B) if we are given a birational map φ : X ��� Y and BY = B∼ + E,

where B∼ is the birational transform of B and E is the reduced exceptional

divisor of φ−1; that is, E =
∑

Ej , where Ej are the exceptional/X prime

divisors on Y . A log birational model (Y,BY ) is a weak LC model of (X,B) if

• KY +BY is nef, and

• for any prime divisor D on X which is exceptional/Y , we have

a(D,X,B)≤ a(D,Y,BY ).

A weak LC model (Y,BY ) is a log minimal model of (X,B) if

• (Y,BY ) is Q-factorial DLT, and

• the above inequality on log discrepancies is strict.

On the other hand, a log birational model (Y,BY ) is called a Mori fiber

space of (X,B) if

• (Y,BY ) is Q-factorial DLT,

• there is a (KY +BY )-negative extremal contraction Y → T with dimY >

dimT , and

• for any prime divisor D (on birational models of X), we have

a(D,X,B)≤ a(D,Y,BY ),

and strict inequality holds if D is on X and contracted/Y .

Note that our definitions of log minimal models and Mori fiber spaces

are slightly different from the traditional definitions in that we allow φ−1

to contract certain divisors.

Rational decomposition of certain divisors

Let (X,B) be a Q-factorial LC pair such that KX +B = P +N , where

P is an R-divisor and N is a Q-divisor. For each δ > 0, we will show that

there is a decomposition P =
∑

riPi satisfying the following:

• Pi are Q-Cartier,

• ri are positive and linearly independent over Q,

• ‖P − Pi‖< δ and Supp(P − Pi)⊆ SuppB, and

• (X,Bi) is LC where Bi := Pi +N −KX .

Let V be the R-vector space generated by the components ofKX ,B,P,N .

In what follows, a rational vector space (inside V ) means an R-vector space
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generated by a collection of Q-divisors, and a rational affine space (inside V )

means an affine space spanned by a collection of Q-divisors.

Let W ⊆ V be the smallest rational affine space containing P , and let

U be the vector space generated by the elements of W . If Q ∈ W , then

P −Q is supported on the irrational part of P , and since N is a Q-divisor,

the irrational part of P is supported in the irrational part of B; hence,

Supp(P −Q)⊆ SuppB.

First, assume that W 	= U . Then, we can write P =
∑n

1 riPi, where

Pi ∈W are Q-divisors, ri > 0, and n= dimW + 1 = dimU . The ri are lin-

early independent over Q; otherwise, we have
∑

airi = 0 for certain ai ∈Q

(say, an = 1). Hence, P =
∑n−1

1 riP
′
i , where P

′
i = Pi−aiPn, and this implies

that P belongs to a rational vector space strictly smaller than U , a contra-

diction. Now assume that W = U . In this case, we can choose Q-divisors Pi

which form a basis of W and such that P belongs to the convex cone gen-

erated by the Pi; that is, P =
∑n

1 riPi for certain ri > 0. The ri are linearly

independent over Q; otherwise, P would belong to a rational vector space

strictly smaller than W , a contradiction. In both cases W 	= U and W = U ,

it is obvious that we can choose the Pi so that ‖P − Pi‖< δ.

It remains to show that the Pi can be chosen so that (X,Bi) is LC, where

Bi := Pi+N −KX . Put W ′ =W +N −KX , which is a rational affine space

containing B. By Shokurov [19], the set

L=
{
Δ ∈W ′ ∣∣ (X,Δ) is LC

}

is a rational polytope. By our choice of W , B belongs to the interior of L;
otherwise, B would belong to some proper face of L. Hence, there would be

a rational affine space T ′ �W ′ containing B, which in turn implies that P

belongs to the rational affine space T := T ′+KX −N �W , a contradiction.

The same reasoning shows that dimL= dimW . Therefore, if we choose Pi

so that ‖P − Pi‖= ‖B −Bi‖ is sufficiently small, then each Bi belongs to

the interior of L; hence, in particular, each (X,Bi) is LC.

§3. Polarized pairs

A polarized pair is of the form (X,B + P ), where (X,B) is a projective

pair in the usual sense and P is a nef R-divisor onX . We will callKX+B+P

a polarized log divisor. We say that a polarized pair (X,B+P ) is LC (resp.,

DLT and so forth) if (X,B) is LC (resp., DLT and so forth). In this section,

we will look at various questions concerning polarized pairs. Essentially, we
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208 C. BIRKAR AND Z. HU

would like to know how much of the birational geometry of usual pairs can

be extended to polarized pairs.

Cone and contraction, flips, LMMP

For simplicity, assume that (X,B) is DLT. We can run the LMMP on

KX +B + P as follows. Let R be a (KX +B + P )-negative extremal ray.

Pick an ample R-divisor A such that (KX +B + P +A) ·R < 0. We have

KX +Δ∼R KX +B +P +A for some boundary Δ so that (X,Δ) is DLT.

Then, by the cone theorem R can be contracted. This shows that the cone

and contraction theorems hold for polarized pairs. Moreover, the log flip

exists if R defines a flipping contraction. We can continue the process; that

is, if we have already obtained a model X ′ and if we have a (KX′ +B′+P ′)-
negative extremal ray R′, then perhaps after replacing A we can make sure

that (KX′ +B′+P ′+A′) ·R′ < 0 and that (X,Δ′) is DLT, where ′ denotes
birational transform. So, R′ can be contracted, and so on. The process gives

an LMMP on KX +B + P .

Question 3.1. Does the LMMP just defined terminate?

Under some mild assumptions, we will show that at least some LMMPs on

KX +B+P terminate if every LMMP on KX +B terminates. In particular,

we can apply this in dimension at most 3 since the latter termination is

known.

Theorem 3.2. Let (X,B + P ) be a Q-factorial DLT polarized pair.

Assume either that P or N =KX + B − P is a Q-divisor, or that N ≥ 0

with SuppN ⊆ SuppB. Then, for any α� 0, any LMMP on KX +B+αP

is P -trivial.

Proof. Here P -trivial means that P is numerically trivial on every

extremal ray in the process. First, assume that N = KX + B − P is a

Q-divisor. By the arguments in Section 2, we can write P =
∑

riPi, where

Pi are Q-divisors, ri > 0 are linearly independent over Q, and each (X,Bi)

is LC.

Pick α > 0, and let R be an extremal ray such that (KX + B + αP ) ·
R < 0. Then, (KX + B) · R < 0 and N · R < 0. Let Γ be an extremal

curve generating R. (Note that Γ is a curve generating R having mini-

mal degree with respect to some ample divisor; see [21, Definition 1] or [1,

Section 3] for more details.) Then, as a consequence of the boundedness of

the length of extremal rays (see [12]), we have (KX + B) · Γ ≥ −2dimX ,
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which implies that

αP · Γ<−(KX +B) · Γ≤ 2dimX.

On the other hand, if Pi · Γ< 0, then (KX +Bi) · Γ< 0, and

Pi · Γ= (KX +Bi) · Γ−N · Γ> (KX +Bi) · Γ≥−2dimX.

Thus, Pi ·Γ≥−2dimX for every i. Now pick a positive integer m such that

mPi is Cartier for every i. Then,

P · Γ=
∑

riPi · Γ=
∑

ri
ni

m
,

where ni are integers and ni ≥ −2mdimX . This implies that P · Γ = 0 or

that P · Γ > μ, where μ > 0 depends only on m and ri. In particular, if

α � 0 (depending only on m,ri), then from αP · Γ < 2dimX we deduce

that P · Γ= 0.

From now on we fix α� 0. By construction,
∑

riPi ·Γ= P ·Γ= 0. Since

the ri are linearly independent over Q, we have Pi · Γ = 0 for every i. In

particular, (KX + Bi) · Γ = N · Γ < 0 for each i. If R defines a Mori fiber

space, then the LMMP stops. Otherwise, let X ��� X ′ be the divisorial

contraction or the flip associated to R. Then, KX′ +B′ = P ′+N ′, P ′ is nef,
mPi is Cartier, and so forth, so we can apply the above arguments on X ′

and in this way obtain an LMMP on KX + B + αP which is P -trivial in

every step.

Now we treat the case when P is a Q-divisor. Pick a sufficiently large

number α. Let m> 0 be an integer such that mP is Cartier. Let R be an

extremal ray such that (KX +B + αP ) ·R < 0, and let Γ be an extremal

curve generating R. Then, αP · Γ = α(n/m) for some integer n ≥ 0, and

from

αP · Γ<−(KX +B) · Γ≤ 2dimX

we deduce that P ·Γ= 0 since α is sufficiently large. The rest of the argument

goes as before.

Now we come to the third case, that is, when N ≥ 0 and SuppN ⊆
SuppB. First pick a sufficiently small ε > 0, and let N ′ be a Q-divisor such

that we have (1 − ε)N ≤ N ′ ≤ N . Put B′ = P +N ′ −KX . Then, (X,B′)
is DLT. By the constructions in Section 2, we can write P =

∑
riPi, where

Pi are Q-divisors, ri > 0 are linearly independent over Q, ‖P − Pi‖ are

sufficiently small with P − Pi supported in SuppB′ = SuppB, and (X,B′
i)
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are LC, where B′
i := Pi+N ′−KX . Let Bi := Pi+N−KX . Although (X,Bi)

may not be LC, (X,Bi − εN) is LC because Bi − εN ≤ B′
i. Now let R be

an extremal ray such that (KX +B+αP ) ·R< 0, and let Γ be an extremal

curve generating R. Then,

Pi · Γ= (KX +Bi − εN) · Γ− (1− ε)N · Γ≥−2dimX.

The rest of the argument is similar to the case when we assumed N to be

a Q-divisor.

Theorem 3.3. Let (X,B + P ) be a Q-factorial DLT polarized pair.

Assume either that P or N =KX + B − P is a Q-divisor, or that N ≥ 0

with SuppN ⊆ SuppB. Moreover, assume that every LMMP on KX + B

terminates. Then, for any α ≥ 0 we can run an LMMP on KX +B + αP

which terminates.

Proof. Pick a sufficiently large number β > α. By Theorem 3.2, we can

run an LMMP on KX +B+βP which is P -trivial. The LMMP is an LMMP

on both KX +B+αP and KX +B, so it terminates by assumptions. Thus,

we reach a model Y on which KY +BY + βPY is nef or there is a (KY +

BY + βPY )-negative Mori fiber space structure. In the latter case we are

done, since the fiber space structure is also (KY +BY +αPY )-negative. So,

assume the former case, and by replacing X with Y we may assume that

KX +B + βP is nef.

We will run an LMMP on KX +B with scaling of βP . More precisely,

we replace β with the number

min{t≥ α |KX +B + tP is nef}.

If β = α, we are done. So, we can assume that β > α.

Claim 3.4. There is an extremal ray R such that (KX +B) ·R < 0 but

(KX +B + βP ) ·R= 0.

Proof of the Claim. For any (KX + B)-negative extremal ray R there

is a positive number t ≤ β such that (KX + B + tP ) · R = 0. If there is

such an extremal ray R with t = β, then we are done. Otherwise, by def-

inition of β, there exist a strictly increasing sequence ti of positive num-

bers approaching β, and extremal rays Ri such that (KX + B) · Ri < 0

but (KX + B + tiP ) · Ri = 0. For each i, pick an extremal curve Γi gen-

erating Ri (see [1, Section 3]). Then, the set of the intersection numbers
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{(KX +B) ·Γi}i is finite (see [1, Remark 3.1]). So, the intersection number

P · Γi =
−(KX +B) · Γi

ti

is bounded from above and below.

If P is a Q-divisor, then there are only finitely many possibilities for

the numbers P · Γi. Therefore, in this case there are only finitely many

possibilities for the numbers ti, and we should have ti = β for i� 0. On the

other hand, if N is a Q-divisor, then from

P · Γi = (KX +B) · Γi −N · Γi

and the boundedness of P · Γi, we deduce that N · Γi is bounded; hence,

there are only finitely many possibilities for the numbers N ·Γi. This in turn

implies that there are only finitely many possibilities for the numbers P ·Γi;

hence, ti = β for i � 0. Now assume that N ≥ 0 with SuppN ⊆ SuppB.

We will proceed similarly to the proof of [3, Lemma 3.1]. First, we replace

N with (1− ε)N , and we replace B with B − εN for a sufficiently small ε.

Then, there is a Q-divisor N ′ with the same support as N and such that

‖N − N ′‖ is sufficiently small, (X,B′) is LC where B′ = P + N ′ − KX ,

and (KX +B′) · Γi < 0 for every i perhaps after replacing the sequence ti
with an infinite subsequence. As above, the set of the intersection numbers

{(KX +B′) · Γi}i is finite. Moreover, from

P · Γi = (KX +B′) · Γi −N ′ · Γi

and the boundedness of P · Γi, we deduce that N ′ · Γi is also bounded;

hence, there are only finitely many possibilities for N ′ · Γi, which in turn

implies that there are only finitely many possibilities for P ·Γi. Hence, from

(KX +B + tiP ) · Γi = 0 we get ti = β for i� 0. This proves the claim.

We continue the proof of the theorem. If R in the claim defines a Mori

fiber space structure, we stop. Otherwise, let X ��� X ′ be the divisorial

contraction or the flip associated to R. Continuing the process on X ′ and so

on produces an LMMP on KX +B with scaling of βP . Of course, we may

lose the nefness of P , but we do not need it. The above LMMP is obviously

an LMMP on KX +B. So, by assumptions, it terminates. Therefore, along

the way we get a model Y on which KY +BY + αPY is nef or there is a

(KY +BY +αPY )-negative Mori fiber space structure, and we are done.
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Proof of Theorem 1.4. This follows from Theorems 3.2 and 3.3.

Proof of Corollary 1.5. Since the LMMP holds in dimension at most 3,

the claim follows from Theorem 1.4.

Abundance

Although the LMMP is expected to hold for polarized pairs by the above

results, abundance does not hold. Indeed, if X is an elliptic curve, B = 0,

and P is a nontorsion numerically trivial divisor, then KX+B+P is nef but

not semiample. A more subtle counterexample is the following. There is a

smooth projective surface X which is a ruled surface over some elliptic curve

with a section S such that KX +2S ∼ 0 and S is nef but not semiample (see

[20, Example 1.1]). Now put B = S, and put P = 2S. Then,KX+B+P ∼ S,

which is nef but not semiample.

Finite generation

Similar to abundance, finite generation also fails in general, although it

holds in certain interesting cases, for example, Theorem 1.6. Let C be an

elliptic curve, and let Q be a nontorsion numerically trivial divisor. Let

X = P(OC ⊕ OC(1)), and let g : X → C be the corresponding morphism.

There is a birational morphism f : X → Z which contracts a curve S: the

morphism is induced by the globally generated invertible sheaf OX(1), and

the morphism S → C is an isomorphism. There is also a curve T disjoint

from S given by a general section of OX(1) such that, again, the morphism

T → C is an isomorphism. It is easy to see that KX + S + T ∼ 0. Let B =

S+T , and let P = g∗Q+A, where A is the divisor corresponding to OX(1).

Then, KX +B + P is nef and big but not semiample; hence, its algebra is

not finitely generated.

Nonvanishing

As mentioned earlier, if we take X to be an elliptic curve, B = 0, and

P a nontorsion numerically trivial divisor, then KX + B + P is nef but

not semiample. Moreover, the Kodaira dimension of KX +B + P is −∞.

However, up to numerical equivalence,KX+B+P has nonnegative Kodaira

dimension. One can then ask the following.

Question 3.5. Let (X,B+P ) be an LC polarized pair with KX +B+P

pseudoeffective. Is there M ≥ 0 such that KX +B + P ≡M?

Most probably, the answer is no. However, there are interesting cases in

which the answer is yes. For example, assume that (X,B + P ) is a KLT
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polarized pair with B,P being Q-Cartier, and let X → Z be a morphism

where Z is an abelian variety and KX +B+P is big/Z; then KX +B+P ≡
M for some M ≥ 0. This can be proved as in [7, Theorem 3.1] using Fourier–

Mukai transforms. (A complete proof is given in [4, Theorem 4.1].)

Limiting pairs

A limiting pair is of the form (X,Δ) where X is projective and KX +Δ

is R-Cartier, and there exists a sequence of boundaries Δi such that (X,Δi)

are pairs in the usual sense and KX +Δ= lim(KX +Δi) in N1(X). We say

that (X,Δ) is LC if we can choose (X,Δi) to be LC.

Every LC polarized pair (X,Δ=B + P ) is an LC limiting pair: we can

pick ample Q-divisors Ai with limAi = 0 and choose appropriate Δi ∼R

B + P +Ai so that (X,Δi) are LC pairs in the usual sense and KX +Δ=

lim(KX +Δi).

If (X,Δ) is a limiting pair, and if X ��� Y is a partial LMMP on KX +Δ,

then (Y,ΔY ) is also a limiting pair. The point is that X ��� Y is also a

partial LMMP on KX +Δi for every i� 0, so the pairs (Y,Δi,Y ) are all LC

in the usual sense when i� 0.

The cone and contraction theorems and the existence of log flips hold for

every LC limiting pair. One then wonders if a reasonable birational theory

can be developed for such pairs.

§4. Nakayama–Zariski decomposition with nef positive part

Nakayama [17] defined a decompositionD = Pσ(D)+Nσ(D) for any pseu-

doeffective R-divisor D on a smooth projective variety. We refer to this as

the Nakayama–Zariski decomposition. We call Pσ the positive part and Nσ

the negative part. We can extend it to the singular case as follows. Let X be

a normal projective variety, and let D be a pseudoeffective R-Cartier divi-

sor on X . We define Pσ(D) by taking a resolution f : W →X and letting

Pσ(D) := f∗Pσ(f
∗D). The following lemma shows, in particular, that this

is independent of the choice of the resolution.

Lemma 4.1. With X,D,W as above, we have the following.

(1) Pσ(D) is independent of the choice of the resolution f .

(2) For any R-divisor E ≥ 0 on W which is exceptional/X, we have

Pσ(f
∗D+E) = Pσ(f

∗D).

(3) If 0≤M is R-Cartier with SuppM ⊆ SuppNσ(D), then Pσ(D+M) =

Pσ(D).
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(4) If 0≤M ≤Nσ(D) is R-Cartier, then Pσ(D−M) = Pσ(D).

(5) If φ : X ��� Y is a partial D-MMP, then φ∗Pσ(D) = Pσ(φ∗D).

(6) If A is R-Cartier and D+εA is a movable R-divisor for each sufficiently

small ε > 0, then Pσ(D) =D.

Proof. (1) This follows from [17, Chapter 3, Theorem 5.16].

(2) This is similar to [17, Chapter 3, Lemma 5.14]. We have

Pσ(f
∗D+E) +Nσ(f

∗D+E) = f∗D+E ≡E/X;

hence, Nσ(f
∗D +E)−E is anti-nef on the very general curves/X of each

component of E, and its pushdown on X is effective. Then, by Shokurov’s

generalized negativity lemma (see [2, Lemma 3.3]), we have Nσ(f
∗D+E)−

E ≥ 0. Therefore,

Pσ(f
∗D+E) = Pσ(f

∗D)

by [17, Chapter 3, Lemma 1.8].

(3) Let P = Pσ(D), and let N =Nσ(D). Choose a > 0 so that M ≤ aN .

Then,

Nσ(D+M) =Nσ(P +N +M)≤Nσ(N +M)≤N +M.

Thus, Pσ(D +M) = Pσ(P +N +M) = P + C for some 0 ≤ C ≤ N +M .

Then,

(1 + a)P = Pσ

(
(1 + a)D

)
= Pσ(D+ aP + aN)

= Pσ(D+M + aP + aN −M)≥ P +C + aP,

which is possible only if C = 0.

(4) If M∼ is the birational transform of M on W , then M∼ ≤Nσ(f
∗D).

By [17, Chapter 3, Lemma 1.8], Pσ(f
∗D −M∼) = Pσ(f

∗D). Now if we let

f∗M =M∼ +E, then

Pσ(f
∗D−M∼) = Pσ(f

∗D− f∗M +E) = Pσ(f
∗D− f∗M)

by (2); hence, Pσ(D) = Pσ(D−M).

(5) We may assume that f : W →X and g : W → Y give a common resolu-

tion. Then, f∗D = g∗DY +E, whereDY := φ∗D and E ≥ 0 is exceptional/Y .

By (2) we have

Pσ(f
∗D) = Pσ(g

∗DY +E) = Pσ(g
∗DY );
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hence,

φ∗Pσ(D) = φ∗f∗Pσ(f
∗D) = φ∗f∗Pσ(g

∗DY ) = g∗Pσ(g
∗DY ) = Pσ(DY ).

(6) Take a strictly decreasing sequence of numbers εi > 0 with lim εi = 0.

Pick an ample divisor G on W so that G+ f∗A is ample. Since D+ εiA is

a movable R-divisor, Nσ(f
∗D+ εi(f

∗A+G)) is exceptional/X . By going to

the limit, we deduce that Nσ(f
∗D) is also exceptional/X ; hence, Pσ(D) =

f∗Pσ(f
∗D) =D.

We will say that a pseudoeffective R-Cartier divisor D on a normal pro-

jective variety X birationally has a Nakayama–Zariski decomposition with

nef positive part if there is a resolution f : W → X so that Pσ(f
∗D) is

nef. If g : V →W is any birational morphism from a smooth projective V ,

then Pσ(g
∗f∗D) = g∗Pσ(f

∗D). Indeed, since Pσ(f
∗D) is nef, Pσ(g

∗f∗D)≥
g∗Pσ(f

∗D); on the other hand, in general Pσ(g
∗f∗D)≤ g∗Pσ(f

∗D), which

follows from the generalized negativity lemma (see [2, Lemma 3.3]) because

E := g∗Pσ(f
∗D) − Pσ(g

∗f∗D) is exceptional/W and it is anti-nef on the

very general curves/W of each component of E.

Proof of Theorem 1.1. By assumptions, there is a log resolution f : W →
X on which we have f∗(KX +B) = P +N , where P := Pσ(f

∗(KX +B)) is

nef. We can write

KW +BW = f∗(KX +B) +E,

where BW ,E ≥ 0, and E is exceptional/X whose support contains each

prime exceptional/X divisor D on W if a(D,X,B)> 0. The pair (W,BW )

is DLT, and a log minimal model of (W,BW ) is also a log minimal model

of (X,B) by [2, Remark 2.8]. By Lemma 4.1(2),

Pσ(KW +BW ) = Pσ

(
f∗(KX +B) +E

)
= Pσ

(
f∗(KX +B)

)
= P.

So, we can replace (X,B) with (W,BW ), and we can assume that KX +

B = P +N , where P = Pσ(KX +B) is nef. Moreover, by taking a higher

resolution, if necessary we can also assume that (X,B +N) is log smooth.

First assume that N is a Q-divisor. Let α be a sufficiently large number.

Now run an LMMP on KX +B+αP with scaling of some ample divisor A.

By Theorem 3.2, P is numerically trivial on each extremal ray in the process;

hence, the nef property of P is preserved, and the LMMP is also an LMMP

on KX +B. After finitely many steps, the LMMP consists of only log flips;
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hence, we reach a model Y on which KY +BY + αPY + εAY is a movable

R-divisor for each ε > 0.

Since

Nσ(KX +B + αP + αN) =Nσ

(
(1 + α)(P +N)

)
= (1+ α)N,

from Lemma 4.1(4) we get

Pσ(KX +B + αP ) = Pσ(P +N + αP ) = (1 + α)P.

By Lemma 4.1(5),

Pσ(KY +BY + αPY ) = φ∗Pσ(KX +B + αP ) = (1 + α)PY ,

where φ is the birational mapX ��� Y . On the other hand, by Lemma 4.1(6),

Pσ(KY +BY + αPY ) =KY +BY + αPY =NY + (1+ α)PY .

Therefore, NY = 0 and KY +BY = PY , which is nef. This means that the

LMMP terminates, and we get a log minimal model of (X,B).

Now we treat the general case when N is not necessarily a Q-divisor.

Since (X,B+N) is log smooth, we can find an R-divisor G with sufficiently

small coefficients such that SuppG ⊆ SuppN , (X,B′ = B + G) is DLT,

N ′ =N +G ≥ 0 is a Q-divisor, and SuppN ′ = SuppN . Note that G may

not be effective, but this does not cause any problem.

We get the decomposition KX +B′ = P +N ′ where by Lemma 4.1(3)(4)

we have P = Pσ(KX +B′), which is nef. By the arguments above, we can

run a P -trivial LMMP on KX + B′, which ends up with a log minimal

model (Y,B′
Y ). The LMMP contracts N ′; hence, it contracts N as well. Let

f : W →X and g : W → Y be a common resolution. Put R= f∗(KX +B)−
g∗(KY +BY ). Since the LMMP is P -trivial, f∗g∗(PY ) = P , from which we

get

f∗R=KX +B − f∗g
∗(KY +BY ) =KX +B − f∗g

∗(PY )

=KX +B − P =N ≥ 0.

Thus, R≥ 0 by the negativity lemma. Moreover, any prime divisor D on X

contracted by X ��� Y is a component of f∗R=N ; hence,

a(D,X,B)< a(D,Y,BY ).

Therefore, (Y,BY ) is a log minimal model of (X,B).
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§5. Fujita– and CKM–Zariski decompositions

Let D be an R-Cartier divisor on a normal projective variety X . A Fujita–

Zariski decomposition for D is an expression D = P +N such that

• P is nef, N ≥ 0, and

• if f : W →X is a birational morphism from a normal projective variety

and f∗D = P ′ +N ′ with P ′ nef and N ′ ≥ 0, then P ′ ≤ f∗P .

On the other hand, a CKM–Zariski decomposition for D is an expression

D = P +N such that

• P is nef, N ≥ 0, and

• the maps H0(X, �mP �)→H0(X, �mD�) are isomorphisms for all m ∈N.

In both decompositions, P is called the positive part.

Lemma 5.1. Let D be an R-Cartier divisor on a normal projective variety

X with a Fujita–Zariski decomposition D = P +N . Let G be an R-Cartier

divisor such that SuppG⊆ SuppN and N +G≥ 0. Then, P +N +G is a

Fujita–Zariski decomposition of D+G with P the positive part.

Proof. Put M =N +G. Let f : W →X be a birational morphism from

a normal projective variety, and assume that f∗(D +G) = P ′ +M ′, where
P ′ is nef and M ′ ≥ 0. We need to show that f∗P ≥ P ′. There is a > 0 such

that aN =M +L with L≥ 0. Then, we have

f∗(aD) = af∗P + af∗N = af∗P + f∗M + f∗L

= (a− 1)f∗P + f∗(D+G) + f∗L

= (a− 1)f∗P + P ′ +M ′ + f∗L.

Since aD = aP + aN is a Fujita–Zariski decomposition with aP the pos-

itive part, we deduce that af∗P ≥ (a− 1)f∗P + P ′; hence, f∗P ≥ P ′.

Let (X,B) be a projective KLT pair. Kawamata [11] showed that if KX +

B is a big Q-divisor and if it has a CKM–Zariski decomposition, then the

LC ring of (X,B) is finitely generated; that is, (X,B) has an LC model (see

also Moriwaki [16] and Fujita [10]). We prove a similar result for LC pairs

where we replace LC model by log minimal model.

Theorem 5.2. Let (X,B) be a projective LC pair such that KX +B is

big. Then, the following are equivalent:

(1) KX +B birationally has a Fujita–Zariski decomposition;
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(2) KX +B birationally has a CKM–Zariski decomposition;

(3) (X,B) has a log minimal model.

Proof. For the implication (3) =⇒ (2), see the proof of [3, Theorem 1.5].

For (2) =⇒ (1), see Prokhorov [18, Section 7].

It remains to show that (1) =⇒ (3). By assumptions, there is a log resolu-

tion f : W →X such that we have a Fujita–Zariski decomposition f∗(KX +

B) = P +N . We can write

KW +BW = f∗(KX +B) +E,

where BW ,E ≥ 0, and E is exceptional/X whose support contains each

prime exceptional/X divisor D on W if a(D,X,B)> 0. The pair (W,BW )

is DLT, and a log minimal model of (W,BW ) is also a log minimal model of

(X,B) by [2, Remark 2.8]. Moreover, KW +BW = P +N +E is a Fujita–

Zariski decomposition with P being the positive part; indeed, assume that

g : V →W is a birational morphism from a normal projective variety and

that g∗(KW +BW ) = P ′+N ′, where P ′ is nef and N ′ ≥ 0. Then, g∗f∗(KX +

B) + g∗E = P ′ + N ′; hence, N ′ − g∗E is anti-nef/X , and the negativity

lemma shows that N ′− g∗E ≥ 0. So, g∗P + g∗N = P ′+N ′− g∗E, and from

this we obtain g∗P ≥ P ′, which proves the claim.

By replacing (X,B) with (W,BW ), we could assume that KX + B =

P +N is a Fujita–Zariski decomposition and that (X,B+N) is log smooth.

Since KX +B is big, we can write KX +B ∼R A+L, where A is an ample

R-divisor and L≥ 0.

Assume that N is a Q-divisor. Then, by Theorem 3.2, we can run a

P -trivial LMMP on KX + B + αP with scaling of some multiple of A,

for some sufficiently large number α. We arrive at a model Y on which

KY +BY +αPY + εAY is semiample for some sufficiently small ε > 0. Then,

we have

(1 + α+ ε)(PY +NY ) = (1 + α+ ε)(KY +BY )

∼R KY +BY + αPY + εAY + αNY + εLY .

Then, for some numerically trivial R-divisor Q we have

(1 + α+ ε)(PY +NY ) =Q+KY +BY + αPY + εAY + αNY + εLY .

SinceX ��� Y was obtained as a P -trivial LMMP/Z,KY +BY = PY +NY is

still a Fujita–Zariski decomposition by reasoning as in the second paragraph
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of this proof. So, we get

(1 + α+ ε)PY ≥Q+KY +BY + αPY + εAY ;

hence,

(1 + α+ ε)NY ≤ αNY + εLY .

By our choice of ε, the latter inequality is possible only if NY = 0, in which

case KY +BY = PY is nef, and we get the desired log minimal model.

Now we deal with the case when N may not be a Q-divisor. We argue

as in the proof of Theorem 1.1. Pick an R-divisor G with sufficiently small

coefficients such that SuppG ⊆ SuppN , (X,B′ = B + G) is DLT, N ′ =
N +G≥ 0 is a Q-divisor, and SuppN ′ = SuppN . We get the decomposition

KX +B′ = P +N ′, which is a Fujita–Zariski decomposition by Lemma 5.1,

with P being the positive part. By the arguments above, we can run a P -

trivial LMMP on KX +B′ which ends up with a log minimal model (Y,B′
Y ).

The LMMP contracts N ′; hence, it contracts N as well. Let f : W →X and

g : W → Y be a common resolution. Put R= f∗(KX +B)− g∗(KY +BY ).

Since the LMMP is P -trivial, f∗g∗(PY ) = P , from which we get

f∗R=KX +B − f∗g
∗(KY +BY ) =KX +B − f∗g

∗(PY )

=KX +B − P =N ≥ 0.

Thus, R≥ 0 by the negativity lemma. Moreover, any prime divisor D on X

contracted by X ��� Y is a component of f∗R=N ; hence,

a(D,X,B)< a(D,Y,BY ).

Therefore, (Y,BY ) is a log minimal model of (X,B).

We can generalize the theorem as in the following result. Recall that

an R-Cartier divisor D is said to be abundant if κ(D) = κσ(D) (see [15]),

where κσ(D) is the numerical Kodaira dimension defined by Nakayama

[17, Chapter 5, Definition 2.5]. In particular, any big R-Cartier divisor is

abundant.

Theorem 5.3. Let (X,B) be a projective LC pair such that KX + B

birationally has a Fujita–Zariski decomposition. Assume that KX + B is

abundant. Then (X,B) has a log minimal model.

Proof. We will show that the Fujita–Zariski decomposition coincides with

the Nakayama–Zariski decomposition, so we can apply Theorem 1.1. By tak-
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ing a log resolution, we may assume that (X,B) is DLT and that KX +B =

P+N is the Fujita–Zariski decomposition. In particular, this is also a CKM–

Zariski decomposition; hence, F ≥N , where F is the asymptotic fixed part

F := lim(1/m)Fix | �m(KX +B)� |. On the other hand, since KX + B is

abundant, F =Nσ(KX+B) by [15, Proposition 6.4]. We immediately obtain

the conclusion from F ≥N ≥Nσ(KX +B) = F .

Using Theorem 1.2, we can take care of Theorem 1.6.

Proof of Theorem 1.6. If (X,B) is Q-factorial DLT, the proof is actually

trivial since we can easily get rid of P and the LC centers; hence, the claim

reduces to the well-known finite generation for KLT pairs. But presence of

LC singularities causes difficulties. Let D :=KX +B +P , and let A≥ 0 be

an ample Q-divisor. Perhaps after replacing A with some small multiple, by

assumptions, we can write D ∼Q A+L, where L≥ 0 and Supp(A+L) does

not contain any LC center of (X,B). Thus, we can find a boundary Δ such

that

KX +Δ∼Q KX +B + P + εA+ εL∼Q (1 + ε)D,

where (X,Δ) is LC and ε is a small rational number. Moreover, we may

assume that the LC centers of (X,Δ) are exactly the LC centers of (X,B).

By replacing (X,B + P ) with (X,Δ), from now on we can assume that

P = 0.

Let (Y,BY ) be a Q-factorial DLT blowup of (X,B), and let h : Y →X

be the corresponding morphism. Since KX + B is big and it birationally

has a CKM–Zariski decomposition, (X,B) has a log minimal model by

Theorem 1.2. The log minimal model is a weak LC model of (Y,BY ). Thus,

(Y,BY ) also has a log minimal model by [2, Corollary 3.7]. So, we can run an

LMMP on KY +BY with scaling of some ample divisor which ends up with

a log minimal model (Y ′,BY ′). By [8, Theorem 4.2], it is enough to show

that (Y ′,BY ′) is log abundant, that is, that the restriction of KY ′ +BY ′ to

any LC center of (Y ′,BY ′) is abundant.

Let S′ be an LC center of (Y ′,BY ′). There is an LC center S of (Y,BY )

such that S′ is just the birational transform of S. Let f : W → Y and

g : W → Y ′ be a common resolution such that there is a prime divisor T on

W mapping surjectively onto both S and S′. As mentioned above, we can

write KX + B ∼Q A + L, where A ≥ 0 is ample, L ≥ 0, and Supp(A+ L)

does not contain any LC center of (X,B). In particular, assuming that

V is the image of S on X , V is not contained in Supp(A + L). Let F

https://doi.org/10.1215/00277630-2781096 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2781096


POLARIZED PAIRS, LOG MINIMAL MODELS, AND ZARISKI DECOMPOSITIONS 221

be a general fiber of S → V . Since Y ��� Y ′ is obtained by an LMMP on

KY + BY ∼Q h∗(A + L), and since F does not intersect the support of

h∗(A+L), Y ��� Y ′ is an isomorphism near F . Therefore, if G is a general

fiber of T → V , we have g∗(KY ′ +BY ′)|G ∼Q 0, which implies that

κ
(
(KY ′ +BY ′)

∣∣
S′

)
= κ

(
g∗(KY ′ +BY ′)

∣∣
T

)
≤ dimV.

Let AY = h∗A, and let LY = h∗L. Since AY is nef, by the negativity

lemma we have g∗AY ′ ≥ f∗AY . Therefore,

κ
(
(KY ′ +BY ′)

∣∣
S′

)
= κ

(
(AY ′ +LY ′)

∣∣
S′

)
= κ

(
g∗(AY ′ +LY ′)

∣∣
T

)

≥ κ(AY |S) = dimV,

which gives the equality

κ
(
(KY ′ +BY ′)

∣∣
S′

)
= dimV.

Finally, note that

κσ
(
(KY ′ +BY ′)

∣∣
S′

)
≤ κσ

(
(KY +BY )

∣∣
S

)
= κ

(
(KY +BY )

∣∣
S

)
= dimV,

which in particular means that

κσ
(
(KY ′ +BY ′)

∣∣
S′

)
= κ

(
(KY ′ +BY ′)

∣∣
S′

)
;

hence, (KY ′ + BY ′)|S′ is abundant. Recall that κσ denotes the numerical

Kodaira dimension.

§6. Weak Zariski decompositions

Recall that an R-Cartier divisor D on a normal projective variety Y bira-

tionally has a weak Zariski decomposition if there is a resolution f : W → Y

such that f∗D = P +N , where P is nef and N ≥ 0. Assume that, for any

projective LC pair (X,B) of dimension at most d with KX +B pseudoef-

fective birationally, we have a weak Zariski decomposition for KX +B. Can

one construct log minimal models for such pairs? In this section, we outline

a strategy to tackle this problem.

Let (X,B) be a projective LC pair of dimension at most d with KX +

B having a weak Zariski decomposition. By taking a log resolution, we

may assume that the pair is log smooth and that KX +B = P +N is the

decomposition where P is nef and N ≥ 0.
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Step 1. By the proof of [3, Theorem 1.5], we may assume that SuppN ⊆
Supp �B�.

Step 2. Let α be a sufficiently large number, and run an LMMP on KX +

B + αP with scaling of some ample divisor. Then, by Theorem 3.2, P is

trivial on each extremal ray contracted in the process, and we get an LMMP

on KX +B. By replacing X , we may assume that the LMMP consists of

only flips. We should show that this LMMP terminates by using special

termination arguments. If S is a component of �B�, and if we put KS+BS =

(KX +B)|S and PS = P |S , then we need to show that the induced LMMP

on KS +BS + αPS terminates. This is obviously related to the material in

Section 3. This should be somehow derived from existence of weak Zariski

decompositions and log minimal models in dimension less than d.

Step 3. If step 2 is done successfully, then we can assume that KX +

B + αP is nef. Next, run an LMMP on KX + B with scaling of αP as

in the proof of Theorem 3.3. Again as in step 2, we need to use special

termination arguments to show that the LMMP terminates. In other words,

for a component S of �B� we have KS +BS +αPS nef, and we need to show

that the induced LMMP on KS +BS with scaling of αPS terminates. As

mentioned in step 2, this is related to Section 3.

In order to prove the terminations required in steps 2 and 3, we probably

need to generalize [1, Theorem 1.5] to the setting of polarized pairs. There

are indications that in the strategy above it might be better to start with a

polarized pair rather than a usual pair (X,B).
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