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CENTERS OF INFINITE BOUNDED SETS
IN A NORMED SPACE

J. R. CALDER, W. P. COLEMAN, AND R. L. HARRIS

Introduction. CebySev centers have been studied extensively. In this
paper an alternate concept of center for infinite bounded point sets is intro-
duced. Some of the results in this paper for this new type of center are similar
to previous results for CebySev centers.

Throughout this paper, S will denote a normed linear space, and || - || will
denote the norm on .S. N(S) will denote the origin in .S, and K will denote a
point set in S. If x is in .S and 7 is a positive number, then B (x, ) will denote
the open norm ball centered at x with radius », B will denote the open norm
ball, B(N(S), 1), and B will denote the closure of B.

1. Uniqueness of centers.

Definition 1.1. C, denotes the collection to which the interval, [x, y], belongs
if and only if x and y are two points of S such that |jx|| = 1 and ||y|| = 1.
D, denotes the subcollection of C; to which [x, y] belongs if and only if ||x|| =
ll¥|| = 1. If [x, y] is in Ci, then I(x, y) denotes the interval [p, q] of D; such
that [x, y] S [p, ¢], and |[p — =[[ < [[p — yll.

Definition 1.2. Suppose that C is a subcollection of C;. The statement that C
is uniformly convex means that if Z > 0, then there is a number, d, in (0, 1)
such that if [x, y] is in C, and if [[x — y|| = &, then [[3x + 3y[| = 1 — d.

THEOREM 1.1. Suppose that C is a subcollection of Ci. Then the following two
statements are equivalent:

(1) C s uniformly convex;

(2) if b > 0, then there is a number, d, of (0, 1) such that if [x, v] is in C, and
if ||x — y|| = k, then there is a point, w, of [x, y] such that ||w|] £ 1 — d.

Proof. Clearly (2) follows from (1). Assume (2) is true and %z > 0. Then
there is a number, d, of (0, 1) such that if [x, y] is in C and ||Jx — y|| 2 &,
then there is a point, p, of [x, y] such that ||p|| £ 1 — d. Hence there is a
number, ¢, of [§, 1] such that 3x + 3y = tp + (1 — ¢)3, where

- {x if e — Plll

zlle — o[l
y, if [Jx — pl| < 3

< 3lfx — 3.
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Then
3% + 3| = 2llpll + (1 — 2)]]z]]
=1-—-4u
=1-—3d

Hence C is uniformly convex.

THEOREM 1.2. Suppose that C is a subcollection of Ci, that D 1is the subcollec-
tion of Dy to which [p, q] belongs if and only if there is an interval, [x, y], of C
such that [p, q] = I(x, v), and that D is uniformly convex. Then C is uniformly
convex.

Proof. Suppose that 0 < % < 2, and suppose that d is a number of (0, 1)
such that if [«, 9] is in D, and if || — 9|| =2 &, then [|3u + $0|| = 1 — d.
Suppose also that [x, ¥]isin C, |jx — y|| = &, m = 3x + 3v, I(x,v) = [p, q],
and M = }p 4+ 1q. Then either m is in [p, M] or m is in (M, q].

Suppose that m is in [p, M], ||m|| > 0, and ¢ > 0 is the number such that
if 2 = M —+ tm, then ||z|]| = 1. Also, if & = ||m — p||/||M — p||, then m =
HM 4+ (1 — t)p, and if G = (1 + #1)m, then G is in [p, z]. Thus:

L — [lm|| z [|G]| = [|m]|
z tlls — M|
z Hh(1 = ||M])
> hd/2.

Hence |[m|| £ 1 — kd/2. A similar argument holds in case 7 is in [M, g], and
thus C is uniformly convex.

Note that if C has the following property, then D is uniformly convex in
case C is uniformly convex: if # > 0, then there exists a number, &, in (0, %)
such that if [p, ¢] is in D and ||p — ¢|| = %, then there exists an interval,
[x, ¥], of Csuch that ||x — y|| = k and I(x,y) = [p, q].

Definition 1.3. The statement that .S is uniformly convex in every direction
of K (u.c.e.d. K) means that if » and ¢ are points in K, and if 2 > 0, then
there is a number, d, of (0, 1) such that if x and vy are points in B such that
[lx — v|| = &, and for some number, ¢, x — y = ¢(p — ¢), then ||ix 4+ Iy|| <
1 — d. The statement that.S is u.c.e.d. means that.Sis u.c.e.d. S.

TaEOREM 1.3. Suppose that each of f and g is @ norm on S, that f is u.c.e.d.,
and that F is a uniformly convex norm on E, such that if each of (a, b) and (¢, d)
is a point of Ey such that 0 £ ¢ =< ¢, and 0 £ b = d, then F(a, b) £ F(c, d).
Let | - | be the function from S into Eq such that if x is in S, |x| = F(f(x), g(x)).
Then | - | is a u.c.e.d. norm on S.

The concept of u.c.e.d. was used by A. L. Garkavi [3] to characterize the
normed linear spaces in which no bounded point set has two Ceby%ev centers.
V. Zizler [4] has shown that if the conjugate space of S contains a total point
sequence, then s is isomorphic to a u.c.e.d. space.
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Definition 1.4. Suppose that M is an infinite bounded point set and that x is
a point. The statement that the nonnegative number, (M, x), is the radius of
M at x means that if » > (M, x), then M — M M B(x, r) is finite; and if
0<r<r(M,x), then M — MM B(x,r) is infinite. The statement that
r(M, K) is the radius of M relative to K means that (M, K) = inf {&| for
some p in K, B = r(M, p)}. The statement that the point, p, is a K center of
M means that p is in K and that »(M, p) = r(M, K). The statement that the
point, p, is a center for M means that p is an S center for M.

Definition 1.5. Suppose that M is a point set and that D is a subset of M.
The statement that D is a principal subset of M means that M — D is finite.

Definition 1.6. Suppose that M is an infinite point set and that p is a point.
The statement that M is almost symmetric about » means that if ¢ > 0, then
there is a principal subset, R, of M such that if x is in R, then 2p — x is in R,
or RM B(2p — x, ¢) is infinite.

THEOREM 1.4. Suppose that M is an infinite bounded point set which is almost
symmetric about a point, p. Then p is a center of M.

Proof. Clearly if r(M, p) = 0, then (M, S) = 0, and p is a center of M.

Suppose that7 = 7(M, p) > 0,andm = r(M,S) < r,and 0 < k < r — m.
Let ¢ be a point of .S, and let R be a principal subset of M such that if x is in R,
then 2p — x isin R or RN B(2p — «x, k) is infinite. Since m + k < », K =
R — RN B(p, m + k) is infinite.

Let K; = {x in K|2p — x is in R}, K» = K — K, and for each x in Ko,
let R(x) = B(2p — x, k) M R. Also let

Hi(g) = {xin K| [|x — ¢|| =2 m + k/2},
and let Hy(q) = Ky — H1(q). Then one of K;, H,(q), and H»(q) is infinite.

If X, is infinite, and if x is in K, then ||x — ¢|| + |l¢ — 2p — x)|| =
2||x — p|| = 2(m + k), and it follows that M — M M B(g, m + k) is infinite;
thus, r(M, q) = m + k.

Now if x isin K, and if yis in R(x), then [|¢ — || + ||y — ql| = ||x — y|| =
e — (2p —x)|| — |20 —% — 9| = 2m + k. 1If Hi(g) is infinite, then
r(M,q) =2 m+ k/2. If x is in Hs(q), and if y is in R(x), then ||y — ¢|| =
m + k/2, and since R(x) is infinite, (M, q) = m + k/2.

So for each point, ¢, in S, (M, q) = m + k/2; thus, r(M,S) = m + k/2.
r(M, S) = m; thus, by contradiction, (M, p) = (M, .S). Hence p is a center
of M.

THEOREM 1.5. Suppose that K is convex. Then each two of the following seven
statements are equivalent:

(1) Sts u.ced. K;

(2) no infinite bounded point set in S has two K centers;

(3) no countably infinite bounded point set in S has two K centers;

(4) if M is an infinite bounded point set in S which is almost symmetric about
a point, p, in K, then p is the only K center of M;
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(5) if p and q are points in K such that ||p — q|| < 2, then B(p, 1) M B(q, 1)
has only one K center;

(6) if p and q are pointsin K such that ||p — q|| < 2, thenr (B (p,1) N\ B(g,1),K)
<L

(7) no infinite bounded convex point set has two K centers.

Proof. Assume that M is an infinite bounded point set which has two K
centers, p and ¢q. Let Q = 3p + 3¢. Clearly Q is also a K center of M, and
r(M,K) > 0.

Let & = ||p — ¢||/2¢(M, K), and let d be a number in (0, 1). Let r =
r(M, K) 4+ dr(M, K), and let v = r(M, K)(1 — d). There is a point, ¢, in
B(p, r) N\ B(g, r) M M which is not in B(q, 7). Let x = (p — t)/r, and let

y=(g—1t)/r.xandyareinB,x —y =1/r(p —q),and ||x — || = ||p —ql|/r
> h.
3% + 3yl = [1Q — ¢|/7
=7r/r
>1—4d.

Hence S is not u.c.e.d. K; thus, (1) implies (2).

Clearly (2) implies (3).

Assume (3), and assume that M is an infinite bounded point set which is
almost symmetric about a point, p, in K. By Theorem 1.4, p is a center of M;
thus, p is a K center of M. If (M, K) = 0, then clearly p is the only K center
of M.

Assume that 7 (M, K) > 0. For each positive integer, %, let R, be a principal
subset of M such that if x is in R,, then 2p — x is in R, or R, N\ B(2p — «x,
r(M, K)/n) is infinite. For each positive integer, #, R, — R, "\ B(p,r(M, K) —
r(M, K)/2n) is infinite; thus, there is a sequence, x1, X3, . . . , of distinct points
of M such that for each positive integer, #, %, is in R,, and |[x, — p|| =
r(M, K) — r(M, K)/2n. Let y1, 2, . . . be a sequence of points in M such that
for each positive integer, n, v, = 2p — x, if 2p — x, is in M, and if 2p — x,
is not in M, then v, is a point of M M B(2p — x,, r(M, K)/=n) such that if
i < m, then y; # y,. {¥1, y2, ...} is infinite.

Let L = {x1, y1, X2, ¥2, .. .}. L © M; thus, r(L, K) < »(M, K). Suppose
that » < (M, K). Let N be a positive integer such that if # > N, then
r(M,K) —r(M, K)/n > r. Forn > N,

Hxn - y”H 2 ”xn — (2 - xn)” - ”217 — Xy — Ynll
S
> 2r.

https://doi.org/10.4153/CJM-1973-105-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-105-3

990 J. R. CALDER, W. P. COLEMAN, AND R. L. HARRIS

So, if tis in K, either x, or y, is not in B(¢, r); thus, L — L M B({, r) is infinite.
This implies that 7(L, K) = r(M, K); thus, (L, K) = r(M, K). So if a point,
x, 1s a K center for M, then x is a K center for L. L has only one K center; thus,
M has only one K center.

Hence (3) implies (4).

Now assume (4) and assume that p and ¢ are points in K such that
[lp —ql] < 2. Let L = B(p, 1) N B(g, 1). L is symmetric about 3p + 1q,
and 3p + 3¢ is in K; thus, L has only one K center. Hence (4) implies (5).

Assume (5), and assume that p and g are points of K such that||p — ¢|| < 2.
Let M = B(p, 1) N\ B(q, 1). If (M, K) = 1, then both p and ¢ would be
K centers of M. M has only one K center; thus, (M, K) < 1. So (5) implies
(6).

Now assume (1) is not true. Then there are points, # and v, in K and a
positive number, %, such that 2 <1, & < |lu — 9||, and if d is a positive
number, then there are points, x and y, in B such that ||x — || = &, for some
number, ¢, x —y = ¢(u — v), and ||3x + 3y|]| = 1 — 4.

Let » and ¢ be points in [#,v] such that |[p —¢|| =h Let M =
B(p, 1) N\ B(q, 1). p and ¢ are in K; thus, r(M, K) =< 1.

Suppose that d > 0. Let x and y be points of B such that |[x — y||
for some positive number, ¢, p — ¢ = c(x — ), and ||3x + Iy|[| = 1
B=1lp —qll =c¢llx —yl|| = ch; thus1 — ¢ = 0.

%

h,
d.

!(x+i>)+(y+q)_
2

lx+y _p—gq
2 P”=!.x_§l_ 7|

Il

3o + 3 —cle — )]
A = ox|| + 310+ o)yl
1.

Likewise, ||[(x + ) + (v + ¢)1/2 — ¢|| = 1; thus, [(x + 2) + (y +¢)]/2 is
in M. |[c+p+y+q9)/2— P4+ ¢/2l =3x+ 3yl 21 —d. Since M
is convex, this implies that r (M, (p + ¢)/2) = 1 — d; thus, r(M,(p + ¢q)/2) =
1. M is symmetric about (p + ¢)/2; thus, (p + ¢)/2 is a K center for M.
r(M, K) =1, and r(M, (p + q)/2) = 1; thus, r(M, K) = 1. This implies
that (6) is not true; thus, (6) implies (1).

Clearly (2) implies (7). Assume (7), and assume that p and ¢ are points of
K such that||p — q|| < 2. Let M = B(p, 1) M B(g, 1). M is symmetric about
3p + 3gq; thus, M has a K center. M is infinite, bounded and convex; thus,
M does not have two K centers. Hence (7) implies (5).

IIA

IA

THEOREM 1.6. The following two statements are equivalent.

(1) of M 1is an infinite bounded point set and L s the closed convex hull of M,
then M does not have two L centers;

(2) S zs u.ced.
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Proof. Assume that (2) is not true. Then by Theorem 1.5, there is an infinite
bounded point set, D, which has two centers, p and ¢. Let M = D \U {p, g},
and let L be the closed convex hull of M. Then p and ¢ are L centers of M.
Hence (1) implies (2).

Now assume (2), and assume that M is an infinite bounded point set. Let L
be the closed convex hull of M. Clearly S is u.c.e.d. L; thus, by Theorem 1.5,
M does not have two L centers So (2) implies (1).

Definition 1.7. The statement that S has property H in every direction of
K (HK) means that if # > 0, and if p and ¢ are two points of K, then there is
a number, d, in (0, 1) such that if x # N(S) is a point such that for some
number, ¢, x = ¢(p — ¢), and B(x, 1 — d) intersects B, then there is a point,
¢, such that ||¢]| < h,and B N\ B(x, 1 — d) C B(t, 1 — d). If t is also required
to be in the interval, [N (S), kx/||x||], then S is said to have linear property H
in every direction of K(LHK). If S has HS (LHS), and if for each 2 > 0,
there is a number, d, as above which does not depend on the direction, then S
is said to have property H (linear property H).

THEOREM 1.7. Suppose that S is strictly convex and that K is convex. Then each
two of the following three statements are equivalent:

(1) S s u.ced. K;

(2) S has LHK;

(3) S has HK.

Proof. Assume (1), and assume that ¢ is a point of unit norm such that S is
uniformly convex in the ¢ direction. Suppose that z > 0. Let d be a number in
(0, 1) such that if x and ¥ are two points in B such that for some number, ¢,
x —y =ct,and ||x — y|| = &, then ||3x + 3v|| < 1 — d. Let & be a number
such that B(kt, 1 — d) intersects B, & = 0.

Assume that |k] < k. Then |ki|| < &, k¢ is in [N(S)kkt/|k|], and
BNBkt, 1 —d) CBkt,1 — d).

Now assume that |k| = k. Let ¢ = (kk/2|k|)t. |lgl| < - and ¢ is in
[N(s), (hk/|k])]. Let x be a point in B N B(kt, 1 — d), and let y = x — 2q.
1 — &/|k| = 0; thus,

Wkt h h I
]l = lm—m”(m‘l)x[}
h h
T C I

<L

Hence yisin B.x — y = 2q = (hk/|k|)t, and ||x — y|| = &; thus, [|3x + 3y|| <
1 —d. ||3x + 3y|| = ||x — q||; thus,xisin B(g, 1 — d). So BN B(kt,1 — d)

This implies that .S has linear property H in the ¢ direction; thus S has LHK.
So (1) implies (2).
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Clearly (2) implies (3). Assume (3), and let { be a point of unit norm such
that .S has property H in the ¢ direction. Suppose that z > 0. Let d be a number
in (0, 1) such that if & is a number such that B intersects B (kf, 1 — d), then
there is a point, ¢, such that ||g|] < #/2,and B N\ B(kt,1 — d) € B(g, 1 — d).

Suppose that x and y are points of B such that ||x — || = &, ||3x + || =

1 — d, and for some number, ¢, x —y =ct. |[x — (x —y/2)|| = ||—y —
(x — 3)/2|| = ||3x + 3v||; thus,xand — yareintheclosureof B M B((x — ¥)/2,
1 —4d).

Let p be a point such that ||p|| < £/2, and BN B((x — v)/2, 1 — d) C
B(p, 1 —d). Then [[x — p|| = [ly +p|| =1 —a.

(x—;b):l'(y+ﬁ).l )
, 2

ot bll=1-d

So S is not strictly convex.

S is strictly convex; thus, if x and y are points in B such that ||x — y|| = &,
and for some number, ¢, x —y = cf, then [|3x + 3y|| # 1 — d; thus,
[I3¢ + 3y|| < 1 — d. So S is uniformly convex in the ¢ direction. This implies
that S is u.c.e.d. K; thus, (3) implies (1).

TaEOREM 1.8. Suppose that g is a norm on Es such that g(1,1) = g(1, —1) =
¢(0,1) = 1. Then (Es, g) does not have linear property H.

Proof. Let h = g(1, 0)/2, and let d be a number in (0, 3). Let L denote the
line which contains (1, d) and (0, 0). For each number, b, in [0, 1], let L,
denote the line which contains (1, 1) and (b, 0), and let 2(0) = /(1 — d + db).
Then if 0 £ b < 1, L intersects L, at the point (k(b), dk(b)) and g((k (),
dk (b)) — (0,0)) < d.

Suppose that x is in the interval from (0, 0) to (1,d)/g(1, d) such thatg(x) <
h. h < 1; thus, there is a number, b, such that 0 < b < 1,and L N L, = {x}.
g((0,0) = (1,1)) =g —=b,1) =1, glx— (1,1)) = 1 — g((k(0), dk (b)) —
0,0)) >1 —d,and g((1,d) — (1,1)) = g(0,1 —d) =1 —4d.So (1,1) isa
limit point of B M B((1,d), 1 — d), and (1, 1) is not a limit point of
B(x,1 — d). This implies that B M B((1,d),1 — d) is not a subset of
B(x,1 — d); thus, (Es, g) does not have linear property H.

CoRrROLLARY 1.1. Suppose that S has linear property H. Then S is strictly convex.

Proof. Assume that .S is not strictly convex. Let p and ¢ be points such that
el = llgll = lI32 + 3gl] = 1, and let L be the linear span of {p, g}. Then
there is a norm, g, on E, such that g(1, 1) = g(1, —1) = g(0, 1) = 1, and
such that L is congruent to (E,, g). This implies that L does not have linear
property H; thus, S does not have linear property H. So if .S has linear property
H, then S is strictly convex.

THEOREM 1.9. Each two of the following three statements are equivalent:
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(1) S is uniformly convex;
(2) S has linear property H;
(3) S has property H and 1is sirictly convex.

Proof. Assume (1), and assume that # > 0. Let d be a number in (0,1 ) such
thatif x and y are points in Bsuch that ||x — y|| = &, then ||3x + Iy|]| < 1 — d.
Letp # N(S) be a point such that B(p, 1 — d) intersects B. Then by the proof
of Theorem 1.7, there is a point, g, in [N(S), ap/||p||] such that ||g|| < %, and
BN B(p, 1 —d) € B(g, 1 —d). This implies that S has linear property H;
thus, (1) implies (2).

By Corollary 1.1, if S has linear property H, then S is strictly convex; thus,
clearly (2) implies (3).

Assume (3), and assume that 2 > 0. Let d be a number in (0, 1) such that
if D is the intersection of a 1 — d norm ball with B, then there is a point, ¢,
such that ||g|| < /2, and D € B(g, 1 — d). By the proof of Theorem 1.7,
this implies that if x and y are two points in B such that ||x — v|| = %, then
[I3x + 3v|| < 1 — d; thus, S is uniformly convex. Hence (3) implies (1).

COROLLARY 1.2. There is a reflexive Banach space which does not have property
H.

Proof. M. M. Day [2] has shown that there is a reflexive Banach space, .S,
which is strictly convex, but which is not uniformly convex. By Theorem 1.9,
S does not have property H.

We note that there is a norm, g, on /; (equivalent to the usual norm) such
that (I3, g) is locally uniformly convex and not u.c.e.d. There is a norm, #,
on ¢ such that (cg, £) is u.c.e.d. but not locally uniformly convex.

TuaeoreM 1.10. If M is an infinite bounded point set and p is a center of M,
then p is a center of each principal subset of M.

2. Existence of centers.

Definition 2.1. Suppose that M is an infinite bounded point set and that
r > r(M, K). Then G(M, K, r) is the set to which p belongs if and only if p
is a point of K, and 7(3, p) < r. If M has a K center, then G (M, K) is the set
of all K centers of M.

The following lemma is stated without proof.

LEMMA 2.1. Suppose that M is an infinite bounded point set in S and that
r > r(M, K). Then:

1) G(M, K, r) is bounded;

(2) if K is closed, G(M, K, r) is closed;

(3) if K is convex, G(M, K, r) is convex;

(4) if r1 > 7, then G(M, K, r) € G(M, K, r1);
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GYifc=r—r(M, r) and of p is in G(M, K, r — ¢/2), then K N B(p,
¢/2) CG(M, K, r);

(6) a point, p, is a K center for M if and only if p is in G(M, r, R) for each
R > r(M, K).

Definition 2.2. The statement that S is K center point complete means that
each infinite bounded point set in S has a K center.

THEOREM 2.1. Suppose that K s closed and compact. Then S is K center point
complete.

Proof. Suppose that M is an infinite bounded point set in S and that r, =
r(M, K) 4+ 1/n for each positive integer, n. If for some positive integer, #,
G(M, K, r,) is finite, then clearly M has a K center.

Suppose that G(M, K, r,) is infinite for each positive integer, n. Then there
is a sequence, X1, Xs, . . . of distinct points such that x, is in G(M, K, r,) for
each positive integer, #. Since K is compact, {x1, xs, . . .} has a limit point, x.
So x is a limit point of and thus in G(M, K, r,) for each positive integer, .
This implies that if » > 7(M, K), then x is in G(M, K, r); thus, x is a K center
of M.

THEOREM 2.2. Suppose that S is reflexive and that K is closed and convex. Then
S 1s K center point complete.

Proof. Suppose that M is an infinite bounded point set. For each positive
integer, n, let G, = G(M, K, r(M, K) + 1/n). Gi, Gs, ... is a monotonic
sequence of closed convex point sets, and S is reflexive; thus, there is a point,
p, which is in each term of the sequence. This implies that if r > r(M, K),
then p is in G(M, K, r); thus, p is a K center of M. So S is K center point
complete.

TurOREM 2.3. Suppose that K s a linear manifold in S and that A 1is a Hamel
basis for K. Let {ay, as, . . ., ay} be a finite subset of A which does not span K,
let Ly = K, and let L, be the linear span of A — {a1, ..., a,} forn =1,2,...,
N. Suppose that M is an infinite bounded point set in S and that 0 < n < N.
Then there is a point, p,, in K such that if r > r(M, K), then G(M, K, r) inter-
sects L, + pn.

Definition 2.3. Suppose that L is a linear manifold in S. The statement that
L has property H in S means that if 2 > 0, there is a number, d, in (0, 1) such
that if p is in L and if B(p, 1 — &) intersects B, then there is a point, ¢, in L
such that ||g|| < #,and BN B(p,1 —d) € B(q,1 — d).

Definition 2.4. Suppose that K is a linear manifold in S. The statement that
K almost has property H in .S means that there is a linear manifold, L, of K
and a finite point set, 4, of K such that L \U 4 spans K, and L has property
Hin S.

THEOREM 2.4. Suppose that K is a complete linear manifold in S and that K
almost has property H in S. Then S 1s K center point complete.
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Proof. Let L be a linear manifold in K such that there is a finite point set, 4,
in K such that L\J A spans K, and L has property H in S. Let M be an
infinite bounded point set in S. If L = {N(S)}, then clearly there is a point, p,
in K such that if » > »(M, K), then L + p intersects G(M, K, r). If
L = {N(S)}, then by Theorem 2.3, there is a point, p, in K such that if
r > r(M, K), then L 4 p intersects G(M, K, r). Let hy, ko, . . . be a sequence of
positive numbers such that II5 (1 — %) = 4, 2.4, exists, and k; < 1 for
1 = 1,2,...Foreach positive integer, , let d, beanumberin (0, 1) such thatif ¢is
inL,and B(¢,1 — d,) intersects B, then thereisapoint, ¢, in Lsuch that||q|| < &,
and BN\ B, 1 —4d,) € B(g, 1 —d,), letr, =M, K)/IIZ,(1 — d,), and
let p, be a pointin L + p such that 7 (M, p,) < 7,. Clearly, d, < h, for each #;

thus,
I_Il 1—dy) =z Ul (1 — hy).
Tur1 = 7, — 1d for each n; thus 74, 7o, . . . converges to (M, K).

Since L has property H in S, there is a sequence of points, qi, ¢, -
L + p such that for each positive integer, #,

qu-l - QnH < rnhm B(Qny 7n) m B(Pn+1y rn-H) _C_ B(Qn+11 7n+1)

and 7’(]‘{, Qn+1) < Tptie
Suppose that ¢ > 0. Let IV be a positive integer such that if m > n = N,
then 3™, < ¢/r1. Suppose that m > n = N. Then

., In

llgn — @all = [lgn = gnall + - . + llgis — aall

m—1

Z 7y

i=n

IA

m—1
<n Z hy

<ec.

So q1, ge, . . . is a Cauchy sequence in K. K is complete; thus, there is a point,
g, in K such that ¢i, ¢e, . . . converges to g.

Suppose that 7 > r(M, K). Then there is an integer, %, such that |r, —
r(M,K)| < (r — r(M,K))/2,and ||g, — ¢|| < (r — »(M, K))/2. This implies
that B(q,, ) € B(q, r); thus, (M, ¢) < r. This implies that (M, q) =
r(M, K); thus, ¢ is a K center of M. Hence .S is K center point complete.

COROLLARY 2.1. Suppose that S is complete and has property H. Then S is
S center point complete.

Proof. Since S has property H, S almost has property H in S; thus, by
Theorem 2.4, .S is .S center point complete.

Definition 2.5. Suppose that I is a set. Then m(I) denotes the set of all
bounded functions from I into the numbers.
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Definition 2.6. Suppose that I is a set, that £ > 0, and that ¥ = {x,} is a
point in m (). Then x(k) is the point of m(I) defined by: if j is in I, then

x]-, lf Ix]l é k;
B ifx; < —F.

The statement that the linear manifold, L, of m(I) is a T-manifold means
that if x is in L and if 2 > 0, then x (k) is in L.

THEOREM 2.5. Suppose that I is a set and that L is ¢ T-manifold in m(I).
Then L has property H in m(I).

Proof. Suppose that 2 > 0, that 0 < d < # < min {1, %}, and that p is a
point in L such that B(p, 1 — d) intersects B. Let ¢ = p(k), and let x be a
point in m(I) which is in BN B(p, 1 — d). Then ¢ is in L, and ||g|| = min
{2, &} < k. Also if jis in I,

lx; — le’.if [ps] < ks
lx; — g5l = qlx; — k| if B < py;
Ix]' + kl, if pj < _k.

If g; = pj, then |v; — g5l = |5 —p)| S [lx — p[| <1 —d. If g; = k and
ife S xj,thenx; — gyl =0; — k<1 —-—k<1—4d.lfg,="Fkandif k> x;,
then |x; — q;l =k —x; < p; —x; = ||x — p|]| < 1 — d. A similar argument
holds in case ¢; = —k; thus, ||[x — ¢|| < 1 — d. So L has property H in m ().

COROLLARY 2.2. Each of m, ¢, ¢, and c[0, 1] has property H, and cy has
property H in m.

THEOREM 2.6. There is a Banach space, S, which almost has property H in S,
but which does not have property H.

Proof. Let p = (1, 3,1, %, 5, 1,3, %, %, 1,...) = (p:), let S be the linear
span of ¢ \J {p}, and let || - || be the sup norm on .S. Clearly S is complete.
¢o has property H in m, and S is a linear manifold of m which contains ¢; thus,
¢o has property H in S. So S almost has property H in S.

Suppose that # < § and that d is in (0, 1). If d > %, then clearly there is
a point, x, in S such that if ¢ is in B(N(S), %), then B(x, 1 — d) M B is not
a subset of B(¢g, 1 — d).

Suppose that d < % and that ¢ is in B(N(S), %). Then there is a number, %,
and a point x = (x1, %2, ...) in ¢ such that ¢ = kp + x. ||¢|| < &; thus,
|k < h.

Let # be the positive integer such that 1/2 > d, and 1/n 4+ 1 < d. Let N
be a positive integer such that if 4 = N, then |x;| < &/n, and let m be a
positive integer such that m = N, and p,, = 1/n. Then kp, < hp, < in;
thus, ¢n = X, + kpm < b/n + $n < in. Hence —gq, > —in.
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Let b be a number such that 1 4+ i# — 4n < b < 1, and let ¢ be a number
such that wd < ¢ < 1. Thend —¢/n <b—d <1 —d.Lety = (31, %2, ...)
be the point such thaty,, = b — ¢/m,and y;, = 0if i 3 m, and let py = cp + 9.
[poll = sup {c, b}; thus, [|po|| < 1. [[p — pol| = sup {1 —¢, b — ¢ n}; thus,
Il — poll <1 —=d. So pyis in BOAB(p, 1 —d). |lpo — qll Z cpm + ym —
Gn — b — gn = b — In; thus, ||po —¢|| > 1 — $n = 1 — d. Hence p, is not
in B(g, 1 — d). So S does not have property H.

Definition 2.7. Suppose that M is a bounded point set in S and that x is a
point in S. The statement that the nonnegative number, R(M, x), is the
CebySev radius of M at x means that if » > R(M, x), then M € B(x, r), and
if 0 <7 < R(M, x), then M is not a subset of B(x, 7). The statement that
R(M, K) is the CebySev K radius of M means that R(M, K) = inf {R(M, x)|x
is in K}. The statement that the point, p, is a CebySev K center of M/ means
that p is in K, and R(M, K) = R(M, p).

Note that Theorem 1.10 is not true for CebygSev centers.

THEOREM 2.7. Suppose that M is an infinite bounded convex point set in S and
that p is a point of S. Then R(M, p) = r(M, p).

Proof. Suppose that r > R(M, p). Then M & B(p, r); thus, (M, p) < r.
Hence r (M, p) = R(M, p).

Suppose that » > (M, p). Then M — M M B(p, r) is finite. Since M is
convex, this implies that if ¢ > 0, then M C B(p, » + ¢); thus, R(M, p) £
r + c.So R(M, p) £ r(M, p). Hence R(M, p) = r(M, p).

COROLLARY 2.3. Suppose that M is an infinite bounded convex point set in S
and that p is a point of S. Then r(M, K) = R(M, K), and p is a K center of M
if and only if pisa Cebysev K center of M.

THEOREM 2.8. Suppose that S is K center point complete. Then S is Cebysev K
center point complete.

Proof. Suppose that x is a point of S. Let x1, x5, . . . denote a sequence of
distinct points which converges to x. Let M = {xy, xs, . . .}, and let L = {x}.
M has a K center, p, and clearly p is also a CebySev K center of L. So each
degenerate point set in S has a CebySev K center.

Suppose that L is a nondegenerate bounded point set in S. Let M denote
the convex hull of L. M is infinite and bounded; thus, M has a K center, p.
Since M is convex, p is also a CebySev K center of M. A norm ball contains M
if and only if it contains L; thus, p is a Ceby%ev K center of L.

Hence S is CebySev K center point complete.

THEOREM 2.9. Suppose that S is a conjugate space and that M 1s an infinite
bounded convex point set in S. Then M has a center.

Proof. It is known that .S is CebySev S center point complete [3]; thus, by
Corollary 2.3, M has a center.
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THEOREM 2.10. There 1s a u.c.e.d. conjugate space isomorphic to m which
contains an infinite, bounded, closed, and convex point set, M, which contains none
of its centers.

Proof. Let || - || denote the usual norm on 7, and let g denote the norm on m
defined by

1

) 2 |3
gs) = [Hle + 32 fi—;f] Jif v = (x,) s in m.

Clearly g is equivalent to || - ||, and by Theorem 1.3, (m, g) is u.c.e.d. Let go
denote the norm on ¢, such that go(x) = g(x) if x is in ¢,. Then (m, g) is the
second conjugate space of (co, go).

Let M ={x = (x;) inc0=x; <1forz=1,2, ...}, and let p = (p,)
be a point in ¢y. Let # be an integer such that p, < %, and let ¢ = (¢;) be a
point of ¢o such that ¢, = 3, and g; = p; if ¢ # n. Suppose that x = (x;) is
in M. Let y = (y;) be the point of M such thaty, = 1 and y;, = x; if 7 & m.
llg — «]|> = llp — 9|5 and (g2 — %)2/4" < (bu — yu)?/4" — 2/47; thus,
g2(g — x) < g2(p — v) — tn. This implies that r(M, p) > r(M, q); thus,
no point of ¢, is a center of M. Hence no point of M is a center of M.

COROLLARY 2.4. There is a u.c.e.d. space isomorphic to co which contains an
infinite, bounded, closed, and convex point set which does not have a center.

Proof. Let go denote the norm and M denote the set defined in the proof of
Theorem 2.10. Clearly g, is equivalent to the usual norm on ¢, and (¢, go) is
u.c.e.d. by Theorem 1.3. By the proof of Theorem 2.10, M has no center.

THEOREM 2.11. T'here is an infinite, bounded, closed and convex point set, M,
i co which does not have an M center.

Proof. Let f = (f;) denote a point in the conjugate space of ¢, such that

fi=fo=1,> fi=3,andf; > 0fori =1,2,...
i=1

Let M = {x in ¢o|f(x) = 1 and ||x|| < 1}. Clearly M is infinite, bounded,
closed, and convex. Let ¢ denote the distance from M to the origin. Clearly
¢c>0.

Suppose that x = (x;) is in M and that e > 0. Let # be a positive integer
such that |x,| > ||x|| — e/2.

Case 1. Suppose that n = 3. Let y = (y;) be the point such that if x, = 0,
then y1 = f,, y2 = 1, 3, = —1, and y; = 0 otherwise, and if x, < 0, then
Y1 = —fo, ¥2=1, v, =1, and y; = 0 otherwise. ||y|| = 1, and f(y) = 1;
thus, yisin M. ||x — || = |®n — yul = 14 || > 1+ [|x]| — e

Case 2. Suppose that z = 1 or n = 2. Let k =1 if » = 2, and let £ = 2
if n = 1. X2sf, = 1; thus, there is a positive integer, N, such that Y i sf; >
1 —e/2. Lety = (y,) be the point such thatifx, = 0,y = 1,5, = —> 1 sf,,
y;=1fori=3,4 ..., N,and y, =0 for ¢ > N, and if x, <0, 3, = 1,
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Yo = Yosfn, ¥y = —1fori=3,4,...,N,and y, = 0 for i > N. [lvl] =1,
and f(y) = 1;thus,yisin M. |jx — y|| = |x, — 3| > 1 4 [|x]| —e.

r(M,x) >1 + ||x|| — esince [[x — ¥|| > 1 + ||x|| — ¢, and M is convex; thus,
r(M,x) 2 1+ ||x||. Since 7 (M, N(co)) < 1,7(M,x) <1+ ||x||; thus,r(M,x) =
1 4 ||x||. Hence x is an M center for M if and only if x is a near point of M
to N (¢co). Since [ is not regular, M has no near point to N (co); thus, M has no
M center.

COROLLARY 2.5. There is an infinite, bounded, closed and convex point set, M,
in m which has no M center.

Proof. Clearly the point set, M, defined in the proof of Theorem 2.11 is such
an example.
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