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Invariant Measures and Natural Extensions
Andrew Haas

Abstract. We study ergodic properties of a family of interval maps that are given as the fractional parts
of certain real Möbius transformations. Included are the maps that are exactly n-to-1, the classical
Gauss map and the Renyi or backward continued fraction map. A new approach is presented for
deriving explicit realizations of natural automorphic extensions and their invariant measures.

1 Introduction

The focus of this paper is the family of all piecewise Möbius maps of the unit interval
that are finite on (0, 1) and are of the form T(x) = 〈B(x)〉 where B is a Möbius
transformation for which 0 and 1 take values in Z ∪ {∞}. Here 〈α〉 denotes the
fractional part of the number α. The restriction to a maximal open subinterval on
which the map is continuous is always a homeomorphism onto (0, 1).

The work is made easier by carefully normalizing the transformations. Consider
the family of Möbius transformations

Am,k(x) =
−mkx

(m− 1)x + 1− k−m
.

For values m, k �= 0 and k �= m − 1, Am,k takes 0 to 0 and 1 to m. The picture
is completed by considering three additional one-parameter families of mappings
whose behaviors resemble the Am,k in an essential way. Define A∞,k(x) = kx

1−x ,

A−∞,k(x) = k(1−x)
x and Am,∞(x) = mx. In general we shall take m to be ±∞ or

an integer |m| > 1. The reason for this choice will shortly become clear.
As usual, [α] shall denote the greatest integer less than or equal to α and 〈α〉 =

α− [α] the fractional part of α. Then for x ∈ [0, 1] define

Tm,k(x) = 〈Am,k(x)〉

where we modify this rule by assigning Tm,k(1) = 1 when 2 ≤ m < ∞, Tm,k(0) = 1
when−∞ < m ≤ −2.

If k lies within an appropriate parameter space, it is possible to classify the dynamic
and ergodic properties of the map Tm,k and, where meaningful, to construct an ex-
plicit realization of its natural automorphic extension [3]. The parameter space Lm

for a given m is chosen so that (0, 1) maps onto the interval with endpoints 0 and m.
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98 Andrew Haas

This is exactly the set of values k for which Am,k is non-constant and A−1
m,k(∞) �∈ (0, 1).

Let R̂ = R ∪∞. Then we have

Lm =




R̂ \ [1−m, 0] if m ≥ 2

R̂ \ [0, 1−m] if m ≤ −2

R \ {0} if m = ±∞.

It is easily seen that for a piecewise Möbius map T(x) = 〈B(x)〉 of the type we are
interested in there is precisely one pair of values m, k so that T(x) = Tm,k(x) for all
x ∈ (0, 1). In particular, B = Am,k + u for some unique m, u ∈ Z and k ∈ Lm.

For certain parameter values the map Tm,k possesses a natural automorphic ex-
tension T̃m,k which is defined on a rectangle in the plane. Each T̃m,k has a unique
invariant probability measure, absolutely continuous with respect to Lebesgue mea-
sure, with a density of the form ρ(x, y) = C

(x−y)2 for some normalizing constant C ,
depending on m and k. The construction that produces these densities is motivated
by a technique of Adler and Flatto [1], later simplified by Series [16]. In their ap-
proach the classical Gauss measure 1

log 2
dx

1+x is derived by viewing the Gauss transfor-

mation 〈1/x〉 as a factor of a section of the geodesic flow on the unit tangent bundle
of the Modular surface. These methods were generalized to other transformations
and surfaces in [5] and provided a vague inspiration for the results in [6] and [7].

By applying theorems of Rychlik [15] and Thaler [17] it is shown that on a large
subset of the parameter space the extension is Bernoulli; while for certain limiting
cases it is a K-automorphism with infinite invariant measure. We also show that for
the particular family with m = ∞ and k > 0 every possible finite entropy occurs
exactly once. Then by a famous theorem of Ornstein [9] the family provides a model
for all finite entropy Bernoulli automorphisms. Finally, by more direct methods,
it is possible to exhibit explicit absolutely continuous invariant measures (possibly
infinite or signed) for all of the interval maps Tm,k considered.

The ergodic properties of this family of mappings was studied by Rudolfer [11]
and in that paper he derived the invariant measures for the family with m = ∞ and
k > 0. The question of their Bernoulliness was addressed by Rudolfer and Wilkinson
[14] for positive m. Another important approach for constructing an explicit realiza-
tion of the natural extension for certain interval maps was given by Nakada [8] and
has found wide application. See for example [2].

As was evident in the definition of Lm, there are several cases to consider. The
first important distinction is made with regard to whether Am,k is an increasing or a
decreasing function on (0, 1). When k ∈ Lm and Ak,m is decreasing the iterate T2 =
T ◦ T is an expanding map of the interval, that is, for some λ > 1, |(T2) ′(x)| > λ for
all x ∈ [0, 1] at which the derivative (possibly from the left or the right) makes sense.
This is proved in Lemma 1. For such maps the natural extension is shown to be a
Bernoulli automorphism and the invariant measure is computed by analogy to the
invariant measure for the geodesic flow on the hyperbolic plane. The classic Gauss
map A−∞,1 = 〈

1
x 〉 [3] belongs to this category.

More generally, a map for which some iterate has derivative of modulus bounded
below by a constant larger than one is called expanding. Define Em as the set of k for
which Tm,k is an expanding map.
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When A is increasing the dynamical behavior of T shows more variability. The
subset of k ∈ Lm for which Am,k is increasing is partitioned into disjoint sets Cm,
E∗m and Pm. Cm is an open set of values k for which the map T has either 0 or 1 as
an attracting fixed point. The fixed point has a large basin of attraction and, while
the map is neither ergodic nor conservative, there does always exist an infinite T-
invariant signed measure which is finite away from the repelling fixed point. E∗m = Em

is the set of expanding maps when m is finite. When m = ±∞, E∗m is the set of
k ∈ Em for which Am,k is increasing. It is important to keep in mind the distinction
between E∗m and Em for infinite m. As in the case when A is decreasing, if k ∈ E∗m
then T naturally extends to a Bernoulli automorphism with an explicitly computable
invariant measure. Finally, for k ∈ Pm either 0 or 1 is an indifferent(derivative one)
fixed point of T and the map is expanding on the rest of the unit interval. The natural
extension of T possesses an infinite invariant measure and is a K-automorphism. The
backward continued fraction or Renyi map A∞,1 = 〈

1
1−x 〉 [1] [5] belongs to this last

category.

2 Basic Properties

For all x ∈ R \ A−1(∞) the sign of the derivative A ′m,k(x) is in agreement with the
sign of−mk(1−k−m), k or−k for m respectively finite, +∞ or−∞. Consequently,
A ′(x) < 0 on (0, 1) for precisely the following parameter values: −∞ < m ≤ −2
and k ∈ Lm, m = ∞ and k < 0 or m = −∞ and k > 0. The first lemma treats the
case of decreasing T. Note that since T ′(x) = A ′(x), the one-sided derivatives at the
discontinuities of T will always agree. Thus it makes sense to consider the derivative
T ′(x) at all x ∈ [0, 1] except where one of the points 0 or 1 maps to∞.

Lemma 1 Suppose m, k are as above with A ′(x) < 0 on (0, 1). Then there is a number
λm,k > 1 so that |(T2

m,k) ′(x)| > λm,k for all x ∈ [0, 1] at which the derivative is defined.
As a consequence k ∈ Em.

Proof We argue when −∞ < m ≤ −2. The two other cases are similar. Let Il =(
A−1(l + 1),A−1(l)

]
where −l = 1, . . . , |m|. Il is the subinterval of (0, 1] on which

A(x) has integer part l. Also, if x ∈ Il then T2(x) =
〈

A
(

A(x) − l
)〉

. On Il define

Bl(x) = A
(

A(x)− l
)

. Then (T2) ′(x) = B ′l (x) = A ′
(

A(x)− l
)

A ′(x) > 0 for x ∈ Il. Bl

is an increasing Möbius transformation on Il and, since the second derivative changes
sign at B−1(∞) �∈ [0, 1], the second derivative B ′ ′l (x) is either positive or negative
on all of Il. Therefore the maximum and minimum values of the derivative B ′l are
attained at the endpoints of Il. The lemma is proved by analyzing B ′l at the endpoints.

First consider the value of the derivative at the right endpoint of Il, that is,
B ′l
(

A−1(l)
)
= A ′(0)A ′

(
A−1(l)

)
. Suppose k > 0. Since A ′ ′(0) = 2mk(m−1)

(1−k−m)2 > 0,

A ′ is negative and increasing. Therefore
∣∣A ′(A−1(l)

) ∣∣ ≥ |A ′(1)|. It follows that
B ′l (A−1(l) ≥ A ′(0)A ′(1) = m2 ≥ 4. If k < 0 then A ′ ′(x) < 0 on [0, 1] and∣∣A ′(A−1(l)

) ∣∣ ≥ ∣∣A ′(A−1(−1)
) ∣∣ . As a result

B ′l
(

A−1(l)
)
≥ A ′(0)A ′

(
A−1(−1)

)
=
( m− 1−mk

1− k−m

) 2
> 1.
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At the left endpoint of Il, B ′l (A−1(l + 1) = A ′(1)A ′
(

A−1(l + 1)
)

. Then for k > 0
we have

B ′l (A−1(l + 1) ≥ A ′(1)A ′
(

A−1(m + 1)
)
=
( 1−m2 −mk

k

) 2
> 1

and for k < 0, B ′l (A−1(l + 1) ≥ A ′(0)A ′(1) = m2 ≥ 4.

The next lemma gathers together some properties of the increasing maps.

Lemma 2 1. Suppose 2 ≤ m <∞.

a) A ′(x) > 1 for all x ∈ [0, 1] if and only if k ∈ (−∞,−m) ∪ (1,∞). Thus Em =
(−∞,−m) ∪ (1,∞).

b) If k = 1 then A ′(0) = 1 and A ′(x) > 1 for x ∈ (0, 1] and if k = −m then
A ′(1) = 1 and A ′(x) > 1 for x ∈ [0, 1). Thus, Pm = {1,−m}.

c) If 0 < k < 1 then A ′(0) < 1 and A ′(1) > 1. If −m < k < 1−m then A ′(0) > 1
and A ′(1) < 1. Thus Cm = (−m, 1−m) ∪ (0, 1).

2. Suppose m = ±∞

a) |A ′(x)| > 1 (where A ′(x) is defined in [0, 1]) if and only if |k| > 1.
b) If m = ∞ and k = 1 then A ′(0) = 1 and A ′(x) > 1 for x ∈ (0, 1). If m = −∞

and k = −1 then A ′(1) = 1 and A ′(x) > 1 for x ∈ (0, 1).
c) When k ∈ (0, 1), A ′(x) < 1 for x ∈ [0, 1−

√
k) and A ′(x) > 1 for x ∈ (1−

√
k, 1].

Thus C∞ = (0, 1). Similarly, when k ∈ (−1, 0), A ′(x) < 1 for x ∈ (
√

k, 1] and
A ′(x) > 1 for x ∈ [0,

√
k). Thus C−∞ = (−1, 0).

The proof is by elementary computation in the various cases and we leave it to the
curious reader. One keeps in mind that when m is finite A is concave up or down
depending on whether k > 0 or k < 0. Consequently, for all cases it suffices to check
A ′(x) at either 0 or 1.

Remark 1 Note that Em = Lm for m ≤ −2, E∞ = (−∞, 0) ∪ (1,∞), E−∞ =
(−∞,−1) ∪ (0,∞), P∞ = {1} and P−∞ = {−1}.

3 The Natural Extension

Given an endomorphism T of a measure space, there is a well known construction
[3] that gives an automorphism T̃ of a new measure space very naturally related to T
and therefore called the natural automorphic extension of T. The idea parallels that of
extending the shift map on a space of infinite sequences to the shift on an associated
space of biinfinite sequences. While the construction is abstract in nature, we shall
look at explicit concrete realizations of the natural extension.

The natural extensions of the maps Tm,∞(x) = mx are well understood and are
invariant with respect to Lebesgue measure. For example, on [0, 1]× [0, 1]

T̃2,∞(x, y) =
(
〈2x〉, 1/2(y + [2x])

)
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Attention will therefore be restricted to the cases k �=∞.
Throughout this section we suppose that k ∈ Em ∪ Pm. The extension will be

constructed for a measure equivalent restriction of Tm,k to a subset Im,k of [0, 1]. For
decreasing T more care must be taken. The problems that arise are similar to those
with the classical Gauss map 〈 1

x 〉 where it is customary to remove the set of rational
numbers from the interval.

The set of m, k-rationals is defined as Qm,k = {x ∈ (0, 1) | Tn(x) = 0 for some
n > 0}. Then define

Im,k =

{
[0, 1) if Tm,k is increasing or m �= −∞

(0, 1) \Qm,k if Tm,k is decreasing or m = −∞.

The extension of Tm,k is defined as a self map of a cartesian product Im,k × Jm,k. In
the increasing and m �= −∞ cases set

Jm,k =

{
(1− k−m, 1− k] if m ≥ 2

(−∞, 1− k] if m =∞, k ≤ 1.

Again, for decreasing Tm,k and m = −∞ the definition of Jm,k is more involved. First,
define the sets

J∗m,k =




(1− k, 1− k−m) if m ≤ −2

(1− k,∞) if m =∞, k < 0

(−∞,−k) if m = −∞, k > 0

(−k,∞) if m = −∞, k ≤ −1.

If we let Am,k act on the sets J∗m,k we get

K∗m,k = Am,k( J∗m,k) =




(−k, 1− k) if m ≤ −2

(−k, 1− k) if m =∞, k < 0

(−k− 1,−k) if m = −∞, k > 0

(−k− 1,−k) if m = −∞, k ≤ −1.

Let Vm,k = {v ∈ Z | K∗m,k − v ⊂ J∗m,k}. The integers in Vm,k are exactly the values
attained as the integral parts of Am,k(x) as x varies over (0, 1). Let α, β denote the
endpoints of the interval K∗m,k. Set Φ1 = {α − v, β − v | v ∈ Vm,k} and inductively
define the sets Φn = {Am,k(x) − v | v ∈ Vm,k and x ∈ Φn−1}. Then let Φm,k =⋃∞

n=1 Φn and define Jm,k = J∗m,k \ Φm,k. Certainly, Jm,k differs from the interval J∗m,k
by a countable set of points. It also has the property that Am,k( Jm,k) − Vm,k = Jm,k,
which is important for defining the extension.

For 2 ≤ |m| ≤ ∞ and k ∈ Em ∪Pm define the map T̃m,k : Im,k× Jm,k → Im,k× Jm,k

by

T̃m,k(x, y) =
(

Am,k(x)− [Am,k(x)],Am,k(y)− [Am,k(x)]
)

(1)

As a result of the choices made above, the map is real valued and measurable, and the
action on the first coordinate agrees with T on a set of full measure.
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Theorem 1 T̃m,k is an automorphism of Im,k × Jm,k with invariant density ρ(x, y) =
1

(x−y)2 .

Proof We first show that T̃m,k is bijective for positive integers m. Define Il =[
A−1(l),A−1(l + 1)

)
and Kl = (−k − l, 1 − k − l] for l = 0, . . . ,m − 1. These

are partitions of the intervals [0, 1) and (1 − k − m, 1 − k], respectively. Il is exactly
the subinterval of [0, 1) on which [Am,k(x)] = l. Since A is increasing, A(1−k) = 1−k
and A(1− k−m) = −k it follows that the restriction T̃m,k : Il× (1− k−m, 1− k]→
[0, 1) × Kl is a bijection. The sets Il × (1 − k − m, 1 − k] are disjoint for differ-
ent values of l, as are the sets [0, 1) × Kl. It follows that T̃ is an automorphism of
[0, 1)× (1− k−m, 1− k].

More generally, fix m, k, let I = Im,k, J = Jm,k, K = Km,k = Am,k( Jm,k) and
V = Vm,k = {v ∈ Z | Km,k − v ⊂ Jm,k}. Define Il = {x ∈ I | [A(x)] = l} and
Kl = K − l. The restriction T̃ : Il × J → I × Kl is a bijection.

⋃
l∈V Il × J = I × J

and
⋃

l∈V I × Kl = I × J are both disjoint unions. As above, it follows that T̃ is an
automorphism.

Let D be a measurable subset of I× J. Define the measureµ, absolutely continuous
with respect to Lebesgue measure on I × J, by

µ(D) = µm,k(D) =

∫ ∫
D

dx dy

(x − y)2
.

Note that µ is finite as long as k �∈ Pm and for k ∈ Pm the measure has a singularity at
either (1, 1) or (0, 0) and is finite off a neighborhood of the singular point.

We need to verify thatµ(D) = µ(T̃−1D). There is no loss of generality in assuming
that D is a measurable subset of I × Kl for some l ∈ V . T̃ is invertible on I × Kl and
the inverse is given by T̃−1(x, y) =

(
A−1(x + l),A−1(y + l)

)
. The Jacobian derivative

of T̃−1 is then simply (A−1) ′(x + l)(A−1) ′(y + l).
We make use of the following well know identity that holds for any Möbius trans-

formation C and for z,w ∈ C with C(z),C(w) �=∞ [7]:(
C(z)−C(w)

z − w

) 2

= C ′(z)C ′(w).(2)

Applying the identity with C = A−1, z = x + l and w = y + l gives

µ(T̃−1D) =

∫ ∫
T̃−1D

du dv

(u− v)2

=

∫ ∫
D

(A−1) ′(x + l)(A−1) ′(y + l)(
A−1(x + l)− A−1(y + l)

) 2 dx dy

=

∫ ∫
D

dx dy(
(x + l)− (y + l)

) 2

= µ(D).
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Remark 2 The second part of the proof of Theorem 1 shows the universal invariance
of the density function ρ(x, y) = 1

(x−y)2 related to the hyperbolic metric. More gen-
erally, we have actually shown that for any Möbius transformation A and measurable
sets I, J ⊂ R that are sufficiently non-overlapping, if the map T : I× J → I× J given
by definition (1) is bijective then ρ is an invariant density for T.

Remark 3 Nakada’s approach [8] can also be applied to give an explicit realization
of the natural automorphic extension of the interval map Tm,k. Such an extension,

defined on a subset of [0, 1]×[0, 1] has the form T̃(x, y) =
(

T(x),A−1
(

y+[A(x)]
))

and induces a natural shift action on the associated continued fraction expansion.
This approach is analogous to the example given for the map T̃2,∞ earlier. When m =
±∞ it can be shown that the function 1

(1−xy)2 is an invariant density for the extension,
as expected. For finite m Nakada’s realization of the extension has an invariant density
that is a rational function depending non-trivially on the parameters m and k.

Corollary 1 For integers m with 2 ≤ |m| ≤ ∞ and k ∈ Em ∪ Pm the function

ρm,k(x) =




sgn(m)( 1
x+k−1 −

1
x+m+k−1 ) if |m| <∞

sgn(k)( 1
x+k−1 ) if m =∞

sgn(k)( 1
x+k ) if m = −∞

is an invariant density for Tm,k.

Proof T is a factor of the mapping T̃ and it is possible to induce a T-invariant mea-
sure ν from µ. Let ϕ : I × J → I be the projection ϕ(x, y) = x. Then ϕ ◦ T̃ = T ◦ ϕ
and the measure ν(D) = µ(ϕ−1D) is T-invariant. Fix m, k and let (α, β) be the
smallest open interval containing Jm,k. Since Jm,k is a subset of (α, β) of full measure

ν(D) = µ(D× J) =

∫
D

(∫
Jm,k

dy

(x − y)2

)
dx

=

∫
D

(∫ β
α

dy

(x − y)2

)
dx =

∫
D
ρ(x) dx

Considering the various cases gives the corollary.

4 Ergodic Properties

Theorem 2 For integers m with 2 ≤ |m| ≤ ∞ and k ∈ Em the dynamical system
(T̃m,k, µm,k) is isomorphic to a Bernoulli shift.

Proof After Rychlik [15] it will suffice for us to verify that T possesses the following
two additional properties: 1) for any open U ⊂ (0, 1) there is some integer n > 0 so
that Tn(U ) ⊃ (0, 1), and 2) Var | 1

T ′(x) | <∞.
Suppose that m, k have been fixed. Using a familiar approach, for example see

[3] pg.168, we define open intervals ∆l1,... ,ln where l1, . . . , ln,∈ Vm,k. Let I = (0, 1)
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and let ∆l =
(

A−1(l),A−1(l + 1)
)

, the interior of the interval Il defined above.
Observe that T maps ∆l bijectively onto I. Suppose ∆l1,... ,ln has been defined and
T maps ∆l1,... ,lk bijectively onto ∆l2,... ,lk for each k ≤ n. Then, in particular, Tn

maps∆l1,... ,ln bijectively onto I. By taking the restriction of Tn to the interval∆l1,... ,ln

define∆l1,... ,ln+1 = (Tn)−1(∆ln+1 ). It follows from the definition that for any sequence
l1, . . . , lk, T maps ∆l1,... ,lk bijectively onto ∆l2,... ,lk . It is also true that for fixed n the
union of all intervals of the form∆l1,... ,ln is the complement of a finite or a countable
nowhere dense set of points in I, depending respectively on whether the parameter
value m is finite or infinite.

Since in all cases T2 is expanding on (0, 1), |(T2) ′(x)| > λ > 1 for some λ > 1
and for all x so that T2(x) �=∞. Thus for n even and n > 2, |(Tn) ′(x)| > λn/2 for all
x ∈ ∆l1,... ,ln . It follows that |∆l1,... ,ln | < λ

−n/2. Consequently, for any interval U ⊂ I,
there is an interval∆l1,... ,ln with U ⊃ ∆l1,... ,ln . The first property follows.

In general | 1
T ′(x) | = |

1
A ′(x) | is a bounded monotone function with a smooth exten-

sion to [0, 1] and is therefore a function of bounded variation.

Theorem 3 Suppose 2 ≤ m < ∞ or m = ±∞ and k ∈ Pm. Then the dynamical
system (Tm,k, νm,k) is exact and the extension (T̃m,k, µm,k) is a K-automorphism.

Proof For certain values of m we shall modify the intervals ∆l defined above as fol-
lows. If m is finite and k = −m let ∆m−1 include the endpoint 1, and if m = −∞
let ∆−1 include the endpoint 1. To prove exactness we verify the hypothesis of [17]
Theorem 1. First, the union of the intervals ∆l with l ∈ V is a set of full measure
in [0, 1]. T is C∞ on each ∆l. T(∆l) = [0, 1]. Each ∆l contains exactly one fixed
point and one of 0 or 1 is the unique fixed point x0 with T ′(x0) = 1. T ′ = A ′ is
strictly monotone on (0, 1) and |T ′(x)| = |A ′(x)| > 1 at all x �= x0. Computing
in the various cases one sees that |T ′ ′(x)|T ′(x)−2 is bounded on [0, 1]. That proves
exactness.

The natural extension of an exact endomorphism is a K-automorphism [3].

5 Entropy and a Model for Bernoulli automorphisms

We calculate the entropy for the dynamical system (T̃∞,k, ρ), show that it is increasing
in k and attains every value. From the work of Ornstein [9] it follows that if T is a
finite entropy Bernoulli automorphism of a probability space (X,A, µ), then for a
unique value k > 1 the extension T̃∞,k is isomorphic to T.

Proposition 1 For each h in the interval (0,∞) there is a unique k ≥ 1 so that the
entropy of the dynamical system (T̃∞,k, ρ) is h.

Proof Since the entropy of the natural extension T̃∞,k is equal to the entropy of the
endomorphism T∞,k [12], it will suffice to show that there is a unique k > 1 so that
the entropy of T∞,k is h.

By Corollary 1, the invariant density for the T∞,k-invariant absolutely continuous
probability measure νk has the form

ρk(x) =
(

log
k

k− 1

)−1 1

x + k− 1
.
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Rohlin’s entropy formula [13, 10] is applicable and the entropy hk = h(T∞,k) is finite,
given by

hk =

∫ 1

0
log |T ′(x)| dνk(x).

Computing as in the u = 1/N case from [5]

hk = log k + 2L2(
1

k
)
(

log
k

k− 1

)−1
,

where L2(x) =
∑∞

i=1
xi

i2 is the Euler dilogarithm. Note that the dilogarithm satisfies
the equation

L ′2(x) = −
log(1− x)

x
for |x| < 1.

By elementary computation

lim
k→∞

hk =∞ and lim
k→1

hk = 0.

It follows that hk takes on all values in (0,∞). To complete the proof we show that hk

is an increasing function.
Consider the derivative

dhk

dk
=

1

k(log k
k−1 )2

[
2L2( 1

k )

k− 1
−
(

log
k

k− 1

) 2
]
.

In order to show this is positive for k > 1 and therefore that hk is increasing it will
suffice to show that

g(k) = 2L2

( 1

k

)
− (k− 1)

(
log

k

k− 1

) 2

is positive for k > 1. Computing limits again, we have

lim
k→∞

g(k) = 0 and lim
k→1

g(k) = 2L2(1) =
π2

3
> 0.

Since

g ′(k) = −
(

log
k

k− 1

) 2

is clearly negative for k > 1, g is monotone decreasing for k > 1 and we can conclude
that g(k) > 0 for all k > 1
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6 The Other Maps

It remains for us to consider the maps Tm,k with k ∈ Cm. As was seen in Lemma 2
the derivative of T is larger than 1 for some x and less than 1 for others. When m is
finite with k > 0 or when m =∞ with 0 < k < 1, zero is an attracting fixed point of
T and 1 − k is a repelling fixed point of T. In fact, the interval [0, 1 − k] is mapped
bijectively onto itself and limn→∞ Tn(x) = 0 for all x ∈ [0, 1 − k). When m is finite
with k < 0, 1 and m + k − 1 are respectively attracting and repelling fixed points, T
is bijective on (m + k − 1, 1] and all orbits on the interval limit at 1. Finally, when
m = −∞ and −1 < k < 0, 1 and −k are respectively attracting and repelling fixed
points and the above holds.

Observe that each of the densities ρm,k of Corollary 1 has a unique singularity
inside (0, 1) for values k ∈ Cm. Using more direct methods we can reprove and
extend Corollary 1 to show that:

Corollary 2 For integers m with 2 ≤ |m| ≤ ∞ and k ∈ Lm the function

ρm,k(x) =




sgn(m)( 1
x+k−1 −

1
x+m+k−1 ) if |m| <∞

sgn(k)( 1
x+k−1 ) if m =∞

sgn(k)( 1
x+k ) if m = −∞

is an invariant density for Tm,k.

Proof In case 2 ≤ m <∞ and k ∈ Lm we verify that the density ρ is an eigenfunction
of eigenvalue 1 of the Perron-Frobenius operator [4]

LTρ(x) =
∑

{y|Ty=x}

1

|T ′(y)|
ρ(y).

The argument is similar in the other cases.

LTρ(x)

=

m−1∑
j=0

(A−1) ′(x + j)

(
m(

A−1(x + j) + k− 1
)(

A−1(x + j) + m + k− 1
)
)

=

m−1∑
j=0

(A−1) ′(x + j)

×

(
m[

A−1(x + j)− A−1
(

A(1− k)
)][

A−1(x + j)− A−1
(

A(1− k−m)
)]
)
.
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Employing the identity (2) and setting n = k + m this can be rewritten as

=
m−1∑
j=0

(A−1) ′(x + j)

×

(
m[

(A−1) ′(x + j)(A−1) ′(A(1− k)
)] 1/2

[(A−1) ′(x + j)(A−1) ′
(

A(1− n)
)] 1/2

)

×

(
1

[x + j − A(1− k)][x + j − A(1− n)]

)
.

=
m−1∑
j=0

(
m

[x + j − A(1− k)][x + j − A(1− n)]

)

×

(
1[

(A−1) ′
(

A(1− k)
)

(A−1) ′
(

A(1− n)
)] 1/2

)
.

Using the inverse function theorem and identity (2) again the computation con-
tinues:

=
m−1∑
j=0

A(1− k)− A(1− n)

[x + j − A(1− k)][x + j − A(1− n)]
.

Also, since A(1− k) = 1− k and A(1− n) = −k we have

LTρ(x) =
m−1∑
j=0

1

(x + j − 1 + k)(x + j + k)

=
m−1∑
j=0

( 1

x + j − 1 + k
−

1

x + j + k

)

=
1

x + k− 1
−

1

x + k + m− 1
.
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