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Abstract. In this paper it is shown that for a minimal system (X, T ) and d , k ∈ N, if (x, xi)

is regionally proximal of order d for 1 ≤ i ≤ k, then (x, x1, . . . , xk) is (k + 1)-regionally
proximal of order d. Meanwhile, we introduce the notion of IN[d]-pair: for a dynamical
system (X, T ) and d ∈ N, a pair (x0, x1) ∈ X ×X is called an IN[d]-pair if for any
k ∈ N and any neighborhoods U0, U1 of x0 and x1 respectively, there exist different
(p

(i)
1 , . . . , p

(i)
d ) ∈ N

d , 1 ≤ i ≤ k, such that

k⋃
i=1

{p(i)
1 ε(1)+ · · · + p

(i)
d ε(d) : ε(j) ∈ {0, 1}, 1 ≤ j ≤ d}\{0} ∈ Ind(U0, U1),

where Ind(U0, U1) denotes the collection of all independence sets for (U0, U1). It turns
out that for a minimal system, if it does not contain any non-trivial IN[d]-pair, then it is an
almost one-to-one extension of its maximal factor of order d.
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1. Introduction
By a topological dynamical system or just a dynamical system, we mean a pair (X, T ),
where X is a compact metric space with a metric ρ and T : X→ X is a homeomorphism.

In recent years, the study of the dynamics of rotations on nilmanifolds and inverse limits
of this kind of dynamics has drawn much interest, since it relates to many dynamical
properties and has important applications in number theory. We refer to [12] and the
references therein for a systematic treatment on the subject.

In a pioneer work, Host, Kra and Maass [13] introduced the notion of regionally
proximal relation of order d for a dynamical system (X, T ), denoted by RP[d](X). For
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d ∈ N, we say that a minimal system is a system of order d if RP[d](X) = �, and this
is equivalent for (X, T ) to an inverse limit of nilrotations on d-step nilsystems (see [13,
Theorem 2.8]). For a minimal distal system (X, T ), it was proved that RP[d](X) is an
equivalence relation and X/RP[d](X) is the maximal factor of order d [13]. Then Shao and
Ye [22] showed that in fact for any minimal system, RP[d](X) is an equivalence relation
and RP[d](X) has the so-called lifting property.

The notion of k-regional proximal relation was introduced in [16]. It was shown that
for a minimal system (X, T ) and k ≥ 2, if (x, xi) is regionally proximal for all 1 ≤ i ≤ k,
then (x1, . . . , xk) is k-regionally proximal, that is, for every δ > 0, there exist x ′i ∈ X,
1 ≤ i ≤ k, and n ∈ Z such that ρ(xi , x′i ) < δ and ρ(T nx′1, T nx′i ) < δ, 1 ≤ i ≤ k. In this
paper we extend this result to higher order (Theorem 3.2).

Following the local entropy theory (for a survey see [11]), each dynamical system
admits a maximal zero topological entropy factor, and this factor is induced by the smallest
closed invariant equivalence relation containing entropy pairs [3]. In [19], entropy pairs
are characterized as those pairs that admit an interpolating set of positive density. Later
on, the notions of sequence entropy pairs [15] and untame pairs (called scrambled pairs
in [14]) were introduced. In [20] the concept of independence was extensively studied
and used to unify the aforementioned notions. Let (X, T ) be a dynamical system and
A = (U0, U1, . . . , Uk) be a tuple of subsets of X. We say that a subset F ⊂ Z is an
independence set for A if for any non-empty finite subset J ⊂ F and any s = (s(j) :
j ∈ J ) ∈ {0, 1, . . . , k}J we have

⋂
j∈J T −jUs(j) �= ∅. It was shown that a pair of points

x0, x1 in X is a sequence entropy pair if and only if eachA = (U0, U1), where U0 and U1

are neighborhoods of x0 and x1 respectively, has arbitrarily long finite independence sets.
Also, the pair is an untame pair if and only if eachA = (U0, U1) as before has infinite inde-
pendence sets. It was shown [8, 15, 20] that a minimal null (respectively, tame) system is an
almost one-to-one extension of its maximal equicontinuous factor and is uniquely ergodic.

For d ∈ N and p1, . . . , pd ∈ Z, we call the set {p1ε(1)+ · · · + pdε(d) : ε(j) ∈
{0, 1}, 1 ≤ j ≤ d}\{0} an IPd -set. The notion of Indf ip-pair was studied in [4]: a pair
of points x0, x1 in X is an Indf ip-pair if and only if the independence sets for each
A = (U0, U1) as before contain an IPd -set for any d ∈ N. It was shown that a minimal
system without any non-trivial Indf ip-pair is an almost one-to-one extension of its
maximal factor of order∞.

So, it is natural to ask: can we give a finer classification of almost automorphy of higher
order (see Definition 2.7) using independence?

In this paper we introduce the notion of IN [d]-pair. A pair of points x0, x1 in X is an
IN[d]-pair if and only if the independence sets for each A = (U0, U1) as before contain a
union of arbitrarily finitely many IPd -sets. Using dynamical cubespaces, we first provide
a characterization of IN[d]-pairs for minimal systems (Lemma 2.12). By [12, Ch. 6], the
dynamical cubespaces of minimal nilsystems can also be viewed as nilsystems. Following
this, it is shown that for minimal nilsystems, non-trivial regionally proximal of order d
pairs are IN[d]-pairs (Theorem 4.5). Moreover, this property also holds for inverse limits
of minimal nilsystems.

For a minimal system and d ∈ N, by reducing to the maximal factor of order∞ which
is an inverse limit of minimal nilsystems [4], we can show that any non-trivial regionally
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proximal of order d pair is an IN[d]-pair if it is minimal in the product system (Lemma 5.4).
Among other things, it turns out that for a minimal system, if it does not contain any
non-trivial IN[d]-pair, then it is an almost one-to-one extension of its maximal factor of
order d (Theorem 5.7).

This paper is organized as follows. In §2 the basic notions used in the paper
are introduced. In §3 we discuss the k-regionally proximal relation of higher order
(Theorem 3.2). In §4 it is shown that for a minimal nilsystem any regionally proximal
of order d pair is an IN[d]-pair (Theorem 4.5). In §5, among other things, we show that for
any minimal system, if it does not contain any non-trivial IN[d]-pair, then it is an almost
one-to-one extension of its maximal factor of order d (Theorem 5.7). In the final section we
construct a minimal system with trivial IN[d]-pairs, and a non-trivial regionally proximal
relation of order d (Example 6.1).

2. Preliminaries
In this section we gather definitions and preliminary results that will be necessary later on.
Let N and Z be the sets of all positive integers and integers, respectively.

2.1. Topological dynamical systems. A topological dynamical system (or dynamical
system) is a pair (X, T ), where X is a compact metric space with a metric ρ and T :
X→ X is a homeomorphism. If A is a non-empty closed subset of X and T A ⊂ A, then
(A, T |A) is called a subsystem of (X, T ), where T |A is the restriction of T on A. If there is
no ambiguity, we use the notation T instead of T |A. For x ∈ X, O(x, T ) = {T nx : n ∈ Z}
denotes the orbit of x. A dynamical system (X, T ) is called minimal if every point has
dense orbit in X. A subset Y of X is called minimal if (Y , T ) is a minimal subsystem
of (X, T ). A point x ∈ X is called minimal if it is contained in a minimal set Y or,
equivalently, if the subsystem (O(x, T ), T ) is minimal.

A homomorphism between the dynamical systems (X, T ) and (Y , T ) is a continuous
onto map π : X→ Y which intertwines the actions; one says that (Y , T ) is a factor of
(X, T ) and that (X, T ) is an extension of (Y , T ). One also refers to π as a factor map or
an extension and one uses the notation π : (X, T )→ (Y , T ). The systems are said to be
conjugate if π is a bijection. An extension π is determined by the corresponding closed
invariant equivalence relation Rπ = {(x, x′) ∈ X ×X : π(x) = π(x′)}. An extension π :
(X, T )→ (Y , T ) is almost one-to-one if the Gδ set X0 = {x ∈ X : π−1(π(x)) = {x}} is
dense.

2.2. Discrete cubes and faces. Let X be a set and let d ≥ 1 be an integer. We view the
element ε ∈ {0, 1}d as a sequence ε = (ε(1), . . . , ε(d)), where ε(i) ∈ {0, 1}, 1 ≤ i ≤ d .
If �n = (n1, . . . , nd) ∈ Z

d and ε ∈ {0, 1}d , we define

�n · ε =
d∑

i=1

niε(i).

We denote the set of maps {0, 1}d → X by X[d]. For ε ∈ {0, 1}d and x ∈ X[d], x(ε) will
be used to denote the ε-component of x. For x ∈ X, write x[d] = (x, x, . . . , x) ∈ X[d].
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The diagonal of X[d] is �[d] = �[d](X) = {x[d] : x ∈ X}. Usually, when d = 1, we
denote the diagonal by �X or � instead of �[1]. We can isolate the first coordinate,
writing X

[d]∗ = X2d−1 and writing x ∈ X[d] as x = (x(�0), x∗), where x∗ = (x(ε) : ε ∈
{0, 1}d\{�0}) ∈ X

[d]∗ .
Identifying {0, 1}d with the set of vertices of the Euclidean unit cube, a Euclidean

isometry of the unit cube permutes the vertices of the cube and thus the coordinates of
a point x ∈ X[d]. These permutations are the Euclidean permutations of X[d].

A set of the form

F = {ε ∈ {0, 1}d : ε(i1) = a1, . . . , ε(ik) = ak} (1)

for some k ≥ 0, 1 ≤ i1 < · · · < ik ≤ d and ai ∈ {0, 1} is called a face of codimension k of
the discrete cube {0, 1}d . (The case k = 0 corresponds to {0, 1}d .) A face of codimension
1 is called a hyperface. If all ai = 1 we say that the face is upper. Note all upper faces
contain �1 and there are exactly 2d upper faces.

For ε, ε′ ∈ {0, 1}d , we say that ε ≥ ε′ if ε(i) ≥ ε′(i) for all 1 ≤ i ≤ d . Let F be a face of
{0, 1}d . The smallest element of the face F is defined by min F , meaning that min F ∈ F

and ε ≥ min F for all ε ∈ F . Indeed, if a face F has form (1), then min F(ij ) = aj for
1 ≤ j ≤ k, and min F(i) = 0 for i ∈ {1, . . . , d}\{i1, . . . , ik}.

2.3. Dynamical cubespaces. Let (X, T ) be a dynamical system and d ∈ N. We define
Q[d](X) to be the closure in X[d] of elements of the form

(T �n·εx = T n1ε(1)+···+ndε(d)x : ε ∈ {0, 1}d),

where �n = (n1, . . . , nd) ∈ Z
d and x ∈ X. We call this set the dynamical cubespace of

dimension d of the system.
It is important to note that Q[d](X) is invariant under the Euclidean permutations

of X[d].

Definition 2.1. Face transformations are defined inductively as follows. Let T
[1]
1 =

id× T . If {T [d−1]
j }d−1

j=1 is already defined, then set

T
[d]
j = T

[d−1]
j × T

[d−1]
j , 1 ≤ j ≤ d − 1,

T
[d]
d = id[d−1] × T [d−1].

It is easy to see that for 1 ≤ j ≤ d , the face transformation T
[d]
j : X[d] → X[d] can be

defined, for every x ∈ X[d] and ε ∈ {0, 1}d , by

T
[d]
j x =

{
(T

[d]
j x)(ε) = T x(ε), ε(j) = 1,

(T
[d]
j x)(ε) = x(ε), ε(j) = 0.

The face group of dimension d is the group F[d](X) of transformations of X[d] spanned
by the face transformations. The parallelepiped group of dimension d is the group G[d](X)

spanned by the diagonal transformation and the face transformations. We often write F [d]

and G[d] instead of F [d](X) and G[d](X), respectively. For convenience, we denote the
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orbit closure of x ∈ X[d] under F [d] by F [d](x), instead of O(x, F [d]). Let Q[d]
x (X) =

Q[d](X) ∩ ({x} ×X2d−1).

THEOREM 2.2. [22] Let (X, T ) be a minimal system and d ∈ N. Then:
(1) (Q[d](X), G[d]) is a minimal system;
(2) (F [d](x[d]), F [d]) is minimal for all x ∈ X;
(3) F [d](x[d]) is the unique F [d]-minimal subset in Q[d]

x (X) for all x ∈ X.

2.4. Proximality and regional proximality of higher order. Let (X, T ) be a dynamical
system. A pair (x, y) ∈ X ×X is proximal if

inf
n∈Z ρ(T nx, T ny) = 0,

and distal if it is not proximal. Denote by P(X) the set of all proximal pairs of X. The
dynamical system (X, T ) is distal if (x, y) is a distal pair whenever x, y ∈ X are distinct.

An extension π : (X, T )→ (Y , T ) is proximal if Rπ ⊂ P(X).

Definition 2.3. Let (X, T ) be a dynamical system and d ∈ N. The regionally proximal
relation of order d is the relation RP[d](X) defined by: (x, y) ∈ RP[d](X) if and only if for
every δ > 0, there exist x′, y′ ∈ X and �n ∈ N

d such that ρ(x, x′) < δ, ρ(y, y′) < δ, and

ρ(T �n·εx′, T �n·εy′) < δ for all ε ∈ {0, 1}d\{�0}.
We say that (X, T ) is a system of order d if RP[d](X) is trivial.

It follows from [22, Lemma 3.5] that

P(X) ⊂ · · · ⊂ RP[d+1](X) ⊂ RP[d](X) ⊂ · · · ⊂ RP[2](X) ⊂ RP[1](X). (2)

THEOREM 2.4. [22] Let (X, T ) be a minimal system and d ∈ N. Then:
(1) (x, y) ∈ RP[d](X) if and only if (x, y, . . . , y) = (x, y

[d+1]∗ ) ∈ Q[d+1](X) if and
only if (x, y, . . . , y) = (x, y

[d+1]∗ ) ∈ F[d+1](x[d+1]);
(2) RP[d](X) is an equivalence relation.

The regionally proximal relation of order d allows us to construct the maximal factor of
order d of a minimal system. That is, any factor of order d factorizes through this system.

THEOREM 2.5. [22] Let π : (X, T )→ (Y , T ) be the factor map between minimal systems
and d ∈ N. Then:
(1) (π × π)RP[d](X) = RP[d](Y );
(2) (Y , T ) is a system of order d if and only if RP[d](X) ⊂ Rπ .
In particular, the quotient of (X, T ) under RP[d](X) is the maximal factor of order d of X.

It follows that for any minimal system (X, T ),

RP[∞](X) =
⋂
d≥1

RP[d](X)

is a closed invariant equivalence relation.
We now formulate the definition of systems of order∞.
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Definition 2.6. A minimal system (X, T ) is a system of order∞ if the equivalence relation
RP[∞](X) is trivial, that is, coincides with the diagonal.

Let (X, T ) be a minimal system and d ∈ N ∪ {∞}. Set

RP[d][x] = {y ∈ X : (x, y) ∈ RP[d](X)}.
Definition 2.7. Let (X, T ) be a minimal system and d ∈ N ∪ {∞}. A point x ∈ X is called
a d-step almost automorphic point if RP[d][x] = {x}.

A minimal system (X, T ) is called d-step almost automorphic if it has a d-step almost
automorphic point.

Almost automorphic systems of higher order were studied systematically in [18].
In particular, we have the following proposition.

PROPOSITION 2.8. [18, Theorem 8.13] Let (X, T ) be a minimal system. Then (X, T ) is
a d-step almost automorphic system for some d ∈ N ∪ {∞} if and only if it is an almost
one-to-one extension of its maximal factor of order d.

2.5. Independence. The notion of independence was firstly introduced and studied
in [20]. It corresponds to a modification of the notion of interpolating set studied
in [10, 19].

Definition 2.9. Let (X, T ) be a dynamical system. Given a tuple A = (U0, U1, . . . , Uk)

of subsets of X, we say that a subset F ⊂ Z is an independence set for A if for any
non-empty finite subset J ⊂ F and any s = (s(j) : j ∈ J ) ∈ {0, 1, . . . , k}J we have⋂

j∈J
T −jUs(j) �= ∅.

We shall denote the collection of all independence sets forA by Ind(U0, U1, . . . , Uk).

We now define IN[d]-pairs.

Definition 2.10. Let (X, T ) be a dynamical system and d ∈ N. A pair (x0, x1) ∈ X ×X

is called an IN[d]-pair if for any k ∈ N and any neighborhoods U0, U1 of x0 and x1

respectively, there exist different (p
(i)
1 , . . . , p

(i)
d ) ∈ N

d , 1 ≤ i ≤ k, such that

k⋃
i=1

{p(i)
1 ε(1)+ · · · + p

(i)
d ε(d) : ε ∈ {0, 1}d}\{0} ∈ Ind(U0, U1).

Denote by IN[d](X) the set of all IN[d]-pairs of (X, T ).

Remark 2.11. It is easy to see that for a dynamical system, any IN[d]-pair is regionally
proximal of order d, sequence entropy pairs coincide with IN[1]-pairs and any Indf ip-pair
is an IN[d]-pair for every d ∈ N.

2.6. A criterion for being an IN[d]-pair. We characterize IN[d]-pairs using dynamical
cubespaces.
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Let d , k ∈ N. We fix an enumeration ω1, . . . , ω2d−1 of all elements of {0, 1}d\{�0}. For
1 ≤ i ≤ k, 1 ≤ j ≤ 2d − 1, let

Fij =
{

ε ∈ {0, 1}k(2d+d) :
ε(k(i − 1)+ j) = 1, and

ε(k2d + d(i − 1)+ s) = ωj (s), 1 ≤ s ≤ d

}
.

For tj ∈ {0, 1}2d−1, 1 ≤ j ≤ k, let θ̂ = θ̂ (t1, . . . , tk) ∈ {0, 1}k(2d+d) such that

θ̂ (n) =
{

ti (j), n = k(i − 1)+ j , 1 ≤ i ≤ k, 1 ≤ j ≤ 2d − 1,

0 otherwise.

For 1 ≤ a ≤ k, 1 ≤ b ≤ 2d − 1, let θ = θ(t1, . . . , tk , a, b) ∈ {0, 1}k(2d+d) such that

θ(n) =

⎧⎪⎪⎨⎪⎪⎩
ti (j), n = k(i − 1)+ j , 1 ≤ i ≤ k, 1 ≤ j ≤ 2d − 1,

ωb(s), n = k2d + d(a − 1)+ s, 1 ≤ s ≤ d ,

0 otherwise.

Let

	k,d =
{

θ = θ(t1, . . . , tk , a, b) :
1 ≤ a ≤ k, 1 ≤ b ≤ 2d − 1,

tj ∈ {0, 1}2d−1, 1 ≤ j ≤ k

}
.

It is easy to check that θ = θ(t1, . . . , tk , a, b) ∈ Fij if and only if a = i, b = j and
ta(b) = 1.

LEMMA 2.12. Let (X, T ) be a minimal system and d ∈ N, x0, x1 ∈ X with x0 �= x1. For
any k ∈ N, if there is some x ∈ Q[k(2d+d)](X) such that x(θ) = xta(b) for any θ ∈ 	k,d ,
then (x0, x1) is an IN[d]-pair.

Proof. For i = 0, 1, let Ui be a neighborhood of xi and choose δ > 0 with B(xi , δ) =
{y ∈ X : ρ(xi , y) < δ} ⊂ Ui .

Let k ∈ N and let x ∈ Q[k(2d+d)](X) such that x(θ) = xta(b) for any θ ∈ 	k,d .
By Theorem 2.2, there exist

�n = (n1, . . . , nk2d , m
(1)
1 , . . . , m

(1)
d , . . . , m

(k)
1 , . . . , m

(k)
d ) ∈ N

k(2d+d),

n ∈ N and x ∈ X such that

ρ(T n+�n·εx, x(ε)) < δ for all ε ∈ {0, 1}k(2d+d). (3)

For 1 ≤ i ≤ k, set �mi = (m
(i)
1 , . . . , m

(i)
d ). Recall that x(θ) = xta(b) and �n · θ = �n · θ̂ +

�ma · ωb. Thus by (3) we get that

T n+�n·θ̂ x ∈ T − �ma ·ωbUta(b).

Moreover,

T n+�n·θ̂ x ∈
k⋂

i=1

2d−1⋂
j=1

T − �mi ·ωj Uti (j),
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which implies that

k⋃
i=1

{ �mi · ε : ε ∈ {0, 1}d}\{0} ∈ Ind(U0, U1).

As k is arbitrary, we conclude that (x0, x1) is an IN[d]-pair.

2.7. Nilpotent groups, nilmanifolds and nilsystems. Let L be a group. For g, h ∈ L, we
write [g, h] = ghg−1h−1 for the commutator of g and h. We write [A, B] for the subgroup
spanned by {[a, b] : a ∈ A, b ∈ B}. The commutator subgroups Lj , j ≥ 1, are defined
inductively by setting L1 = L and Lj+1 = [Lj , L]. Let k ≥ 1 be an integer. We say that L
is k-step nilpotent if Lk+1 is the trivial subgroup.

Let L be a k-step nilpotent Lie group and 
 a discrete cocompact subgroup of L.
The compact manifold X = L/
 is called a k-step nilmanifold. The group L acts on X
by left translations, and we write this action as (g, x) �→ gx. Let τ ∈ L and T be the
transformation x �→ τx of X. Then (X, T ) is called a k-step nilsystem.

We also make use of inverse limits of nilsystems, and so we recall the definition of
an inverse limit of systems (restricting ourselves to the case of sequential inverse limits).
If {(Xi , Ti)}i∈N are systems with diam(Xi) ≤ 1 and φi : Xi+1 → Xi are factor maps,
the inverse limit of the systems is defined to be the compact subset of

∏
i∈N Xi given

by {(xi)i∈N : φi(xi+1) = xi , i ∈ N}, which is denoted by lim←−{Xi}i∈N. It is a compact
metric space endowed with the distance ρ(x, y) =∑

i∈N 1/2iρi(xi , yi). We note that the
maps {Ti} induce a transformation T on the inverse limit.

The following structure theorem characterizes inverse limits of nilsystems using
dynamical cubespaces.

THEOREM 2.13. (Host, Kra and Maass [13, Theorem 1.2]) Assume that (X, T ) is a
minimal system and let d ≥ 2 be an integer. The following properties are equivalent.
(1) If x, y ∈ Q[d](X) have 2d − 1 coordinates in common, then x = y.
(2) If x, y ∈ X are such that (x, y, . . . , y) ∈ Q[d](X), then x = y.
(3) The system (X, T ) is an inverse limit of (d − 1)-step minimal nilsystems.

This result shows that a minimal system is a system of order d if and only if it is an
inverse limit of minimal d-step nilsystems.

THEOREM 2.14. [4, Theorem 3.6] A minimal system (X, T ) is a system of order∞ if and
only if it is an inverse limit of minimal nilsystems.

3. k-regionally proximal relation of higher order
In this section we discuss the k-regionally proximal relation of higher order.

Definition 3.1. Let (X, T ) be a dynamical system and d ∈ N. For k ≥ 2, a k-tuple
(x1, . . . , xk) ∈ Xk is said to be k-regionally proximal of order d if for any δ > 0, there
exist x′i ∈ X, 1 ≤ i ≤ k, and �n ∈ N

d such that ρ(xi , x′i ) < δ, 1 ≤ i ≤ k, and

max
1≤i<j≤k

ρ(T �n·εx′i , T �n·εx′j ) < δ for all ε ∈ {0, 1}d\{�0}.
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In the proof of the following theorem, we will use enveloping semigroups in abstract
topological dynamical systems. For more details, see Appendix A.

THEOREM 3.2. Let (X, T ) be a minimal system and let d , k ∈ N with k ≥ 2. For points
x, xi ∈ X, 1 ≤ i ≤ k, if (x, xi) is regionally proximal of order d for all i, then (x1, . . . , xk)

is k-regionally proximal of order d.

Proof. Let d , k ∈ N with k ≥ 2. Fix x ∈ X and let xi ∈ RP[d][x], 1 ≤ i ≤ k.
We will show that (x1, . . . , xk) is k-regionally proximal of order d.

CLAIM 1. Let y ∈ RP[d][x] and let y ∈ X[d+1] such that

y(ε) =
{

y, ε = (0, . . . , 0, 1),

x otherwise.

Then y ∈ F[d+1](x[d+1]).

Proof of Claim 1. As (x, y) ∈ RP[d](X) ⊂ RP[d−1](X), we have (x, y
[d]∗ ) ∈ F [d](x[d])

by Theorem 2.4. Notice that (F [d](x[d]), F [d]) is minimal by Theorem 2.2. Then there is
some sequence {�nj }j∈N ⊂ Z

d such that

(T �nj ·ε : ε ∈ {0, 1}d)(x, y[d]∗ )→ x[d], (4)

as j →∞. Let σ be the map from Z
d to Z

d+1 such that

�n = (n1, . . . , nd) �→ σ(�n) = (n1, . . . , nd , 0).

Again by Theorem 2.4, (x, y
[d+1]∗ ) ∈ F[d+1](x[d+1]). Then by (4) we have

(T σ(�nj )·ω : ω ∈ {0, 1}d+1)(x, y[d+1]∗ )→ y,

as j →∞, which implies that y ∈ F[d+1](x[d+1]).

For 1 ≤ i ≤ k and s = 0, 1, let

F s
i = {ε ∈ {0, 1}d+k : ε(j) = 0, 1 ≤ j ≤ d , ε(d + i) = s}.

CLAIM 2. For every 1 ≤ i ≤ k, there is pi ∈ E(F[d+k](x[d+k]), F[d+k]) such that:
(1) pi (ε) = id, ε ∈ F 0

i ;
(2) pi (ε)x = xi , ε ∈ F 1

i ;
(3) pi (ε)x = x, ε ∈ {0, 1}d+k\F 1

i .

Proof of Claim 2. Let i ∈ {1, . . . , k} and let ai ∈ X[d+1] such that

ai (ε) =
{

xi , ε = (0, . . . , 0, 1),

x otherwise.
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Then ai ∈ F[d+1](x[d+1]) by Claim 1. Notice that (F[d+1](x[d+1]), F[d+1]) is minimal.
Then there is some sequence {�n(l) = (n

(l)
1 , . . . , n

(l)
d+1)}l∈N ⊂ Z

d+1 such that

(T �n(l)·εx : ε ∈ {0, 1}d+1)→ ai , (5)

as l→∞. For l ∈ N, let �m(l) = (m
(l)
1 , . . . , m

(l)
d+k) ∈ Z

d+k such that

m
(l)
j =

⎧⎪⎪⎨⎪⎪⎩
n

(l)
j , j = 1, . . . , d ,

n
(l)
d+1, j = d + i,

0 otherwise.

Then by (5) we have that:
(1) for ε ∈ F 0

i , T �m(l)·ε = T 0 = id;

(2) for ε ∈ F 1
i , T �m(l)·εx = T n

(l)
d+1x → xi , as l→∞;

(3) for ε ∈ {0, 1}d+k\F 1
i , T �m(l)·εx = T �n(l)·ε̃x → x, as l→∞, where ε̃ ∈ {0, 1}d+1 with

ε̃(i) = ε(i), 1 ≤ i ≤ d , and ε̃(d + 1) = ε(d + i).
Now assume that

(T �m(l)·ε : ε ∈ {0, 1}d+k)→ pi

in E(F[d+k](x[d+k]), F[d+k]) pointwise. It is easy to check that pi meets the
requirement.

Now let y = pk · · · p1x
[d+k]. For 1 ≤ i ≤ k, let ωi = min F 1

i and let

F =
{
ε ∈ {0, 1}d+k :

d∑
j=1

ε(j) > 0
}

.

CLAIM 3. y ∈ F[d+k](x[d+k]) and:
(1) y(ωi) = xi , 1 ≤ i ≤ k;
(2) y(ε) = x, ε ∈ F .

Proof of Claim 3. Notice that ωi ∈ F 0
j for any i �= j . Thus pj (ωi) = id by property (1) of

Claim 2. By property (2) of Claim 2, we have pi (ωi)x = xi . This shows that

y(ωi) = pk(ωi) · · · p1(ωi)x = pi (ωi)x = xi .

Let ε ∈ F . Then ε /∈⋃k
i=1 F 1

i . By property (3) of Claim 2, pi (ε)x = x for every i and
thus we get that

y(ε) = pk(ε) · · · p1(ε)x = x.

This shows Claim 3.

Fix δ > 0. As y ∈ F[d+k](x[d+k]), there is some �m = (m1, . . . , md+k) ∈ N
d+k such

that for all ε ∈ {0, 1}d+k ,

ρ(T �m·εx, y(ε)) < δ. (6)
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Let x′i = T �m·ωi x, 1 ≤ i ≤ k, and �n = (m1, . . . , md). By (6) and property (1) of
Claim 3, for 1 ≤ i ≤ k, we have

ρ(x′i , xi) = ρ(T �m·ωi x, y(ωi)) < δ.

For ε ∈ {0, 1}d\{�0}, put ε̂ ∈ {0, 1}d+k such that

ε̂(j) =
{

ε(j) 1 ≤ j ≤ d ,

0 d + 1 ≤ j ≤ d + k.

Then ε̂ + ωi ∈ F for 1 ≤ i ≤ k. Moreover, we have that

ρ(T �n·εx′i , x) = ρ(T �n·ε+ �m·ωi x, x) = ρ(T �m·(ε̂+ωi)x, y(ε̂ + ωi)) < δ,

by (6) and property (2) of Claim 3 which implies that (x1, . . . , xk) is k-regionally proximal
of order d.

The proof is complete. �

4. Independence and minimal nilsystems
The main aim of this section is to study IN[d]-pairs in minimal nilsystems. It turns out that
for a minimal nilsystem, any regionally proximal of order d pair is an IN[d]-pair. We start
by recalling some basic results in nilsystems. For more details and proofs, see [2, 21].

If G is a nilpotent Lie group, let G0 denote the connected component of its unit
element 1G. In the sequel, s ≥ 2 is an integer and (X = G/
, T ) is a minimal s-step
nilsystem. We let τ denote the element of G defining the transformation T. If (X, T ) is
minimal, let G′ be the subgroup of G spanned by G0 and τ and let 
′ = 
 ∩G′. Then
we have that G = G′
. Thus the system (X, T ) is conjugate to the system (X′, T ′), where
X′ = G′/
′ and T ′ is the translation by τ on X′. Therefore, without loss of generality, we
can restrict to the case G is spanned by G0 and τ .

We fix an enumeration F1, F2, . . . , F2d of all upper faces of {0, 1}d , ordered such
that codim (Fi) is non-decreasing with i. Then F1 = {0, 1}d , and the upper faces of
codimension 1 are F2, . . . , Fd+1.

If F is a face of {0, 1}d , for g ∈ G we define g(F) ∈ G[d] by

(g(F ))(ε) =
{

g, ε ∈ F ,

1G, ε �∈ F .

Denote byHK [d] the subgroup of G[d] spanned by

{g(Fi) : g ∈ G, 1 ≤ i ≤ d + 1}.

LEMMA 4.1. [12, Ch. 12] HK [d] is a rational subgroup of G[d].

Lemma 4.1 means that 
[d] ∩HK [d] is cocompact inHK [d], allowing us to define an
s-step nilmanifold

X̃[d] = HK[d]


[d] ∩HK[d] .
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LEMMA 4.2. [12, Ch. 12] The nilmanifold X̃[d] is equal to Q[d(X).

By Lemma 4.2 we can view Q[d](X) as a nilsystem, and it is alsoHK [d]-invariant.

LEMMA 4.3. [12, Ch. 12] Let F be a face of {0, 1}d and let g ∈ Gcodim(F ). Then g(F) ∈
HK [d].

The following corollary is an immediate consequence of Lemmas 4.2 and 4.3.

COROLLARY 4.4. Let F be a face of {0, 1}d and let g ∈ Gcodim(F ). Then g(F)x ∈ Q[d](X)

for every x ∈ Q[d](X).

We are now in a position to show the main result of this section. In it proof we omit the
nilpotency class as it is not important.

THEOREM 4.5. Let (X = G/
, T ) be a minimal nilsystem. For x ∈ X and g ∈ Gd+1, if
x �= gx, then (x, gx) is an IN[d]-pair.

Proof. Let x ∈ X and g ∈ Gd+1 with x �= gx. Put x0 = x and x1 = gx. For i = 0, 1, let
Ui be a neighborhood of xi and choose δ > 0 with B(xi , δ) ⊂ Ui .

We fix an enumeration ω1, . . . , ω2d−1 of all elements of {0, 1}d\{�0}.
Let k ∈ N. For 1 ≤ i ≤ k, 1 ≤ j ≤ 2d − 1, let

Fij =
{

ε ∈ {0, 1}k(2d+d) :
ε(k(i − 1)+ j) = 1, and

ε(k2d + d(i − 1)+ s) = ωj (s), 1 ≤ s ≤ d

}
.

Notice that Fij is a face of {0, 1}k(2d+d) of codimension d + 1 for any i, j . It follows

from Lemma 4.3 that g(Fij ) ∈ HK [k(2d+d)]. Thus by Corollary 4.4 we have that

x =
( k∏

i=1

2d−1∏
j=1

g(Fij )

)
x[k(2d+d)] ∈ Q[k(2d+d)](X). (7)

Recall that for any θ = θ(t1, . . . , tk , a, b) ∈ 	k,d , we have θ ∈ Fij if and only if
a = i, b = j and ta(b) = 1 (see §2.6). Thus by (7) we get that

x(θ) =
( ∏

1≤i≤k,1≤j≤2d−1
θ∈Fij

g

)
x = xta(b).

By Lemma 2.12, we deduce that (x, gx) = (x0, x1) is an IN[d]-pair.

We refer to [4] for the following description of maximal factors of higher order of
minimal nilsystems.

LEMMA 4.6. For 1 ≤ r ≤ s, if Xr is the maximal factor of order r of X, then Xr has the
form G/(Gr+1
), endowed with the translation by the projection of τ on G/Gr+1.

The following corollary is an immediate consequence of Theorem 4.5 and Lemma 4.6.

https://doi.org/10.1017/etds.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.8


Independence and almost automorphy of higher order 1375

COROLLARY 4.7. Let (X, T ) be a minimal nilsystem and d ∈ N. Then (x0, x1) ∈ IN[d](X)

if and only if (x0, x1) ∈ RP[d](X).

COROLLARY 4.8. Let (X, T ) be an inverse limit of minimal nilsystems and d ∈ N. Then
(x0, x1) ∈ IN[d](X) if and only if (x0, x1) ∈ RP[d](X).

Proof. Let (x0, x1) ∈ RP[d](X)\�X. By the definition of IN[d]-pairs, it suffices to show
that (x0, x1) ∈ IN[d](X).

Assume that Xi is a minimal nilsystem for every i ∈ N, set X = lim←−{Xi}i∈N and
assume that πi : X→ Xi and πi,j : Xj → Xi are the factor maps.

Set xi
s = πi(xs), i ∈ N, s = 0, 1. Then πi,j (x

j
s ) = xi

s and there is some n ∈ N such that
xn

0 �= xn
1 . For j ≥ n and s = 0, 1, we have xn

s = πn,j (x
j
s ) which implies x

j

0 �= x
j

1 . Without
loss of generality, we may assume xi

0 �= xi
1 for all i ∈ N.

Let k ∈ N. It follows from Theorem 2.5 that (xi
0, xi

1) ∈ RP[d](Xi) for all i ∈ N. By
Theorem 4.5 and Lemma 4.6, for every i ∈ N there exists some xi ∈ Q[k(2d+d)](Xi) such
that xi (θ) = xi

ta(b) for all θ ∈ 	k,d . Notice that Q[k(2d+d)](X) is an inverse limit of the

sequence {Q[k(2d+d)](Xi)}i∈N. Thus for every i ∈ N there exists some x̃i ∈ Q[k(2d+d)](X)

such that

π
[k(2d+d)]
i (̃xi ) = xi .

Without loss of generality, assume that x̃i → x as i →∞ for some x ∈ Q[k(2d+d)](X).
We claim that x(θ) = xta(b) for all θ ∈ 	k,d .
Actually, for any θ ∈ 	k,d and i ≤ j we have

πi (̃xj (θ)) = πi,j ◦ πj (̃xj (θ)) = πi,j (xj (θ)) = πi,j (x
j

ta(b)) = xi
ta(b).

By letting j go to infinity and the continuity of πi , we get πi(x(θ)) = xi
ta(b) for all i ∈ N.

This shows the claim and thus (x0, x1) ∈ IN[d](X) by Lemma 2.12.
This completes the proof.

5. The structure of minimal systems without non-trivial IN[d]-pairs
In this section we discuss the structure of minimal systems without non-trivial IN[d]-pairs.
We will show that such systems are almost one-to-one extensions of their maximal factors
of order d.

We start with the following useful lemma which can be found in the proof of [22,
Theorem 3.1].

LEMMA 5.1. Let (X, T ) be a dynamical system and d ∈ N. If x ∈ X[d] is an id×
T

[d]∗ -minimal point, then it is an F [d]-minimal point.

LEMMA 5.2. Let (X, T ) be a minimal system and d ∈ N. For ω ∈ {0, 1}d and
x ∈ Q[d](X), let y ∈ X[d] such that y(ε) = x(ε) if ε ∈ {0, 1}d\{ω} and (x(ω), y(ω)) ∈
RP[∞](X). If y is a T [d]-minimal point, then y ∈ Q[d](X).

Proof. Let x(ω) = x, y(ω) = y and (x, y) ∈ RP[∞](X).
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Case 1: ω = �0. As x ∈ Q[d](X), there exists some sequence {Si}i∈N ⊂ F [d] such that
Six→ x[d] as i →∞ by Theorem 2.2. At the same time, we have that Siy→ (y, x

[d]∗ ) ∈
Q[d](X) as i →∞. By our hypothesis, y is a T [d]-minimal point, so y is also an id×
T

[d]∗ -minimal point. Thus by Lemma 5.1, y is an F [d]-minimal point which implies that y
also belongs to the orbit closure of (y, x

[d]∗ ) under the F [d]-action, and thus y ∈ Q[d](X).
Case 2: ω �= �0. Recall that Q[d](X) is invariant under the Euclidean permutations of

X[d]. We can choose some Euclidean permutation f such that f (y)(�0) = y(ω).
Now we have f (x)(ε) = f (y)(ε) for any ε ∈ {0, 1}d\{�0} and (f (x)(�0), f (y)(�0)) ∈

RP[∞](X). Moreover, f (y) is also a T [d]-minimal point. By Case 1, we get that f (y) ∈
Q[d](X) and thus y ∈ Q[d](X).

Recall a characterization of Indf ip-pairs in [4, Corollary 4.4].

LEMMA 5.3. Let (X, T ) be a minimal system and (x0, x1) ∈ RP[∞](X)\�. If (x0, x1) is
a T × T -minimal point, then (x0, x1) is an Indf ip-pair.

Analogously to Lemma 5.3, we provide a characterization of IN[d]-pairs.

LEMMA 5.4. Let (X, T ) be a minimal system and d ∈ N, (x0, x1) ∈ RP[d](X)\�. If
(x0, x1) is a T × T -minimal point, then (x0, x1) is an IN[d]-pair.

Proof. Let π : X→ X∞ = X/RP[∞](X) be the factor map and let uj = π(xj ), j = 0, 1.
If u0 = u1, then (x0, x1) ∈ RP[∞](X) and thus (x0, x1) ∈ Indf ip(X) by Lemma 5.3. In
particular, we have (x0, x1) ∈ IN[d](X).

Now assume that u0 �= u1. Then (u0, u1) ∈ RP[d](X∞)\�X∞ by Theorem 2.5 and
(u0, u1) is a T × T -minimal point as (x0, x1) is a T × T -minimal point.

Fix k ∈ N. By Lemma 2.12, it suffices to show that there is some x ∈ Q[k(2d+d)](X)

such that x(θ) = xta(b) for all θ ∈ 	k,d .
Step 1: Reduction to the maximal factor of order∞. It follows from Theorem 2.14 that

X∞ is an inverse limit of minimal nilsystems. By the argument in Corollary 4.8, there
exists some u ∈ Q[k(2d+d)](X∞) such that u(θ) = uta(b) for all θ ∈ 	k,d .

Step 2: Lifting to X. Notice that π [l] : (Q[l](X), G[l])→ (Q[l](X∞), G[l]) is a factor
map for every l ∈ N, where π [l] : X[l] → X

[l]∞ is defined from π coordinatewise.
We note that Theorem 2.5 also holds for general abelian group actions. Thus there is

some w ∈ Q[k(2d+d)](X) such that

π [k(2d+d)](w) = u,

which implies that w(θ) ∈ RP[∞][xta(b)] for all θ ∈ 	k,d .
Step 3: Transformations.
Case 1: (x0, x1, w) is a T [k(2d+d)]+2-minimal point. By Lemma 5.2, we can replace

w(θ) by xta(b) for all θ ∈ 	k,d which implies that there is some x ∈ Q[k(2d+d)](X) such
that x(θ) = xta(b) for all θ ∈ 	k,d .

Case 2: General cases. By property (3) of Proposition A.2, there is a minimal point

(x′0, x′1, w′) ∈ O((x0, x1, w), T [k(2d+d)]+2) (8)
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such that they are also proximal. Note that Q[k(2d+d)](X) is T [k(2d+d)]-invariant, and we
get w′ ∈ Q[k(2d+d)](X).

Now by (8), (xi , x′i ), (w(ε), w′(ε)) ∈ P(X) for all i = 0, 1 and ε ∈ {0, 1}[k(2d+d)].
As P(X) ⊂ RP[∞](X) and w(θ) ∈ RP[∞][xta(b)] for all θ ∈ 	k,d , by equivalence of
RP[∞](X) we get that

w′(θ) ∈ RP[∞][x′ta(b)],

which implies w′ ∈ Q[k(2d+d)](X) by Case 1.
Recall that (x0, x1) is a T × T -minimal point and (x′0, x′1) ∈ O((x0, x1), T × T ). There

exists some sequence {ni}i∈N ⊂ Z such that

(T × T )ni (x′0, x′1)→ (x0, x1)

as i →∞. Let x be some limit point of the sequence {(T ni )[k(2d+d)]w′}i∈N. Then we have
x ∈ Q[k(2d+d)](X) and x(θ) = xta(b) for all θ ∈ 	k,d .

As a consequence, we get the following corollary.

COROLLARY 5.5. Let (X, T ) be a minimal distal system and d ∈ N. Then (x0, x1) ∈
IN[d](X) if and only if (x0, x1) ∈ RP[d](X).

We are now able to show the main result of this section. We need the following theorem.

THEOREM 5.6. [4, Theorem 4.5] Let (X, T ) be a minimal system. If X does not contain
any non-trivial Indf ip-pair, then it is an almost one-to-one extension of its maximal factor
of order∞.

THEOREM 5.7. Let (X, T ) be a minimal system and d ∈ N. If X does not contain any
non-trivial IN[d]-pair, then it is an almost one-to-one extension of its maximal factor of
order d.

Proof. Let (X, T ) be a minimal system without non-trivial IN[d]-pairs, where d ∈ N. Let
π : X→ X/RP[d](X) be the factor map.

We first show that π is a proximal extension.
Remark that if (x, y) ∈ Rπ = RP[d](X) is a T × T -minimal point, then by Lemma 5.4

we have that (x, y) is an IN[d]-pair and thus we get that x = y. Now consider any
(x, y) ∈ Rπ and u ∈ E(X, T ) a minimal idempotent. As (ux, uy) is a T × T -minimal
point, we have from previous observation that ux = uy, which implies that (x, y) is a
proximal pair.

This shows that P(X) = RP[∞](X) = RP[d](X), which implies that the maximal factor
of order∞ of X is X/RP[d](X).

As X does not contain any non-trivial IN[d]-pair, we get that Indf ip(X) is trivial. By
Theorem 5.6, X is an almost one-to-one extension of its maximal factor of order∞. From
this, we deduce that X is an almost one-to-one extension of its maximal factor of order d.

This completes the proof.

To end this section, we pose a question which we cannot solve in this paper.
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Question 5.8. Let (X, T ) be a minimal system without any non-trivial IN[d]-pair, where
d ∈ N. Is (X, T ) uniquely ergodic?

6. An example
In the last part of this paper, we give the example which is mentioned in the introduction.

Example 6.1. For d ∈ N, there is a minimal system (X, T ) such that IN[d](X) is trivial but
RP[d](X) is non-trivial.

We start with the following classical example. Let T = R/Z be the one-dimensional
torus. Consider an irrational rotation (T, Rα). Choose x0 ∈ T and split each point of the
orbit xn = x0 + nα into two points x+n , x−n . This procedure results is a Sturmian symbolic
dynamical system (X0, σ) which is a minimal almost one-to-one extension of (T, Rα),
and we denote this extension by π . The minimal system (X0, σ) is null, which implies
IN[1](X0) = �X0 . For more details, see [9, Example 14.4].

For d ≥ 2, let X = X0 × T
d−1. Define a continuous map T : X→ X by

(x, z2, . . . , zd) �→ (σx, z2 + π(x), . . . , zd + zd−1).

We next show that the system (X, T ) meets our requirement.
Let Tα : Td → T

d such that

(z1, z2, . . . , zd) �→ (z1 + α, z2 + z1, . . . , zd + zd−1).

Then (Td , Tα) is a minimal d-step nilsystem (see, for example, [23, Example 5.22]). There
is a continuous map from X to T

d induced by π which will be denoted by π̃ :

π̃(x, z2, . . . , zd) = (π(x), z2, . . . , zd).

Moreover, π̃ induces a non-trivial extension π̃ : (X, T )→ (Td , Tα). Notice that the factor
map π is almost one-to-one; a simple observation shows that the factor map π̃ is also
almost one-to-one. From this, we deduce that the system (X, T ) is minimal.

CLAIM 1. RP[d](X) = Rπ̃ .

Proof of Claim 1. Write z1 = π(x+m) ∈ T and z0 = α. A simple computation yields

T n(x∗m, z2, . . . , zd) =
(

σnx∗m, z2 + nz1 + n(n− 1)

2
z0, . . . ,

d∑
i=0

(
n

d − i

)
zi

)
,

where ∗ ∈ {+, −}, n ∈ Z and
(
n
0

) = 1,
(
n
i

) = n · · · · · (n− i + 1)/i! for i = 1, . . . , d .
From this, we get that for any z2, . . . , zd ∈ T and m ∈ Z, the points (x+m , z2, . . . , zd)

and (x−m , z2, . . . , zd) can be close enough, which implies that two such points are
proximal, and also are regionally proximal of order d by (2). It follows that Rπ̃ ⊂
RP[d](X).

On the other hand, by Theorem 2.5, one has that

(π̃ × π̃)RP[d](X) = RP[d](Td) = �Td ,

which implies RP[d](X) ⊂ Rπ̃ .
This shows Claim 1 and thus RP[d](X) is non-trivial.
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CLAIM 2. IN[d](X) = �.

To show this claim, we need the following proposition.

PROPOSITION 6.2. [17, Proposition 3.2] Let π : (Y , T ) −→ (Z, T ) be a factor map of
dynamical systems. If (y1, y2) ∈ IN[1](Y ), then (π(y1), π(y2)) ∈ IN[1](Z).

Proof of Claim 2. Let x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ X with (x, y) ∈ IN[d](X).
By the definition of the IN[d]-pair, we get that IN[d](X) ⊂ RP[d](X), which implies
x2 = y2, . . . , xd = yd by Claim 1.

Let θ be the projection from X to X0. It is easy to see θ induces a factor map θ :
(X, T )→ (X0, σ). Notice that (x, y) ∈ IN[d](X) ⊂ IN[1](X). Thus by Proposition 6.2,
one has (x1, y1) = (θ(x), θ(y)) ∈ IN[d](X0) = �X0 , which implies x1 = y1.

This shows that IN[d](X) = �.
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A. Appendix. Basic facts about abstract topological dynamics
We recall some basic definitions and results in abstract topological dynamical systems. For
more details, see [1, 6].

A.1. Topological transformation groups. A topological dynamical system is a triple
X = (X, T, �), where X is a compact metrizable space, T is a T2 topological group
and � : T ×X→ X is a continuous map such that �(e, x) = x and �(s, �(t , x)) =
�(st , x). We shall fix T and suppress the action symbol. X is widely also called a
topological transformation group or a flow. Usually we omit � and denote a system by
(X, T ).

Let (X, T ) be a system and x ∈ X. Then O(x, T ) denotes the orbit of x, which is also
denoted by Tx. A subset A ⊂ X is called invariant if ta ∈ A for all a ∈ A and t ∈ T.
When Y ⊂ X is a closed and T-invariant subset of the system (X, T ) we say that the
system (Y , T ) is a subsystem of (X, T ). If (X, T ) and (Y , T ) are two dynamical systems
their product system is the system (X × Y , T ), where t (x, y) = (tx, ty). A system (X, T )

is called minimal if X contains no proper closed invariant subsets.

A.2. Enveloping semigroups. Given a system (X, T ), its enveloping semigroup or Ellis
semigroup E(X, T ) is defined as the closure of the set {t : t ∈ T} in XX (with its compact,
usually non-metrizable, pointwise convergence topology). The maps E→ E : p �→ pq

and p �→ tp are continuous for all q ∈ E and t ∈ T.

A.3. Idempotents and ideals. For a semigroup the element u with u2 = u is called an
idempotent. The Ellis–Numakura theorem says that for any enveloping semigroup E the
set J (E) of idempotents of E is not empty [6]. A non-empty subset I ⊂ E is a left ideal
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(respectively, right ideal) if it EI ⊂ I (respectively, IE ⊂ I ). A minimal left ideal is the
left ideal that does not contain any proper left ideal of E. Obviously every left ideal is a
semigroup and every left ideal contains some minimal left ideal.

An idempotent u ∈ J (E) is minimal if v ∈ J (E) and vu = v implies uv = u. The
following results are well known [5, 7]. Let L be a left ideal of enveloping semigroup
E and u ∈ J (E). Then there is some idempotent v in Lu such that uv = v and vu = v; an
idempotent is minimal if and only if it is contained in some minimal left ideal.

A useful result about minimal points is the following proposition.

PROPOSITION A.1. Let I be a minimal left ideal. A point x ∈ X is minimal if and only if
ux = x for some u ∈ I .

A.4. Proximality. Two points x1 and x2 are called proximal if and only if

T(x1, x2) ∩�X �= ∅.
LetUX be the unique uniform structure of X. Then the following assertions hold.

P(X) =
⋂
{Tα : α ∈ UX}

is the collection of proximal pairs in X, the proximal relation.

PROPOSITION A.2. Let (X, T ) be a dynamical system. Then:
(1) The points x1, x2 are proximal in (X, T ) if and only if px1 = px1 for some

p ∈ E(X, T );
(2) If u is an idempotent in E(X, T ), then (x, ux) ∈ P(X) for every x ∈ X;
(3) There is a minimal point x′ ∈ O(x, T) such that (x, x′) ∈ P(X);
(4) If (X, T ) is minimal, then (x, y) ∈ P(X) if and only if there is some minimal

idempotent u ∈ E(X, T ) such that y = ux.
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