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Abstract. In this paper, we first summarise the progress for the famous Chern
conjecture, and then we consider n-dimensional closed hypersurfaces with constant
mean curvature H in the unit sphere �n+1 with n ≤ 8 and generalise the result of
Cheng et al. (Q. M. Cheng, Y. J. He and H. Z. Li, Scalar curvature of hypersurfaces
with constant mean curvature in a sphere, Glasg. Math. J. 51(2) (2009), 413–423). In
order to be precise, we prove that if |H| ≤ ε(n), then there exists a constant δ(n, H) > 0,
which depends only on n and H, such that if S0 ≤ S ≤ S0 + δ(n, H), then S = S0 and
M is isometric to the Clifford hypersurface, where ε(n) is a sufficiently small constant
depending on n.

2010 Mathematics Subject Classification. 53C40, 53C42.

1. Introduction.

1.1. Minimal hypersurfaces in �n+1. In this section we will review some important
results about the following famous conjecture. For more details, refer to Scherfner and
Weiss’ [13] excellent survey on this topic.

CHERN CONJECTURE. Let S be the value of the squared norm of the second
fundamental forms for n-dimensional closed minimal hypersurfaces in the unit sphere
�n+1 with constant scalar curvature, then the set of S should be discrete.

The above conjecture has been studied by many mathematicans after the work of
Chern et al. [7]. In 1968, Simons [14] proved the following.
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THEOREM 1.1 ([14]). Let Mn be an n-dimensional closed minimal hypersurface in a
unit sphere �n+1, then

∫
Mn

S(S − n) ≥ 0, (1.1)

where S denotes the squared norm of the second fundamental form of Mn.

From Theorem 1.1, we immediately conclude that if 0 ≤ S ≤ n, then either S ≡ 0
or S ≡ n. The latter case was independently characterised by Chern et al. [7] and
Lawson [9].

THEOREM 1.2 (7, 9). The Clifford tori are the only closed minimal hypersurfaces in
�n+1 with S = n.

According to the example given by Cartan [3], the next value of S may be 2n. Peng
and Terng [11] considered the next value of S and proved the following theorem.

THEOREM 1.3 ([11]). Let Mn(n ≥ 3) be a closed minimal hypersurface in �n+1 with
S = constant. If S > n, then

S > n + 1
12n

.

Moreover, for the case of n = 3, Peng–Terng obtained the following sharp result.

THEOREM 1.4 ([11]). Let M3 be a closed minimal hypersurface in �4 with S =
constant. If S > 3, then S ≥ 6. Moreover, S = 6 is assumed in the examples of Cartan
[3] and Hsiang [8].

Chang [5] proved the following classification theorem for n = 3. Thus, the Chern
conjecture [7] is right for n = 3.

THEOREM 1.5 (Chang’s Classification Theorem [5]). A closed minimally immersed
hypersurface with constant scalar curvature in �4 is either an equatorial 3-sphere, a
product of sphere, or a Cartan’s minimal hypersurface.

In particular, S can only be 0, 3, 6.

For the closed hypersurface M3 of �4 with constant mean curvature and scalar
curvature, Almeida–Brito [1] and Chang [4] proved that M3 is isoparametric. There is
another recent result by Almeida et al. [2], which is as follows:

THEOREM 1.6 ([2]). Let H, K and R be the mean curvature, the Gauss–Kronecker
curvature and scalar curvature of M3. If two out of these three functions are constant,
then either (1) M3 is an isoparametric hypersurface of �4, or (2) H = K ≡ 0.

However, if M3 is not closed, then we have the following conjecture, which is still
open.
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BRYANT CONJECTURE. A piece of a minimally immersed hypersurface of constant
scalar curvature in �4 is isoparametric.

For the case n = 4, Lusala et al. [10] proved the following:

THEOREM 1.7 ([10]). A closed minimal Willmore hypersurface M4 of �5 with non-
negative constant scalar curvature must be isoparametric.

For general n, Cheng and Yang improved Theorem 1.3 as follows (please see
[17–19] for details).

THEOREM 1.8 ([17–19]). Let Mn(n > 3) be a closed minimal hypersurface in �n+1

with S = constant. If S > n, then

S > n + n
3
.

By using the method of Cheng–Yang and by carefully estimation, Suh–Yang [15]
improved Cheng–Yang’s result as follows.

THEOREM 1.9 ([15]). Let Mn(n > 3) be a closed minimal hypersurface in �n+1 with
S = constant. If S > n, then

S > n + 3n
7

.

Until now, we still have the following open problem.

Open problem. Let Mn(n > 3) be a closed minimal hypersurface in �n+1 with
S = constant. If S > n, then S ≥ 2n?

If we do not add the condition that Mn has constant scalar curvature, then the
following is obtained.

THEOREM 1.10 ([12]). Let M be a closed minimally immersed hypersuface in �n+1,
n ≤ 5 and S the square of the length of the second fundamental form of M. Then there
exists δ(n) > 0 such that if n ≤ S(x) < n + δ(n), then S(x) ≡ n, hence M is the Clifford
torus.

In [16], Wei and Xu improved the above theorem from n ≤ 5 to n ≤ 7, and then
Zhang [20] extented it to n ≤ 8.

1.2. Constant mean curvature hypersurfaces in �n+1. For constant mean
curvature hypersurfaces in �n+1, we will prove the following theorem, which is
corresponding to Theorem 1.10.

THEOREM 1.11. Let Mn be an n-dimensional (n ≤ 8) closed hypersurface with
constant mean curvature H in �n+1(1) and S be the length of the second fundamental
form of Mn. Then there exist positive constants ε(n) depending only on n and δ(n, H)
depending only on n and H such that if

|H| ≤ ε(n) and S0 ≤ S ≤ S0 + δ(n, H),
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where

S0 = n + n3

2(n − 1)
H2 + n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)H2,

then S ≡ S0 and Mn is isometric to the Clifford hypersurface. To be precise, Mn is

isometric to the Clifford torus �k(
√

k
n ) × �n−k(

√
n−k

n ) if H = 0; Mn is isometric to the

Clifford hypersurface �1( 1√
1+λ2 ) × �n−1( λ√

1+λ2 ) if H �= 0.

REMARK 1.12. In [6], Cheng et al. proved the above theorem for n ≤ 7.

2. Basic formulas for closed hypersurfaces with constant mean curvature H in
�n+1(1). In this section we recall basic formulas for closed hypersurfaces with
constant mean curvature H in �n+1(1), which can be found in [6].

Let Mn be an n-dimensional closed hypersurface with constant mean curvature H
in �n+1(1). Then we choose a local orthonormal frame field {e1, e2, . . . , en,

en+1} such that {e1, e2, . . . , en} is tangent to Mn when restricted to Mn. Let hij and H
denote the second fundamental form and mean curvature, respectively. Denote

S =
∑

i,j

h2
ij, H = 1

n

∑
i

hii, f3 =
∑
i,j,k

hijhjkhki, f4 =
∑
i,j,k,l

hijhjkhklhli.

Denote by hijk and hijkl components of the first and second covariant derivatives of the
second fundamental form, respectively. For an arbitrary fixed point p ∈ M, we take
orthonormal frames such that hij = λiδij at p, for all i, j. Then at this point p, we have

S =
n∑

i=1

λ2
i , H = 1

n

n∑
i=1

λi, f3 =
n∑

i=1

λ3
i , f4 =

n∑
i=1

λ4
i .

We define A, B by

A =
∑
i,j,k

h2
ijkλ

2
i and B =

∑
i,j,k

h2
ijkλiλj.

Then by some computation, we have the following formulas:

1
2
�S = S(n − S) − n2H2 + nHf3 +

∑
i,j,k

h2
ijk, (2.1)

1
2
�

∑
i,j,k

h2
ijk = (2n + 3 − S)

∑
i,j,k

h2
ijk − 3(A − 2B)

− 3
2
|∇S|2 + 3nH

∑
i,j,k

h2
ijkλi +

∑
i,j,k,l

h2
ijkl, (2.2)

�f3 = 3(n − S)f3 + 3nHf4 − 3nHS + 6
∑
i,j,k

h2
ijkλi, (2.3)

∫
M

A − 2B =
∫

M
Sf4 − f 2

3 − S2 + nHf3 − |∇S|2
4

. (2.4)

https://doi.org/10.1017/S001708951100036X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951100036X


CONSTANT MEAN CURVATURE 81

3. Proof of the theorem.

LEMMA 3.1. Let λ1, λ2, . . . , λn be real numbers. Denote

n∑
i=1

λi = nH,

n∑
i=1

λ2
i = S,

n∑
i=1

λ3
i = f3,

n∑
i=1

λ4
i = f4.

Let aij (1 ≤ i ≤ n, 1 ≤ j ≤ n) be real numbers satisfying

n∑
j=1

aij = 1
2

[
(n − S)λi + nHλ2

i − nH
]
, aij = aji.

Then

n∑
i=1

a2
ii + 3

∑
i �=j

a2
ij ≥ 3

2(n + 4)

[
(n − S)2S + n2H2f4 − n3H2 + 2(n − S)nHf3

]
.

Proof. Consider the function

f (aij, αi, βij) =
n∑

i=1

a2
ii + 3

∑
i �=j

a2
ij +

∑
i �=j

βij(aij − aji)

+
n∑

i=1

αi

⎛
⎝ n∑

j=1

aij − 1
2

[
(n − S)λi − nHλ2

i + nH
]⎞⎠.

Then by direct computation, we can obtain

∂f
∂aii

= 2aii + αi (1 ≤ i ≤ n),

∂f
∂aij

= 6aij + αi + βij − βji (i �= j).

According to the method of Lagrange multipliers, we solve the equations

∂f
∂aii

= 0,
∂f
∂aij

= 0,

and obtain

αi = − 6
n + 4

[
(n − S)λi + nHλ2

i − nH
]
,

aii = −αi

2
, aij = −αi + αj

12
(i �= j).

Put the expressions of aii and aij into
∑n

i=1 a2
ii + 3

∑
i �=j a2

ij, and we get the minimum.
Hence, we finished the proof of the lemma. �
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LEMMA 3.2. Let Mn be a closed hypersurface with constant mean curvature H in
�n+1. Then∑

i,j,k,l

h2
ijkl ≥ 3

2

(
Sf4 − f 2

3 − S2 − S(S − n) − n2H2 + 2nHf3
)

+ 3
2(n + 4)

[
(n − S)2S + n2H2f4 − n3H2 + 2(n − S)nHf3

]
. (3.1)

Proof. Since

∑
i,j,k,l

(hijkl − hijlk)2 =
∑
i,j,k,l

(∑
m

himRmjkl +
∑

m

hmjRmikl

)2

=
∑
i,j,k,l

(λi − λj)2R2
ijkl

= 2
∑

i,j

(λi − λj)2(1 + λiλj)2

= 4
(
Sf4 − f 2

3 − S2 − S(S − n) − n2H2 + 2nHf3
)
, (3.2)

we have∑
i,j,k,l

h2
ijkl = 1

4

∑
i,j,k,l

(hijkl − hijlk)2 + 1
4

∑
i,j,k,l

(hijkl + hijlk)2

= 1
4

∑
i,j,k,l

(hijkl − hijlk)2 + 1
16

∑
i,j,k,l

(hijkl + hijlk − hklij − hklji)2 +
∑
i,j,k,l

u2
ijkl

= 1
4

∑
i,j,k,l

(hijkl − hijlk)2 + 1
16

∑
i,j,k,l

(hijkl − hklij)2 + 1
16

∑
i,j,k,l

(hijlk − hklji)2 +
∑
i,j,k,l

u2
ijkl

= 3
8

∑
i,j,k,l

(hijkl − hijlk)2 +
∑
i,j,k,l

u2
ijkl

=
∑
i,j,k,l

u2
ijkl + 3

2

(
Sf4 − f 2

3 − S2 − S(S − n) − n2H2 + 2nHf3
)
, (3.3)

where uijkl = 1
4 (hijkl + hjkli + hklij + hlijk).

From Ricci identities, we obtain that
n∑

j=1

uiijj = 1
2

[
(n − S)λi + nHλ2

i − nH
]
, (3.4)

then by setting aij = uiijj, we have∑
i,j,k,l

u2
ijkl ≥

∑
i

a2
ii + 3

∑
i,j

a2
ij

≥ 3
2(n + 4)

[
(n − S)2S + n2H2f4 − n3H2 + 2(n − S)nHf3

]
. (3.5)

Combining (3.3) and (3.5), we obtain (3.1). �
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LEMMA 3.3. Let Mn be an n-dimensional (n ≤ 8) closed hypersurface with constant
mean curvature H in �n+1(1). Then there exists a positive constant δ(n) < min{ 1

2 , 3
n }

depending only on n such that

3(A − 2B) ≤ (2 + δ(n))(S − nH2)
∑
i,j,k

h2
ijk + 3H2

∑
i,j,k

h2
ijk − 6H

∑
i,j,k

h2
ijkλi. (3.6)

Proof. Let

μi = λi − H, 1 ≤ i ≤ n, (3.7)

then

3(A − 2B) = 3

⎛
⎝∑

i,j,k

h2
ijkλ

2
i − 2

∑
i,j,k

h2
ijkλiλj

⎞
⎠

= 3

⎛
⎝∑

i,j,k

h2
ijk(μi + H)2 − 2

∑
i,j,k

h2
ijk(μi + H)(μj + H)

⎞
⎠

= 3

⎛
⎝∑

i,j,k

h2
ijkμ

2
i − 2

∑
i,j,k

h2
ijkμiμj

⎞
⎠ + 3H2

∑
i,j,k

h2
ijk − 6H

∑
i,j,k

h2
ijkλi

≤ (2 + δ(n))
∑

i

μ2
i

∑
i,j,k

h2
ijk + 3H2

∑
i,j,k

h2
ijk − 6H

∑
i,j,k

h2
ijkλi

= (2 + δ(n))(S − nH2)
∑
i,j,k

h2
ijk + 3H2

∑
i,j,k

h2
ijk − 6H

∑
i,j,k

h2
ijkλi, (3.8)

where the above inequality follows from Lemma 3.4 in [20], as
∑

i μi = 0. �
THEOREM 3.4. Let Mn be an n-dimensional (n ≤ 8) closed hypersurface with constant

mean curvature H in �n+1(1) and S be the length of the second fundamental form of Mn.
Then there exist positive constants ε(n) depending only on n, and δ(n, H) depending only
on n and H such that if

|H| ≤ ε(n) and S0 ≤ S ≤ S0 + δ(n, H),

where

S0 = n + n3

2(n − 1)
H2 + n(n − 2)

2(n − 1)

√
n2H4 + 4(n − 1)H2,

then S ≡ S0 and Mn is isometric to the Clifford hypersurface. To be precise, Mn is

isometric to the Clifford torus �k(
√

k
n ) × �n−k(

√
n−k

n ) if H = 0; Mn is isometric to the

Clifford hypersurface �1( 1√
1+λ2 ) × �n−1( λ√

1+λ2 ) if H �= 0.

Proof. By using (2.1), (2.2) and (2.3) and direct computations, we have∫
M

∑
i,j,k

h2
ijk =

∫
M

−S(n − S) + n2H2 − nHf3, (3.9)
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−1
2

∫
M

|∇S|2 =
∫

M
S2(n − S) − n2H2S + nHf3S + S

∑
i,j,k

h2
ijk, (3.10)

∫
M

−3
∑
i,j,k

h2
ijkλi = 3

2

∫
M

(n − S)f3 + nHf4 − nHS, (3.11)

∫
M

∑
i,j,k,l

h2
ijkl =

∫
M

(S − 2n − 3)
∑
i,j,k

h2
ijk + 3(A − 2B) + 3

2
|∇S|2 − 3nH

∑
i,j,k

h2
ijkλi.

(3.12)

Applying (3.1) to (3.12), we can obtain∫
M

(S − 2n − 3)
∑
i,j,k

h2
ijk + 3(A − 2B) + 3

2
|∇S|2 − 3nH

∑
i,j,k

h2
ijkλi

≥
∫

M

3
2

(
Sf4 − f 2

3 − S2 − S(S − n) − n2H2 + 2nHf3
)

+
∫

M

3
2(n + 4)

[
(n − S)2S + n2H2f4 − n3H2 + 2(n − S)nHf3

]
. (3.13)

Combining (2.4), (3.9), (3.10) and (3.11) we get∫
M

−
(

5
4

S − n
4

+ 3
2

)
|∇h|2 + 3

2
(A − 2B) −

(
3 − 3

n + 4

)
nH

∑
i,j,k

h2
ijkλi

+
∫

M

9n + 30
4(n + 4)

[−S2(n − S) + n2H2S − n|∇h|2 − nHSf3
] ≥ 0.

By (3.6), we have∫
M

−
(

5
4

S − n
4

+ 3
2

)
|∇h|2 −

(
3n + 3 − 3n

n + 4

)
H

∑
i,j,k

h2
ijkλi

+
∫

M

9n + 30
4(n + 4)

S
[−S(n − S) + n2H2 − nHf3

] − 9n + 30
4(n + 4)

n|∇h|2

+
∫

M

2 + δ

2
(S − nH2)|∇h|2 + 3

2
H2|∇h|2 ≥ 0. (3.14)

Since S ≥ S0, then by direct computation or [6], it is not difficult to get −S(n −
S) + n2H2 − nHf3 ≥ 0, and, moreover, if S0 ≤ S ≤ S0 + δ(n, H), the inequality (3.14)
implies

∫
M

−
(

5
4

S − n
4

+ 3
2

)
|∇h|2 −

(
3n + 3 − 3n

n + 4

)
H

∑
i,j,k

h2
ijkλi

+ 9n + 30
4(n + 4)

(S0 + δ(n, H) − n)|∇h|2 + 2 + δ

2
(S − nH2)|∇h|2 + 3

2
H2|∇h|2 ≥ 0.

(3.15)
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Because
∑

i,j,k h2
ijkλi ≤ √

S|∇h|2, this means

∫
M

−
(

5
4

S − n
4

+ 3
2

)
|∇h|2 +

(
3n + 3 − 3n

n + 4

)
H

√
S|∇h|2

+ 9n + 30
4(n + 4)

(S0 + δ(n, H) − n)|∇h|2 + 2 + δ

2
(S − nH2)|∇h|2 + 3

2
H2|∇h|2 ≥ 0.

(3.16)

By the definition of S0, and noting that δ < 3
n and |H| ≤ ε(n) if ε(n) is small

enough, we can choose δ(n, H) > 0 such that

−
(

5
4

S − n
4

+ 3
2

)
+

(
3n + 3 − 3n

n + 4

)
H

√
S

+ 9n + 30
4(n + 4)

(S0 + δ(n, H) − n) + 2 + δ

2
(S − nH2) + 3

2
H2 < 0.

According to (3.16) and the above inequality, we conclude that |∇h| ≡ 0. Hence,
all of the above inequalities are equalities. Therefore, −S(n − S) + n2H2 − nHf3 = 0,
which implies S = S0 and M is isometric to the Clifford hypersurface. Thus, the proof
is completed. �
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