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ON THE DISTRIBUTION MODULO 1 OF 
THE SEQUENCE an2 + m 

WOLFGANG M. SCHMIDT 

In memory of H. Heilbronn 

1. I n t r o d u c t i o n . Dirichlet 's Theorem says t ha t for any real a and for 
N ^ 1, there exists a natural n ^ N with 

| | a» | | < N~\ 

where || || denotes the distance to the nearest integer. Heilbronn [2], im­
proving estimates of Vinogradov [3], showed tha t for a, N as above and for 
e > 0, there exists an n S N with 

||cm2|| < Ci(€)iV-<1/2>+«. 

Davenpor t [1], as par t of a more general investigation, proved tha t for a 
quadrat ic polynomial ax2 + /3x, for N ^ 1 and e > 0, there is an n ^ N with 

| |aw2 + pn\\ < c2(e)AM1/3>+e. 

The example 0.x2 + 0.x + \ shows tha t the restriction to polynomials with 
constant term zero is essential. An impor tant feature of the results is tha t they 
are uniform in a, /3 and they are "localized", i.e. they specify n to lie in a given 
range. They imply but are not implied by non-localized results; e.g. Heilbronn's 
Theorem implies t ha t there are infinitely many n with ||cm2|| < Ci(e)n~{1/2)+e. 

T H E O R E M . Suppose a, ($ are real, and e > 0. Given N ^ 1, there exists an 
n ^ N with 

\\an2 + &n\\ < c3(e)AM1/2>+<. 

This generalizes Heilbronn's Theorem and sharpens Davenpor t ' s est imate. 
Our point of departure from the s tandard arguments will be the est imate (7) 
for exponential sums. 

2. A r o u t i n e b e g i n n i n g . We s ta r t out with the Hei lbronn-Davenport ap­
proach. Wri te e(x) = e2vix. Suppose M > 2, and let r be natural . According to 
Vinogradov ([4, Lemma 12], applied with f3 = — a = \M~l, A = M~l), there 
exists a real-valued periodic function 

CO 

$(%) = Z ) cme{mx) 
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with 
(i) f(x) = 0 if ||*|| ^ M~\ 

(ii) Co = M-\ 
(iii) \cm\ « min (M~\ \m\-r~lMr) 

for m 9^ 0, where the constant in « depends only on r. 
Put 

M = iV1/2~e 

and suppose N to be a large integer, say N > c*(e). Everything is fine if there 
exists an n ^ N with \\an2 + /3n|| < M~1. We therefore assume that there is 
no such n. Then by (i), 

N 

X yp(<xn* + /to) = 0. 
n = l 

In view of (ii) we obtain 

(1) X cw5m = -NM-1 

with 

Sm = X e(m(an2 + /to)). 
n = l 

Putting L = [M1+e] where [ ] denotes the integer part, we have 

(2) NU2~* < L g N1/2~^/2\ 

By (iii), 

X |^ |«M r L- r «M- € r «M~ 2 , 
\m\>L 

if we fix r > 2e_1. Here and in the sequel, the constants in « and in 'big 0' 
depend only on e. If N, whence M, is sufficiently large, we have 

X \CmSm\ ^ N X km | < 2 
M > £ \m\>L 

Comparison with (1) yields 

NM~\ 

7 J Cm^rr, 
0<\m\^L 

è WM~\ 

whence 

Z |5m|»iV 
0 < | m | ^ L 

by (iii). Since |5_m | = \Sm\, and by Cauchy's inequality, 

(3) £ \Sm\'»N2L-
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3. Exponential sums. 
N N 

\Sm\2 = Z Z e(m(n2 - ni)(a(m + w2) + fi))-

Putting w = m + W2, v = riz — ni, we obtain 

\Sm\2 = XI e(mv(otu + 0)), 

where the sum is over integers u, v with u = v (mod 2) and 

0 < w + v ^ 27V, 0 < u - v g 27V. 

The TV summands with v = 0 give a contribution TV. Since the substitution 
v —* —v changes each summand into its complex conjugate, we have 

|Sm |2 = TV + 2Re X e(f»p(aM + 0)), 

where the sum is over u, v with u = v (mod 2) and 

(4) 0 < v < TV, v < M ^ 2TV - v. 

For fixed v, the terms mv(au + fi) with integers u = v (mod 2) form an 
arithmetic progression with common difference 2mva. The sum of e(mv(au -\-fi)) 
over the terms of this arithmetic progression (which has length TV — v < TV 
by (4)) is 

« min (TV, \\2mva\\-1). 

Summation over v in 0 < v < TV yields the well known Weyl estimate for 
\Sm\2, namely 

|5 r o |2 = iV + o ( è min (TV, l ^ m ^ i r 1 ) ] . 

Since by (2), NL is small compared to N2Lrl, our estimate (3) yields 

L N 

X Z min W l^aH"1)»^^"1 . 
ra=l v=l 

Observing that the number of divisors of an integer ^ 2L7V is « 7Vf/3, we get 

2LN 

(5) £ min (TV, | \ka\ I"1) » N^^IT1. 

We now reverse the roles of w, u above. The inequalities (4) may be re­
written as 

(6) 0 < u < 27V, 0 < v g min (w - 1, 27V - u). 

For fixed w, the terms mv(au + 0) with v = u (mod 2) form an arithmetic 
progression with common difference 2m(au + fi). The sum of e(mv(au + fi)) 
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over the terms of this arithmetic progression is 

« m i n (N, \\2m(au + ^W'1). 

Summation over u yields 

(7) \Sm\2 = 7 V + 0 ( £ min (N, \ \2m(au + 0) | p 1 ) ) . 
\ u=l / 

We now invoke (3) to obtain 

(8) Z Z min (TV, | \m (ait + 0) | p1) » N2L'\ 
m = l u=-l 

4. A first application of Dirichlet's Theorem. We briefly return to 
Heilbronn's argument, i.e. to (5). By Dirichlet, there are coprime integers 
a, q with 

(9) 1 S q è N2-^^L-\ \aq - a\ < 7V-2+(e/2)L, 

so that in particular, \a — (a/q)\ < q~2. It is well known that for a block Se of 
q consecutive integers, 

J2 min (N, \\kal\-1) « N + q log q. 

Dividing the range 1 ^ k S 2LN into ^ (2LN/q) + 1 blocks of g or fewer 
consecutive integers, we have 

(10) £ min (iV, H&air1) « QLNq-1 + l)(N + q logg). 

In view of (2) and (9), the only one of the four summands on the right hand 
side of (10) which could possibly be as large as iV2_(e/3)L_1, is 2LN2q~1. Thus 
by (5) and (2), 

(11) ^ « ^ ^ « i V 1 - ^ ) . 

5. Auxiliary l e m m a s . 

LEMMA 1. Suppose \a\ fg iV-1. Then 

min (TV, ||p + all-1) « min (iV, \\PW~1). 

Proof. Obvious. 

LEMMA 2. Let £i, . . . , £K: ^^ rm/s w ^ | | ^ — £;-|| ^ p > Ofor i 7^ j , and with 
Hêill = min (Hfill , . . . , | | ^ | | ) . Then 

t ||€*ir1«p"1iogis:. 

Proqf. We may suppose that ||£i|| g . . . g | | ^ | | . Then | |^ | | ^ (i - l)p/2 
for i = 2, 3, . . . , K. The lemma follows. 

https://doi.org/10.4153/CJM-1977-084-8 Published online by Cambridge University Press

file:////kal/-1
file:////pW~1
https://doi.org/10.4153/CJM-1977-084-8


THE SEQUENCE an2 + fin 823 

LEMMA 3. Let p, a be real, and K natural with \Kp\ rg 1. Write 

ô = min ||pj + <HI> A = max ||pj + o-| 

Then 

(12) £ \\Pj + aW-1 = Ô-1 + 0(A~lK logK). 

Proof. Write the numbers pj + a with j = 1, . . . , K as £i, . . . , %K, arranged 
such that 11Ji|| = 8 = min (||^||, . . . , | | ^ | | ) . We have ||£* - £,|| è |P| in view 
of \Kp\ ^ 1. Thus if \p\ ^ A/2K, the desired conclusion follows from Lemma 2. 
On the other hand, if \p\ < A/2K, then \\pj + cr|j > \ A (j = 1, . . . , K), and 
the sum in (12) is estimated by 2A-1i£. 

LEMMA 4. Suppose r, s are coprime, 

(13) 1 ^ s ^ N and \\£s\\ = \£s - r\ < (37V)-1. 

Then 

(14) £ min (TV, | | y + ^ p 1 ) « m m (iV, ^ H " 1 ) + * log 5. 

Proof. Writing J = (r/s) + Jo, we have |j£0| S |s£o| = | M | < (37V)"1. So by 
Lemma 1, our sum is 

« É min (N, \\(r/s)j +vil'1) = E min (TV, || (j/s) + v\ p
1). 

. 7 = 1 J = l 

We now apply Lemma 3 with K = s, p = 1/s, a = rj, and obtain 

« min (TV, ô"1) + A"1* log 5. 

In our special situation, 3 is the distance from rj to the nearest integer multiple 
of 1/5, or ô = 5-1||i75||. If 5 ^ 2, then A ^ J, and we are done. Of course we 
are also done when s = 1. 

LEMMA 5. Suppose r, s, TV, £ are as in Lemma 4. Then 
2N

 IN2 N 1 \ 
g min (iV, | | * + .H"1) « (logiV)min ( _ . ^ , _ ) . 

Proof. Write u — sz + j (j = 1, . . . , s). The sum in question is 

[2N/s] s 

è L Z min(JV, | |y + £s2 + , | r 1 ) , 
2=0 ; = 1 

and is 

[2JV/S] 

« £ (min ( J V ^ H ^ + ^ i r 1 ) + slogs) 
2=0 
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by Lemma 4. Writing £x = £s — r with |£i| = ||£s||, we obtain 
[2iV/s] 

(15) «N\ogN+ 2 min (iV^II^ + ^lp1). 
2=0 

It is clear that this is 

« N log N + (N2/s) « (log N) (N2/s), 

which is the first of the desired estimates. 
To get the other estimates we now apply Lemma 3 to the sum in (15), that 

is, we apply it with K = [2N/s] + 1, p = ^s, a = rjs — £i$. Observe that 
\Kp\ ^ (3iVA) |?i5| = 3iV H^ll < 1. We obtain 

« N log N + min (N, s ô'1) + 5 A"1^ log K 

« Nlog N + A-W log iV 

« A-W log iV. 

Here A is the maximum of \\i;isz + rjs\\ for z = 0, . . . , [2N/s]. Clearly A ^ 
\\rjs\\. But since \N^\ < 1/3, we have also 

\tis[N/s]\ = | | ^ [ iVA] | | g | |^[iVA] + ^ | | + | M | ^ 2A, 

whence A ^ i lêikt^A] è 1 \£i\N = f iV||£s||. We therefore obtain 

A-Wlog i V « (log TV) min (iNTlMI"1, iNI" 1 ) . 

6. Making use of (8). Let d be a divisor of the integer q of § 4. Let Srf be 
the double sum in (8), but restricted to summands with (m, q) = d. Writing 
q = dqi, m = dnti, 

[2L/d] 2N 

2d = Yl X) m m (N, \\adntiu + fidmi\\~1). 
mi = l w = l 

(mi ,<?i) = l 

Since the number of divisors of q is « Ne/S, there will by (8) be a d with 

(16) Sd » N2-^^L~K 

We now consider the inner sum in the definition of 2d. It is the type of sum 
considered in Lemma 5, with J = adm\ and 77 = j3dmi. With s = ci, r = ami 
we have (s, r) = 1, and 

^ ^ g ^ N 

by (11). Further 

|£<> - r\ = |a^mi5 - awi| = |ag - a|wi < iV~2+(f/2)L(2L) < (3N)-1 

by (9), (2), so that ||£s|| = \£s - r\ < (3N)~\ The hypotheses of Lemma 5 
are satisfied, and the inner sum in the definition of 2rf is 

(N2 N 1 \ 
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So by (16), and since ||agmi|| = ||a:g||wi, 

(17) 2^ m m ~~ » TL3 n » 71—iï~ 

7. A second application of Dirichlet's Theorem. There are coprime /, 
w with 

(18) 1 S t S 4L and ||/^/|| = |/3g/ - w| < (4L)"1. 

LEMMA 6. Suppose m1 ^ 2L is wo/ divisible by t. Then 

||0gwi|| ^ (20-1-

Proof. Assuming that Wi ^ 2L and that ||/5gwi|| < (2t)~1, we have 
\Pqini — l\ < {2t)~l for some /. Combining this with \f3qt — w\ < (4L) -1, we 
obtain 

\lt - miw\ < Q) + (wi/4L) g 1, 

so that // — WiW = 0, and t is a divisor of WiW, hence of mx. 

We are going to apply the lemma to estimate the part of the sum (17) where 
m\ is not divisible by t. Let 6 be a block of ^ t/2 consecutive integers rg 2L 
which are not divisible by t. By the lemma we know that ||/3gwi|| ^ (2/)_1 for 
Mi G S. On the other hand, if mi, m / are distinct elements of E, we write 
Pq = (w/0 + /3o and note that |j80| < (4JL)-1, so that 

\\f3qmi — Pqrni'W è ||(w//)(mi — mi)\\ — |/30|mi — m / | 

â *_1 - (4/L)-1(//2) ^ (2/)-1 = p, 
say. Lemma 2 yields 

X) | | / 5gwi | r 1 «2 / + P ~ 1 l o g / « H o g i V . 

We divide the integers mi in 1 ^ Wi ^ 2L/d with / \ m\ into ^ (AL/dt) + 1 
blocks of g t/2 consecutive integers, and obtain 

[2Z,/d] 

£ | l/Jgwil T1 « (/ log N) ((4L/dt) + 1) « L log N. 

It follows that the sum (17), restricted to mi with t \ m\ is « LN log N, and 
is smaller in magnitude than the right hand side of (17). We thus may restrict 
ourselves to mi of the form mi = tm2, and we obtain 

[2L/dt] / N2 , \ 

(19) D min - . M - T i T - ) » N^^L'\ 
w ~ i \qi \\aq\\tm2/ 

In particular, (2L/dt)(N2/q1) » N2-^/2)L~\ and putting n = qt, we have 
n = qidt « LW€ / 2 , whence 

(20) n = qt S N 

»N 
• 2 - C 6 / 2 ) , 
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by (2). On the other hand, (19) yields 

(\\aq\\t)-1 log N^W-i'^L-1, 
and 

jM|;«-LiV<-2«iv<< /2>-<3/2>. 
So 

|Jaw2 + |3w[| ^ « | | a « | | + ||/3w|| :§ w ' | | a ? | | + \\@Çt\\ 

« iV.7V<'/2'-(3/2) + L-1 « N-(-1/r>+<, 
by (2), (18). 
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