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ON THE DISTRIBUTION MODULO 1 OF
THE SEQUENCE o7 + gn

WOLFGANG M. SCHMIDT

In memory of H. Heilbronn

1. Introduction. Dirichlet’s Theorem says that for any real « and for
N = 1, there exists a natural # < N with

lloen|| < N7,

where || || denotes the distance to the nearest integer. Heilbronn [2], im-
proving estimates of Vinogradov (3], showed that for @, N as above and for
e > 0, there exists an n < N with

llan?|| < ¢ (e) N=(/»+e,

Davenport [1], as part of a more general investigation, proved that for a
quadratic polynomial ax? 4 Bx, for N = 1 and ¢ > 0, there is an n = N with

[lan?® + Bn|| < ca(e) N=(1/3)+e,

The example 0.x2 4+ 0.x + % shows that the restriction to polynomials with
constant term zero is essential. An important feature of the results is that they
are uniform in @, 8 and they are “‘localized”, i.e. they specify # to lie in a given
range. They imply but are not implied by non-localized results; e.g. Heilbronn’s
Theorem implies that there are infinitely many n with ||an?|| < ¢i(e)n=1/D+e

THEOREM. Suppose a, B are real, and ¢ > 0. Given N = 1, there exists an
n < N with

[lan? 4+ Bn|| < c3(e) N—1/D+e

This generalizes Heilbronn’s Theorem and sharpens Davenport’s estimate.
Our point of departure from the standard arguments will be the estimate (7)
for exponential sums.

2. A routine beginning. We start out with the Heilbronn-Davenport ap-
proach. Write e(x) = ¢* %, Suppose M > 2, and let r be natural. According to
Vinogradov ([4, Lemma 12], applied with 8 = —a = 33!, A = M), there
exists a real-valued periodic function

©

V) = 2. cnelmx)

m=—co
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with
(i) wix) = 0 if [|xl] 2 M,

(ii) ¢ = MY,

(iil) |cn| < min (M1, |m|="™=1M")
for m # 0, where the constant in << depends only on r.

Put

M = Ntii—e

and suppose N to be a large integer, say N > c¢4(e). Everything is fine if there

exists an n £ N with ||an® + Bn|| < M~'. We therefore assume that there is
no such #. Then by (i),

; Y(an® + 8n) = 0.

In view of (ii) we obtain

(1) Z CmSnL = —Nﬂl_l

m#=0
with
N

Sy, = > e(m(an® + 8n)).

n=1
Putting L = [M'¢] where|[ ]denotes the integer part, we have
(2) Nl/Z—e < L é N1/2—(€/2).
By (ii1),
S em| K ML K M~ < M7,
Im|>L
if we fix » > 2¢'. Here and in the sequel, the constants in << and in ‘big O’

depend only on e. If N, whence M, is suthciently large, we have

3 lenSul EN Y o] < ANMT
L

Im|>L [m}>

Comparison with (1) yields

nSn| Z INMTY
0<Im|=L
whence
> [S. >N
0<|m|SL

by (iii). Since |S_,| = |S.|, and by Cauchy’s inequality,

L
3) X |Sa’> N
m=1
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3. Exponential sums.
N N
[Sul = 20 2 elm(ns = mo) (s + ) + ).

Putting u = 51 + n9, ¥ = 1y — 11, we obtain
lSm‘Q = Z e(my(au + B)),

U

where the sum is over integers #, v with # = v (mod 2) and
O<u—+v=2N, 0<u—9v=2N.

The N summands with v = 0 give a contribution N. Since the substitution
v — —v changes each summand into its complex conjugate, we have

[S,|* = N + 2Re Y. e(mov(an + B)),
where the sum is over u, v with # = v (mod 2) and
4) 0<9v<N, v<u=2N-—u

For fixed v, the terms muv(au + B) with integers # = v (mod 2) form an
arithmetic progression with common difference 2mva. The sum of e (mov (au +3))
over the terms of this arithmetic progression (which has length N — v < N

by (4)) is
< min (N, ||2moa||~1).

Summation over v in 0 < v < N yields the well known Weyl estimate for
|S,|2, namely

|S,> = N + O(i::1 min (N, |‘2mva|l‘1)) .

Since by (2), NL is small compared to N2L~!, our estimate (3) yields

L

N
> min (V, ||2omal[) > N°L7
m=1 =1
Observing that the number of divisors of an integer < 2LN is << N¢/3 we get

2LN

(3) Y min (N, ||ka||™) > NTCO L
k=1

We now reverse the roles of u, v above. The inequalities (4) may be re-
written as

6) O0<u<2N, 0<ov=<min (u—1,2N — u).

For fixed u, the terms mv{au + ) with v = u (mod 2) form an arithmetic
progression with common difference 2m (eu + 8). The sum of e(mv(au + B))
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over the terms of this arithmetic progression is
< min (N, |[2m(are + B)||7Y).

Summation over u yields

(M) IS, =N+ O( ; min (N, ||2m (au + B)H—l)> .

We now invoke (3) to obtain

2L 2N

(S) Z Z min (N, ||m (e + 8)||7") > N°L7%.

m=

4. A first application of Dirichlet’s Theorem. We briefly return to
Heilbronn's argument, i.e. to (5). By Dirichlet, there are coprime integers
@, g with

9) 1 < ¢S N0 ag — af < N[
so that in particular, o — («/q)| < g2 It is well known that for a block & of
g consecutive integers,

E min (V, HkaH_l) KN +gloggq.

kER
Dividing the range 1 < k < 2LN into < (2LN/q) + 1 blocks of ¢ or fewer
consecutive integers, we have

2LN

(10) > min (N, ||ka|[™) < 2LNg™' + 1) (N + g log q).
k=1

In view of (2) and (9), the only one of the four summands on the right hand
side of (10) which could possibly be as large as N2>=(¢/¥~1 is 2L N2¢~L. Thus
by (5) and (2),

(] 1) q < L2Ne/3 & N1-(e/2)

5. Auxiliary lemmas.
Leyya 1. Suppose |o| < N=1 Then

min (N, ||p + o||~") < min (N, |[p|[71).
Proof. Obvious.

LEMMA 2. Let &1, . . ., &x be reals with |8, — &]] = p > 0for i # j, and with
&l = min ([[&]], .. ., [|E[]). Then

K

> g <o log K.

=2

IA

Proof. We may suppose that ||&|| < ... < ||&x]|. Then ||&]] = (@ — 1)p/2
fori=2,3,..., K. The lemma follows.
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LEMMA 3. Let p, o be real, and K natural with |Kp| < 1. Write
6= min [|pj + o[, A= max ||pj + oll.
155K 155K

Then

(12) 2 floi + o[t =67+ 0(a7'K log K).

Proof. Write the numbers pj + o withj = 1,..., Kasé, ..., éx, arranged
such that ||&)] = 6 = min (||&]], ..., [|£x]]). We have [|§; — &)|| = |p| in view
of |[Kp| £ 1. Thusif [p] = A/2K, the desired conclusion follows from Lemma 2.
On the other hand, if |p| < A/2K, then |[pj + o|| > 3A (G =1,...,K),and

the sum in (12) is estimated by 2A7'K.

LEMMA 4. Suppose v, s are coprime,
(13) 1=<s=<N and |&|] = |ts—r] < BN)".
Then

(4) 3 min OV, [l + 0l <min @V, sl [7) + s log s
Proof. Writing £ = (r/s) + &, we have |j&o| =< [s&o| = ||&s]] < (3N)~L So by
Lemma 1, our sum is
&3 min QV [/5) +l[™) = X, min @V, 11G/9) + 2l
We now apply Lemma 3 with K = s, p = 1/s, ¢ = 7, and obtain
< min (N, 61) + A 1s log s.

In our special situation, ¢ is the distance from 5 to the nearest integer multiple
of 1/s,0or & = s7Y|ys||. If s = 2, then A = %, and we are done. Of course we
are also done when s = 1.

LEMMA 5. Suppose r, s, N, £ are as in Lemma 4. Then

3 min (¥, [gn + 1| ™) < (log ) min (2, oL )

Proof. Write u = sz +j (j = 1,...,s). The sum in question is
[2N /5] s . . 1
s 2 2 min OV, |l + gz 40l
2= j=

and is

[2N /5]

< Z_% (min (N, s||&s® + ns||7Y) + slog s)
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by Lemma 4. Writing & = & — 7 with |&] = ||£s]], we obtain

[2N /5]

(15) < Nlog N + 2_:,) min (N, s| £z + 7s][71).

It is clear that this is
& Nlog N + (N?/s) < (log N)(N%/s),

which is the first of the desired estimates.

To get the other estimates we now apply Lemma 3 to the sum in (15), that
is, we apply it with K = [2N/s] + 1, p = &5, ¢ = 55 — £5. Observe that
|Kp| < (3N/s) |&s| = 3N ||&s|] < 1. We obtain

& Nlog N + min (V,s ') + s A—'K log K
<K Nlog N+ A-'Nlog N
& A~IN log N.

Here A is the maximum of ||¢5z + »s]| for 2 = 0, ..., [2N/s]. Clearly A =
[Ins]]. But since |N§&| < 1/3, we have also

Eus[NV/s]] = [[EsIN/SII| < [[EasIN/s] + msl] 4 lns]] = 24,
whence A = 1 |&]s[N/s] = % [&|N = % N||¢s]|. We therefore obtain
A=IN log N « (log N) min (N|[ns||=, [[&s][=).
6. Making use of (8). Let d be a divisor of the integer g of § 4. Let Z,; be

the double sum in (8), but restricted to summands with (m, ¢) = d. Writing
g = dqu m = dm1,

(2L/d] 2N .
Se= Zl 21 min (N, |ledmw 4+ Bdmi||™).
D=1

Since the number of divisors of ¢ is << N¢/3, there will by (8) be a d with
(16)  Zg> N2/ [-1,

We now consider the inner sum in the definition of Z,. It is the type of sum
considered in Lemma 5, with § = adm, and n = Bdm;. With s = ¢, r = am;
we have (s, 7) = 1, and

SE¢=N
by (11). Further
l&s — 7| = |admis — amy| = |ag — a|lm; < N72HDL(2L) < (3N)~?

by (9), (2), so that |[&s]| = |&s — 7| < (BN)~L The hypotheses of Lemma 5
are satisfied, and the inner sum in the definition of Z, is

N? N 1
< 1 N i (_—_v ’ )'
(log Ny min {2 ™ Tiggmnll* Tagmal]
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So by (16), and since |jagm,|| = ||ag||m,
[2L/d) 2
. (N N 1 2 (e/2) 7 —1
17 mm(—, : )>>N =1
an - 2 min o gl Mgl

7. A second application of Dirichlet’s Theorem. There are coprime ¢,
w with

(18) 1 =<¢t=<4L and |[|Bg|| = |Bgt — w| < (4L)~.
LEMMA 6. Suppose my < 2L is not divisible by t. Then

|1Bgmal| = (2).

Proof. Assuming that m; < 2L and that [|Bgmi|| < (2t)~!, we have
|Bgmy — 1] < (2t)~! for some [ Combining this with |8gt — w| < (4L)~!, we
obtain

it — muw| < (3) + (mi/4L) < 1,
so that It — myw = 0, and ¢ is a divisor of m,w, hence of ;.

We are going to apply the lemma to estimate the part of the sum (17) where
m; is not divisible by . Let € be a block of < #/2 consecutive integers < 2L
which are not divisible by ¢. By the lemma we know that ||Bgm|| = (2¢)~! for
mi € €. On the other hand, if m,, m," are distinct elements of €, we write
Bg = (w/t) 4+ Bo and note that |Bo| < (4¢L)~', so that

|1Bgmy — Bgmi'[| = [[(w/t) (m1 — mi)|| — |Bo|my — my]

= - WDT(/2) 2 @) = p,
say. Lemma 2 yields

2 B[ <2t + o log t < tlog N.
mi1€

We divide the integers m; in 1 < m; < 2L/d witht ¥ m;into £ (4L/dt) + 1
blocks of = ¢/2 consecutive integers, and obtain

[2L/d)

Zl ||Bgma|| ™ << (tlog N)((4L/dt) + 1) < L log N.

mi=
timi

It follows that the sum (17), restricted to m; with ¢ + m; is << LN log N, and
is smaller in magnitude than the right hand side of (17). We thus may restrict
ourselves to m; of the form m; = Im,, and we obtain

19 [2%”] (N2 S ) Ny -t
in{——, > NP
( ) ma=1 i q1 Hathmg 2

In particular, (2L/dt) (N?/q1) > N*~(¢/YL~1 and putting » = ¢¢, we have
n = q1dt < L2N<’?, whence

(20) n=q¢ =N
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by (2). On the other hand, (19) yields

(llagl[)=* log N > N2=(e/n L1,
and
[lag||t K LN & N(e/D=3/2),
So
llan? + Bnl| < nflan|| + [|8n]| < nfflagl| + [189!]]
<< N_N(E/Q)—(3/2) _+_ L—l << N_(I’/2)+e,
by (2), (18).

REFERENCES

1. H. Davenport, On a theorem of Heilbronn, Quart. J. Math. (2) 18 (1967), 337-344.

2. H. Heilbronn, On the distribution of the sequence n*0 (mod 1), Quart. J. Math. 19 (1948),
249-256.

3. 1. M. Vinogradov. Analytischer Beweis des Satzes iiber die Verteilung der Bruchteile eines
ganzen Polynoms, Bull. Acad. Sci. USSR (6) 21 (1927), 567-578.

The method of trigonometric sums in the theory of numbers (1947), English transl.

(Interscience, New York, 1954).

University of Colorado,
Boulder, Colorado

https://doi.org/10.4153/CJM-1977-084-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-084-8

