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SIGNATURES AND SEMI SIGNATURES OF ABSTRACT 
WITT RINGS AND WITT RINGS OF SEMILOCAL RINGS 

JERROLD L. KLEINSTEIN AND ALEX ROSENBERG 

0. Introduction. This paper originated in an attempt to carry over the 
results of [3] from the case of a field of characteristic different from two to that 
of semilocal rings. To carry this out, we reverse the point of view of [3] and 
do assume a full knowledge of the theory of Witt rings of classes of non-
degenerate symmetric bilinear forms over semilocal rings as given, for example, 
in [10; 11]. It turns out that the rings WT of [3] are just the residue class rings 
of W(C), the Witt ring of a semilocal ring C, modulo certain intersections of 
prime ideals. 

The first section of this paper deals with abstract Witt rings [10, Def. 3.12]. 
We generalize the usual notions of dimension, isotropy, and representability 
to these. Additionally, we study the homomorphisms, both as rings and as 
abelian groups, of abstract Witt rings to Z; the former are called signatures and 
certain of the latter, semisignatures. It turns out, for example, that an element 
of an abstract Witt ring is mapped to 0 by all signatures if and only if it is 
mapped to 0 by all semisignatures. The main result of Section 1 is a necessary 
and sufficient condition for the existence of a semisignature mapping a pre­
scribed set of units to 1. This result may be viewed as a generalization of the 
main part of the implication (i) => (ii) of [8, Thm. 5.7]. The section ends with 
consideration, still in the abstract case, of extensions of semisignatures and the 
Hasse-Minkowski property [4]. 

In Section 2, we consider a connected semilocal ring C all of whose residue 
class fields contain at least 3 elements. If R = W(C) is the Witt ring of classes 
of nondegenerate symmetric bilinear C-forms, we show that the results of 
Section 1 are applicable to R = W(C)/I(Y), where I(Y) is a special inter­
section of non-maximal minimal prime ideals of R. We show how the abstract 
notions of dimension, isotropy, and representability translate to R and also 
prove that R satisfies the necessary and sufficient condition for the existence of 
semisignatures established in Section 1. This section ends by giving a pres­
entation of R by generators and relations. 

In Section 3 we apply the results of the first two to translate and generalize 
results on semisignatures of R to results on semisignatures of R. We deal with 
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extensions of semisignatures, the Hasse-Minkowski property and with indefi­
nite forms; that is, forms which are mapped by all semisignatures to an integer 
less than the form's rank in absolute value. Finally, we deduce [8, Thm. 5.13], 
in the case of trivial involution, from our results. 

1. Abstract Wi t t r ings . Let G be a group (necessarily abelian) of exponent 
2, i.e. for all g in G, we have g2 = 1. For a proper ideal K of the group ring 
Z[G], the ring R = Z[G]/K is called a Witt ring for G if the torsion subgroup, 
Rt, of the additive group of R is 2-primary [10, Def. 3.12]. R is called reduced if 
Rt = 0. By [10, Props. 3.15 and 3.16] a reduced Witt ring for G has no non-zero 
nilpotent elements. For g in G we denote the image of g in R by f, although for 
the identity element of both G and R we often write 1. Clearly every element r 
of R may be written as YUi etgt with e* == ± 1 for, not necessarily distinct, ele­
ments giOÎ G. By G' we denote the multiplicative subgroup of Z[G] consisting 
of the elements ±g, g in G, and write g' for zbg. 

Definition 1.1. For r in i?, dim^r, or dim r if there is no possibility of con­
fusion, is the smallest natural number n such that r = Y^Ji gi * g\ m G''• Clearly, 
for r i , . . . , rm in i?, we always have dim (Y™ rf) ^ Y™ dim rjt 

If T7 is a field of characteristic not two and R = W(F) is the Witt ring of 
equivalence classes of symmetric nondegenerate bilinear forms over F, then 
W(F) is a Witt ring for U(F)/(U(F))2, where U(F) denotes the unit group, 
F — {0}, of F} [10, Ex. 3.11]. For r in W(F), dim r is then the vector space 
dimension of the unique anisotropic representative of r [12, Thm. 1.7, p. 58]. 

Definition 1.2. For g' in G', the element r in i? is said to represent the element 
g' of G', if there is a £ in i? with r = gr -\- p and dim £ < dim r. The subset of 
Z[G] represented by r will be denoted by D(r). 

Definition 1.3. For g/, . . . , gn' in Gr, the element YA &/ °f Z[G] is called 
anisotropic for i? if dim (X)ï | / ) = n. Otherwise YJi 1 / will be called isotropic 
fori?. 

Since each r in R can be written as YA &/» it is clear that by choosing n mini­
mal, we obtain an anisotropic representative in Z[G] of r. Furthermore, it is 
clear that these definitions coincide with the usual ones if R = W(F), F a field 
of characteristic not two. 

LEMMA 1.4. For r in R, let YTi gt oe an anisotropic representative of r in Z[G]. 
Then YA gi + g\ for some gf in G', is an element of Z[G] isotropic for R if and 
only if —g'isinD{r). 

Proof. If —g' is in D(r), there exists an element p in R with r = p — gf and 
dim p < dim r. Thus p = r + g', and so dim (r + gf) < dim r = n. By Defi­
nition 1.3 this means that YA &/ + &' 1S isotropic for R. 

Conversely, if Yl" &/ + g' is isotropic for R, there exist hi, . . . , hm
f in Gf 

with Y™ hi = r + g' a n d m = dim (r + g') < n + 1. Solving for r shows that 
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n = dim r ^ m + 1. Thus m = n or n — 1. Now, by definition of R} the ele­
ment E ? A/ - ( E U / + g') of Z[G] is in K, and so by [10, Thm. 3.9 (ii)], 
the natural number n + m + 1 is even. Hence m = n — 1, i.e., dim (r + gr) < 
n = dim r. Since r = (r + g') — gr, Definition 1.2 shows that — g' is in D(r). 

Definition 1.5. If R is a Witt ring for G, the set of ring homomorphisms 
R —> Z is denoted by X(R) and called the se/ 0/ signatures of i?. 

Remark 1.6. For o- in X(R), the ideal ker a- is a minimal non-maximal prime 
ideal of i? and the mapping a —•> ker o- is a bijection of X(R) onto the set of 
minimal non-maximal prime ideals of R [10, Lemma 3.1 and Remark 3.2]. Of 
course, by passing to inverse images in Z[G], the set X (R) is also bijective with 
the set of minimal prime ideals of Z[G] containing K. By [10, Prop. 3.4], 
X(R) j£ 0 if and only if Rt = Nil R, the nilradical of R. Throughout the rest 
of this section we assume X (R) ^ 0. 

Definition 1.7 (cf. [11, Sec. 4]). (i) For any subset M of G' in Z[G], V(M) = 
{a in X(R)\a(g') = 1 for all g' in M}. 

(ii) For 7 C I ( ^ ) , w e p u t T(Y) = {gr in G'\a{gf) = 1 for all a in F}. 
(hi) A subset F of X(R) is saturated if F = F (T(F ) ) . 
(iv) For F C ^ ( i ? ) , we put I(Y) = n . e r ker a, an ideal of i?. 
(v) For any subset M of G' in Z[G] we denote the (proper) ideal of R 

generated by 1 — g', gf in M, by a(M). 

PROPOSITION 1.8 [cf. 11, Lemma 4.15 and Corollary 4.16]. For any subset M 
of G': 

(i) R/a(M) is again a Witt ring for G. 
(ii) The radical of a(M), written (ct(M))1/2, is I(V(M)), with the convention 

1(0) = Tlo(R)j the unique maximal ideal of R containing 2 [10, Lemma 2.13 
and Theorem 3.9]. 

Proof. The proof of (i) is essentially the same as that of [11, Lemma 4.15]. 
As for (ii), since <r(l — g') = 0 if and only if a(g') = 1, it is clear that a(M) C 
ker a if and only if a is in V(M). Since by [10, Lemma 3.1 and Theorem 3.9 (i)] 
the only prime ideals of R are either 3Jl0(R), a ker a, or maximal ideals properly 
containing a ker a, the result is clear if V(M) ^ 0 since 3K0(^) contains all 
ker a [10, Ex. 3.11]. If V(M) = 0 and a(M) were contained in a maximal ideal 
of R other than <SJlo(R)1 the residue class ring R/a(M) would not be a Witt 
ring for G [10, Theorem 3.9], contradicting (i). Thus (ii) is true also if V(M) 
= 0. 

LEMMA 1.9. Let M ^ 0 be a subset of G' in Z[G] and let M be the multiplica­
tive subgroup of G' generated by M. 

(i) For r in (ct(M))1/2 and X : R —* Z an additive homomorphism, constant 

on the cosets of M in G', we have X (r) = 0. 
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(ii) For r in R we have a(r) = Ofor all a in V{M) if and only if X(r) = 0 for 

all additive homomorphisms R —> Z constant on the cosets of M in G'. 

Proof. It is readily verified that X is constant on cosets of M in G' if and only 
if for every g' in G and h in M we have \{g'h) = X(g'). 

To prove (i), we note that by Proposition 1.8 (i), the ring R/a(M) is again 
a Witt ring for G and thus its nilradical is torsion [10, Lemma 3.3]. Thus, for 
some natural number m, we see that mr is in a(M). But the constancy of X on 
the cosets of M, forces \(a(M)) = 0. Hence 0 = \(mr) = raX(r), which im­
plies X(f) = 0 since X(r) is in Z. _ 

To prove (ii), we note that every a in V(M) is constant on the cosets of M 
in G', so that one implication is clear. Conversely, if for every a in V(M) we 
have o-O) = 0, then by Proposition 1.8 (ii), r is in (a(M))U2 = I(V(M)). 
Thus, by (i), X(r) = 0 for all additive homomorphisms R —» Z, constant on 
cosets of M in G'. 

Remarks 1.10. (i) Let M = T(X(R)). Then M = M and the constancy 
condition of Lemma 1.9 is automatically fulfilled for all additive homomor­
phisms X : R —•» Z. For if for all a 'mX(R) we have a(hf) = 1, let r = g'hf — g' 
in R, where gf is in G'. Then for every a in X(R), we have a(r) = 0. Hence by 
Remark 1.6, the element r is in Nil R and so by [10, Lemma 3.3 and Lemma 
3.12], r is in Rt. But then clearly X(r) = 0 for any additive homomorphism 
X : R —> Z, which is precisely the required constancy condition. 

(ii) From (i) and Lemma 1.9 (ii) we see that for an element r of R, we have 
<j{r) = 0 for all a in X(R) if and only if \(r) = 0 for all additive homo­
morphisms X : R —> Z. 

PROPOSITION 1.11. Let Y C X(R) be a saturated set of signatures and R = 
R/I{ Y). Then if X is an additive homomorphism R —> Z constant on the cosets of 
r (F) in G', w Aûwe X(/(F)) = 0 so £fta£ X induces an additive homomorphism X 

from the Witt ring Rto Z.( 

Proo/. Since F i s saturated, F = F (T(F) ) . Thus setting M = M = T(F) , 
we obtain (a(M))1 /2 = I(Y) by Proposition 1.8 (ii). Proposition 1.8 (i) and 
[10, Remark 3.13 (ii)] then show that R is a Witt ring for G, and Lemma 1.9 (i) 
proves that \(I(Y)) = 0. 

Definition 1.12 (cf. [8, Def. 5.1]). Let R = Z[G]/K be a Witt ring for G. 
An additive homomorphism r : R —» Z is called a semisignature if for all g in G 
we have r(g) = ± 1 . Note that since r is additive, — r(g) = r( — f) and that 
since P is additively generated by the elements ± | , a semisignature is com­
pletely determined by its values on the elements | , g in G. 

Remarks 1.13. (i) Let P = Z[G]/K and 2? = Z[G]/Kf be two Witt rings 
for G such that i£ C Kf. If 7r denotes the canonical projection R —» P , then 
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for any semisignature f of R, there is, as usual a unique semisignature r of 
R making 

7T ^ \ 

Y - \ ^ 

R I • Z 

commute . Clearly, r is constant on the cosets of M in G', where 

M = {g' mG'\g' = 1 modK'}. 

(ii) If R — W(F), where F is a field of characterist ic not two, and T' a 
Pràordnung as defined in [3, 1.], then Lemma 1.9 (ii) with M = T' — {0} 
immediately shows tha t the notions of "equivalence" and "s t rong equivalence" 
imply each other, which is Satz 7 of [3]. 

Definitions 1.14. Let A C G' C Z[G] be a subset of G' and R a W i t t ring 
for G. 

(i) The set A is said to be anisotropic for R if all elements 2 ï at °f Z[G] 
with ai} not necessarily distinct, elements of A and arb i t ra ry n, are anisotropic 
for R. 

(ii) D(A) = [gf in Gr\g' in D(^l dt) for some, not necessarily dist inct , at in 
A and arb i t ra ry w}. 

L E M M A 1.15. (i) A C ^ ( ^ 4 ) . 

(ii) If A, CA2thenD(A1) C D(A2). 
(iii) If Aa is a totally ordered chain of subsets of G', then U D(Aa) = D({J Aa). 

Proof. For any g' in G', we have dim gf = 1 since the unit g7 of Z[G] cannot 
be in K. Moreover, in R we have gr + 0 = gf so t h a t g' is in D(g'). This proves 
(i). Par t s (ii) and (iii) follow from Definition 1.14 (ii). 

L E M M A 1.16. Let A be an anisotropic subset of G''. Then 
(l)D(D(A)) =D(A). 

(ii) D(A) H -D(A) = 0. 
(iii) D(A) is an anisotropic subset for R of Gf. 

Proof, (i) By Lemma 1.15 (i), A C L>(A), so t h a t by L e m m a 1.15 (ii), 
D(A) CD(D(A)). 

Now let g' be in D(D(A)). Then there are elements du . . . , dk in D(A) and 
an element r in R such t ha t dim r < k and, in R 

g' + r= £ J,. 
1 

Since the d / s are in D(A), there are elements atj, j = I, . . . , nu m A and 
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elements pi in R with dim pi < nt such that 

ni 

dt + pi = X) an-
3=1 

Thus in R, 

k k n% 

g' + r + X) Pi = J2 H âtj. 

Now, since A is anisotropic, the dimension of the right hand side is X i nt- As 
noted in Définition 1.1, 

( k \ k k 

r+J^pi)^ dimr + X dim pt ^ (k - 1) + X (nt - 1) 
l / i l 

= (?».)-!• 
Hence g'lies in D(Zki=iZ%i à a) C D (A). Thus D(D (A)) = D(A). , 

(ii) Suppose g' were in D(A) C\ —D(A). Then there would exist elements 
au . . . , an, bu • • • , bm in A and elements £, q in i?, with dim p < n, dim q < m 
and, in i£ 

I ' + P = £ ôi, g' - g = - Z K 
1 1 

These two equations yield, upon subtraction 

n m 

P + q = X âi+ X bt. 
i l 

Since dim (p + q) S dim £> + dim q < n + m, the last equality contradicts 
the anisotropy of A. Thus D(A) Hi -D(A) = 0. 

(iii) Let dui = 1, . . . , w, lie in D(A) and suppose that the element ]£ï d* of 
Z[G] is isotropic for R. Since di is anisotropic for R, there exists an integer /, 
1 ^ / < n such that X î dt is anisotropic for i? but X î ^* + ^H-I 1S isotropic for 
R. By Lemma 1.4, this implies -dt+1 is in D(Zi dt) C D(D(A)) = £ ( 4 ) , by 
(i). But then dj+i lies in D(A) C\ —D(A), contradicting (ii). Hence (iii) is 
proven. 

THEOREM 1.17. Let R be a Witt ring for G. Then the following are equivalent: 
(i) For all r in R and all natural numbers my we have dim (mr) = m (dim r). 

(ii) Let A C G' be a subset with the property that all finite sums X ai with at 

distinct elements of A are anisotropic for R. Then there exists a semisignature r of 
Rwithr{a) — 1 for all a in A. 

(iii) For any finite subset gi , . . . , gn' of G and natural numbers nt > 0, if 
S i gt is anisotropic for R, then 
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Proof, (i) =» (ii). Let ai, . . . , an be distinct elements of A. By hypothesis the 
element YA a%ls anisotropic for R, i.e., has dimension n. Now for any positive 
natural numbers ni} i = 1, . . . , n, let m denote their maximum. By (i), 
dim {M(YA ai)) = mn s o t h a t by Definition 1.1, the element J^l ntai is also 
anisotropic for R. Hence the set A is anisotropic for R in the sense of Definition 
1.14 (i). 

T h e remainder of the proof is inspired by [8, p. 63]. Consider the family of 
anisotropic subsets of G containing D(A) which are of the form D(A\) with Ai 
again anisotropic for R. Since the union of a chain of anisotropic subsets of G' 
is again anisotropic for Rf Lemma 1.15 (iii) shows t h a t Zorn's lemma applies. 
Thus , let D(A0) be a maximal element of this family. If D(A0) U —D(A0) ^ 
G' let g be an element of G such t ha t neither g nor — g is in D(Ao). If the set 
{D(Ao)} g} were isotropic for R, there would exist elements di, . . . , dn in 
D(Ao) and a natura l number / such tha t XJL dt + Ig would be isotropic for R. 
But by Lemma 1.16 (iii), D(Ao) is anisotropic for R} and so if J^[ dt + g were 
isotropic for R, Lemma 1.4 would yield — g in 

# ( Ê tt) CD({di\1i= l,...,n)CD(D(AQ)) = D(A0) 

by Lemma 1.16 (i). Hence YJidt + g is anisotropic for R. By (i) of the theorem 
so is l 2^ï dt + Ig, and from Definition 1.1, it is clear t h a t then ]>Zï dt + Ig is 
also anisotropic for R, SL contradict ion. Thus , the set {D(Ao), g} is anisotropic 
for R and D({D(A0), g}) 2 D(A0), contradict ing the maximal i ty of D(A0). 
Hence G' = D(A0) U -£>( i4 0 ) . 

Next , we define an addi t ive homomorphism T 0 : Z [ G ] —» Z by ro(g') = 1 if 
g ' i s in Z)C40) and ro(g') = — 1 if g' is in - D M 0 ) . Since, by L e m m a 1.16 (ii), 
D(A0) r\ — D(A0) = 0, the homomorphism r0 is well-defined. Let ]£ï g / be 
an element of K, the kernel of the ring surjection Z[G] -» i?. W e reindex so 
t ha t g / , . . . , gk' lie in D(A0) and g*+ / , . . . , gn' lie in —D(A0). Now in R we 
have 

l fc+i 

But both g / , i = 1, . . . , & and —g/,i = k + l , . . . , n are elements of D(A0), 
which, by Lemma 1.16 (iii) is anisotropic. Hence k = n — k, so t h a t T0(K) = 0 
and r0 induces a semisignature on i^ which is 1 on D(A0) D Â. 

(ii) =» (i). Let r be in i? and dim r = n so t h a t r = Xa h/. T h e sums 21 &/ 
extended over all subsets of A = {&/, . . . , /&„'} are then clearly anisotropic 
for R. T h u s by (ii) there exists a semisignature n : R —» Z with r i ( Â / ) = 1. 
Now, clearly for all p in R and any semisignature r of i?, we always have 
|r(/>)| ^ dim p. T h u s m (dim r) = mn(r) = Ti(mr) ^ dim (mr). Since the 
opposite inequali ty has a l ready been noted in Definition 1.1, the implication 
(ii) => (i) is proven. 
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(iii) => (i). Suppose (i) is false. Then there exists an element r in R with 
dim (tnr) < m (dim r) for some natural number m. Let r be an element of 
minimal dimension with this property. Since for all a in X(R), we have 
<r(rng') = ±_m, and if dim(mg') < m, we would have |o"(wg')| < m, we must 
have, since X (R) is assumed non-empty, dim r > 1. T h u s let r = ]Ci f / with 
n — dim r > 1. Since the element YT\ mg( is isotropic for R, there exist na­
tural numbers nt, 0 < wf g w, with w* < m for a t least one index, such 
tha t ]Ti w ^ / is anisotropic for R, bu t for some k} l S k ^ n, the element 
S i w*g/ + gu is not. By Lemma 1.4 this means tha t — gk

f lies in DÇ£A n&i') = 
D(r) by (iii) of the theorem. Wi thou t loss of generality, we assume fe = 1. 

L e t £ = E ï " 1 g/• By the hypothesis on r, dim (2p) = 2 ( d i m £ ) = 2(« - 1) 
so t ha t X a - 1 2 g / is anisotropic for R. Therefore, 2 g / + YyT1 gi is also aniso­
tropic for R, whence dim (g / + p) = n. Now — gi in D(r) implies the existence 
of an element w in R, with dim w < n} such tha t r = — g / + w. Since 

n - l 

2f l ' + Z 1 / = l l ' + £ = I I ' + (r - gn') = -gn'+ W, 
2 

Definition 1.2 shows t ha t — gn
f lies in £>(gi' + p). Again, by (iii) of the theorem 

— gù lies in D(p). Bu t then by Lemma 1.4, the element Yll gi is isotropic for R, 
a contradiction. T h u s (i) must hold. 

(i) => (iii). As in the proof of (i) => (ii), if Xa gi is anisotropic for R, so is 
Z a nigi f ° r a n Y ^ i > 0. From Definitions 1.1 and 1.2 it is clear t h a t if p = p' 
+ r'mR with dim p = dim p' + dim r then £>(£') C D(p), so t ha t £>(Eï f / ) 
CDÇZÏnâi'). 

Let g' be in D(YA nig/) and denote Xa gi by £'• If w = max (n*), then 
g' is in D(mpf). If g' were not in D{pf), Lemma 1.4 implies t ha t the element 
Z i £ / - g' of Z[G] is anisotropic for R, or dim (p' + ( - £ ' ) ) = 1 + n. By (i), 
then, dim (mpf + w ( — g ' ) ) = w + w ^ so t ha t the element Xa w g / + (•"•&') 
of Z[G] is anisotropic for i?. But, again by Lemma 1.4, this contradicts g' in 
D(rnp'). Hence g' is in D(p') and D(J^ mgt') C £ > Œ ï I / ) , which proves (iii). 

Definition 1.18. A Wi t t ring for G is called dimensional if it satisfies one of the 
conditions of Theorem 1.17. Note tha t by 1.17 (i) such a ring is reduced. 

Remark 1.19. In Section 2 we shall show tha t the class of dimensional W i t t 
rings includes the residue class rings of W i t t rings of classes of symmetr ic 
nondegenerate bilinear forms over semilocal rings modulo the radical. How­
ever, not all reduced Wi t t rings for groups of exponent two are dimensional, 
nor, since Z[G] is clearly dimensional, are surjective images of dimensional W i t t 
rings necessarily dimensional, as is shown by the following example: 

Le t G be the direct product of 8 groups of order 2, i.e. G = 111 {1, g{} with 

gi2 = 1. Let 

po = gi + g2 + gs - gig2g3 and g0 = gi + gb + ge + gi + gs - gigsgsgigs 
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in Z[G] and let K be the principal ideal in Z[G] generated by 2p0 — q0. A 
character of G is given by mapping the gt arbi trar i ly to d=l. I t is then easily 
verified t ha t for any character x of G, the induced ring homomorphism \px 

[10, p. 135] sends p0 to ± 2 and q0 to 0, ± 4 . Hence for all characters x of G, 
we obtain tx(2p0 - q0) = 0, ± 4 , ± 8 . Therefore, by [10, Theorem 3.9 (ii)] 
the ring R = Z[G]/K is a W i t t ring for G, and, thus [10, Remark 3.13 (iii)] 
so is the reduced ring R = Z[G]/K1/2, where as in Proposition 1.8 (ii), the 
radical of K is denoted by K1/2. We also note if xo is the ident i ty character , 
Xi the character defined by Xi(gj) = (— l ) ô ° ' , and %9, the character defined by 
Xttet) = - 1 , then ^ . ( X 1 / 2 ) = tx.(K) = 0,j = 0, 1, . . . , 9. T h u s M ) * 0 
and contains, a t least, the signatures <TJ induced by *PXj, j = 0, 1, . . . , 9. 

Let the images of po, go in R be denoted by p, q. Then 2p = q in R, and 
aj(p) = 2, aj(q) = 4, j = 0, 1, . . . , 8, and <r9(£) = - 2 and o-9(g) = - 4 . 
Clearly dim 2£> = dim g ^ 6. Therefore, to show tha t R is not dimensional, it 
suffices to prove tha t dim p = 4. 

Since ao(p) = 2, the element p oî Ris not 0 and so dim p ^ 1. If dim £> = 1, 
then for all a in X(R) we would have o-(^) = ± 1 , contradict ing a0(p) = 2. 
If dim p = 3, then for all o- in X(R), we would have a(p) = ± l ± l ± l = 
± 3 , ± 1 , again contradict ing a0(p) = 2. 

Suppose now dim p = 2. Then £ = dbwizfcu^, where Wi = I l x g i € i , w% = 
I i i g*77*', with €*, r/i = 0 or 1, are elements of G. Applying a0, yields 2 = z b l d z l . 
Hence p = W\ + w2. Applying a{, i = 1, . . . , 8, shows 2 = ( — l)ei + ( —I)77*, 
so t ha t et = r\i = 0, and Wi = w2 = 1. Bu t p = I + T contradicts cr9(£>) = 
— 2, so t ha t dim p 5* 2. Hence dim p = 4 and ^ is a reduced W i t t ring which 
is not dimensional. 

COROLLARY 1.20. Let R be a dimensional Witt ring for G, A a subset of G' 
anisotropic for R, and Z = Z(A), the (non-empty) subset of semisignatures r of 
Rwithr{a) = 1 for all a in A. Then 

n r~\l) = D&), 

the image of D(A) in R, where r _ 1 ( l ) denotes all g' in R, gf in G', with r (g ' ) = 1. 

Proof. Let g' be an element of G' not in D(A). By Lemma 1.4, for any 
<2i, . . . , an in A, the element Xa ai + (~g') of Z[G] is anisotropic for R, as is 
S ï w ï a* + K~~è')i niy I na tura l numbers , since R is dimensional. Hence the 
subset A U { — g'} is anisotropic for i^, and so by Theorem 1.17, there exists 
a semisignature TO of R with ro(â) = r 0 ( — g') = 1 for all a m A. Since r0 is in 
Z and r o d ' ) = ~"^o(""g /) = ~~ 1» the element g' does not lie in Hrez T" _ 1 (1 ) -
If now g' does lie in D(A), then by Definition 1.2, there are ai, . . . , an in A 
and an element r of R with dim r < n and g' + r = S ï <**• Now for any semi-
signature r of i^, we have \r(r)\ < w and for all r in Z, r(g' + r) = r(gf) + 
r ( r ) = n. Hence for all r in Z, r (g ' ) = 1 and r(r) = n — 1. T h u s g' lies in 
C\T£Z T _ 1 ( 1 ) > proving Corollary 1.20. 
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PROPOSITION 1.21. Let G\ ~^ G2be a homomorphism of groups of exponent 2. 
Let Rt = Z[Gi]/Ku i = 1, 2, fre Witt rings for d, and assume that the induced 
homomorphism Z[Gi] —> Z[G2] sends K\ into K2. Denote the resulting ring 
homomorphism Ri —> R2 by <p also. Then, if R2 is dimensional, a semisignature 
T\ of R\ can be extended to a semisignature r2 of R2 if and only if any element 
X) <p(g/) of Z[G2] is anisotropic for R2for any g/ with r i ( g / ) = 1. 

Proof. To say tha t r2 extends n means, of course, t ha t for all r\ in R\, we 
have r i ( f i ) = r2((p(ri)). Hence, if n can be extended to r2 and r i ( | / ) = 1, 
then r2(Ylni <p(gi)) = n, so t ha t Xa <p(g/) must be anisotropic for R2. 

Conversely, let A C Gi' be defined by n ( â ) = 1. Then G / = A U - A By 
hypothesis, <£>(̂ 4) is anisotropic for R2 and so by Theorem 1.17 there is a semi-
signature r2 of i^2 with r2((p(A)) = 1 = ri(^4). Now since r2 is a homomor­
phism of addit ive groups, r 2 ( — <p(A)) = T2(<P( — A)) = —1 = TI( — Â). Since 
any rx in i^i is a sum of elements in A and —A, this proves T2(<p(r)) = TI (V) . 

Definition 1.22. A Wi t t ring i? for G satisfies the Hasse-Minkowski principle 
( H M P ) if for every r in R, there exists a o- in X(R) with \<r(r)\ = dim r. Note 
t ha t if R satisfies H M P , it is necessarily dimensional, and hence reduced. 

PROPOSITION 1.23. [13, Theorem 2.12, p. 32]. Let R be a dimensional Witt 
ring for G. Then the following are equivalent: 

(i) R satisfies HMP. 
(ii) For all a, b, in G', the element 1 + a + b — ab of Z[G] is isotropic for R. 

(iii) Every semisignature r of R, with r ( l ) = I, is a signature. 

Proof, (i) => (ii). By examining the various possibilities for a (a), a(b) it is 
easily seen tha t a (J + d + b — ab) = d=2. Thus dim (ï + â + b — ab) = 2 
and 1 + CL + b — ab is isotropic for R. 

(ii) => (iii) Let r be a semisignature of i? with r ( l ) = 1 which is not a 
signature. Then there exist elements a, b in G' with r ( â ) = r(5) = 1 bu t 
r(ô5) = — 1 . Hence r ( î + â + 5 — ô5) = 4 and so dim (ï + â + 5 — â5) = 
4, contradict ing (ii). 

(iii) => (i) Let r be an element of R, dim r — n, and f = ^ g / for g / in G'. 
Since i^ is dimensional Theorem 1.17 applies to yield a semisignature T oi R 
with r(gi) = I, i = 1, . • • , n. If r ( l ) = 1, then r is a signature with r(r) — n 
= dim r. If r ( l ) = — 1 , then — r is a signature with \—r(r)\ = n = dim r, 
completing the proof. 

Remark 1.24. As in [11, Lemma 3.3], X(R) carries a natural topology in­
duced by the Zariski topology of Spec R. R is said to satisfy SAP if every closed 
and open subset of X(R) is of the form V(g') for g' in G'. T h e referee has 
kindly pointed out t ha t for dimensional Wi t t rings for G, SAP and HMP are 
equivalent and we gratefully present his proof here. We first note the following. 

LEMMA. Let Rbe a Witt ring for G and r = Y^[ S' an element of R with d im^r = 
m. Then n = m (mod 2). 
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Proof. There exist h/ in G' such t h a t r — Y^\ h/, so t ha t the element 
E i gt ~ E ? * / of Z[G] lies in K = Ker (Z[G] - » i2). Let M 0 be the unique 
maximal ideal of Z[G] containing 2 [10, Lemma 2.13], then by [10, Theorem 
3.9 (iv)] we have K C M0 and so n - m = 0 (mod 2) since Z[G] -> Z[G]/Af0 

is given by sett ing the elements of G equal to one and reducing mod 2. 

PROPOSITION. Let R be a reduced Witt ring for G. Then R satisfies HMP 
if and only if R satisfies SAP. 

Proof. Suppose R satisfies SAP and t ha t r is an element of R with d im^r = 
n. If for all a in X (R) we have \<r(r)\ < n, then jus t as in the proof of [15, 
Theorem 3.1] there exist hi , . . . , hn-2 in G' with a(r) = cr(Eï~2 Â/) for all 
a in X(R). Since R is reduced, r = ET~2 ^ / and dim^r ^ n — 2. This contra­
diction shows t ha t for some a in X(R) we have \<r(r)\ = n so t h a t 7£ satisfies 

Conversely, suppose R satisfies HMP. Since the sets V(g'), gf in G', form a 
subbasis of the topology on X(R) and 7 ( — gf) = X(R) — V(g'), it suffices, 
as in the proof of Theorem 2.2 of [15], to show tha t for any a, b in G' there exists 
an element c in G' with V(a) H V(b) = V(c). By Proposition 1.23, for any 
a, b in G'', the element — (1 — a — & — ( — a) ( — b)) = — 1 -\- a + b -\- ab o( 
Z[G] is isotropic for R. If dim i E(â + 5 + db) < 3, then by the lemma, there 
exists an element d in G' with a -\- b -\- ab = d m R. But then for any s ignature 
a in F (a) Pi 7 (6 ) , we would get o-(J) = 3, which is impossible. Hence 0 = 
Via) C\ 7 (6) = V(-l), in this case. If d im^(a + 6 + ab) = 3, then by 
Lemma 1.4, the element 1 lies in D(â + 6 + a6). T h u s there exists p in 7̂  with 
l-\-p = â + b-\-âb and dim#£> < 3. Now, d i m ^ = 2, else dimR(d + 6 + 
a6) < 3. T h u s there are elements c, d in G' with p = c -\- d and 1 + c + J = 
à + 6 + #6. Then clearly F (a) Pi V(b) C 7 (c ) . If cr is any signature not in 
V(a) H 7 (6 ) , then it is immediate t ha t a(â + 6 + âS) = - 1 = 1 + o-(c) + 
o-(J), so tha t o-(c) = a(d) = - 1 . Hence 7(c) C 7 ( a ) H 7 ( 6 ) , proving the 
proposition. 

PROPOSITION 1.25. Let Y be a saturated set of signatures for a Witt ring Rfor 
G and let R — R/I(Y). If R is dimensional, then for an element r of R the in­
equality \r(r)\ < d im^r holds for all semisignatures r of R that are constant on 
the cosets of T(Y) in G' if and only if d im^( r + 7 ( F ) ) < dim^r. 

Proof. Let n = dim r and r = Yl\ g( • Denoting residue classes modulo 
I(Y) by ^ , we have r = E i f/- Thus , if d i m # = n, the element Xa gt of 
Z[G] is anisotropic for R. Since R is dimensional, Theorem 1.17 yields a semi-
signature r of R with f(r) = n. By Remark 1.13 (i), there is then a semi-
signature r of R satisfying the constancy condition with r{r) = n. This con­
tradiction shows d i m # < dimRr. Conversely, suppose there exists a semi-
signature T of R constant on cosets of T(Y) in G' with d im^r = | r ( r ) | . By 
Proposition 1.11 r then induces a semisignature f of R, with \f(f)\ = d im^r so 
t ha t d i m # = dim^r, a contradiction. 
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2. T h e s emi loca l case . In this section we prove some properties of W i t t 
rings of bilinear forms over semilocal rings tha t enable us to apply the results 
of Section 1. Throughout the rest of this paper C will denote a connected semi-
local ring and U(C) its group of units. By a space over C we shall mean a pair 
(E, B) where £ is a finitely generated projective (whence free) left C-module 
and B is a symmetric nondegenerate bilinear form on E. Isometries will be 
wri t ten as ~ and for any natural number m, the space E J_ . . . J_ E (m t imes) 
will be denoted by mE. An element e of E is called primitive if it can be aug­
mented to a basis of E. A space (E, B) is isotropic if there is a primitive element 
e in E with B(e, e) = 0, and weakly isotropic if for some natural number m, 
mE is isotropic. The space Ce\ _L • . . J_ Cen with B(et, et) = at in U(C) will, 
as usual, be denoted by («i, . . . , an). The Wi t t ring of equivalence classes of 
C-spaces will be denoted by W(C) and the class of a space (E, B) in W(C) by 
[E]. For any space (E, B) there always exist aiy . . . , an in U(C) with [E] = 
[(a1} . . . , an)], [10, Theorem 1.16]. 

I t will also be necessary to consider quadratic C-spaces [12, pp. 110-111] and 
the left W(C)-module Wg(C) of equivalence classes of quadrat ic C-spaces 
[12, pp. 110-111 or 1, Kapitel I ] . We shall use similar notat ions for quadrat ic 
spaces as for spaces. 

As pointed out in [8, p. 49], there always is a natural number h with both 
2h — 1 and 4& — 1 in U(C). Following one of the ideas of [8] we note: 

Remark 2.1. Let (F, q) be the quadrat ic space Cfi © Cf2, ç ( / i ) = 1, çC/2) = 
A. 2( / i + / 2 ) ~ g(fi) ~ î ( /2) = 1. If (E, B) is a C-space, then (E ® F, Q) 
is a quadrat ic C-space with Q(ex ® / i + <?2 0 / 2 ) = i?(ei, ^1) + i?(ei, ^2) + 
-S(^2, ^2)/^ for ei, e2 in £ . (The unadorned tensor product sign always means 
tensor product over C.) 

LEMMA 2.2. Let E, E' be two C-spaces with rank E = n > m = rank E'. If, 
in W(C), the equation [E] = [Ef] holds, then 6E is isotropic; if in addition, 2 is 
in U(C), then E is isotropic. 

Proof. If 2 is in U(C) this is immediate from the definitions and the W i t t 
cancellation theorem [14]. In general, [E ® F] = [Er ® F] in WQ(C). Now 
this means tha t there exist natural numbers k, k' with E ® F J_ kH = E' ® F 
± k'H, where H is the quadrat ic C-module Cgi ® Cg2 with quadra t ic form 
qf given by q'(gi) = q'(g2) = 0 and q'(gx + g2) - q''(gi) - q'(g2) = 1 [1, p. 
31]. Bu t the Wi t t cancellation theorem holds for quadrat ic C-modules [1, p. 
109; 5, Satz 0.1], and thus since n + 2k = m + 2k' and n > m, we obtain 
E (g) F^LE' ® F _L ik' - k)U, with k' - k > 0. Hence E <g> F is isotropic 
and by [8, Lemma 5.14] the space 6 £ is also. 

By[10, Corollary 1.21],£ = W(C) is a W i t t ring for the group U(C)/(U(C))2. 
We shall view the signatures of R as defined in Section 1 either as homomor-
phisms of R to Z or as homomorphisms of U(C) to { ± 1 } sending (U(C))2 to 1. 
If F is a set of signatures of W(C) (or C) we shall slightly alter one of the nota-

https://doi.org/10.4153/CJM-1978-076-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-076-1


884 J. KLEINSTEIN AND A. ROSENBERG 

tions of Section 1 and consider T(Y) as a subset of U(C) instead of 

(u(c)/(u(oyy. 
L E M M A 2.3. Let Y be a saturated set of signatures of R = W(C). 

(i) If for two spaces E and E' 

[E] = [E'] m o d u l o / ( F ) , 

there exists a Rfis ter form 

p = é (i,ti), tte T= r(F), 
1 

such that in R the equation [E] [R] = [Ef] [R] holds. 
(ii) If, in addition, rank E > rank E' then there also exists a Pfister form 

Pi = ® ( U n ) , tue T, 
I 

withE 0 Pi isotropic. 

(iii) A space E is weakly isotropic if and only if there exists a Pfister form 

P = ® <U«>, / , € T{X{K)) 
1 

such that E 0 P is isotropic. 

Proof, (i) Since Y is sa tura ted, Y = V(T(Y)). In part icular , therefore 
I(V(T)) = I(V(T(Y))) = I(Y). By Proposition 1.8 (ii) or [11, Corollary 
4.16] then, I(Y) is the radical of the ideal of W{C) generated by [ (1 , —t)] for 
all t in T. Now by [11, Lemma 4.17] this is precisely the union of all anihilators 
in R of the elements [ ® * ( 1 , £*)], tt in T, proving (i). 

(ii) By (i) we have [E 0 P] = [Ef 0 P] in R with 

rank (E 0 P) = 2k rank E > 2k rank E' = rank ( £ ' 0 P). 

Hence by Lemma 2.2 the space 6(E 0 P) ~ E 0 6 P is isotropic. Now since 1 
is in T, the space (0 : ^ ( 1 , 1 ) ) 0 P = Pi is a Pfister form of the desired kind 
and clearly E 0 P i ~ E 0 6 P ± E 0 2P is isotropic. 

(iii) If mE is isotropic and 2k ^ m then 2kE = E 0 (®^ (1, 1 )) is also iso­
tropic, and, since 1 is in T ( X ( P ) ) , the implication one way is proved. Converse­
ly, suppose E 0 P is isotropic for P = ®7J (1, ̂ ) , tt in T ( X ( P ) ) . Then for 
any o- in X( i^ ) , we have a([P'\) = 2^ and so if x = [P 0 P ] - [2*£] in R, 
then cr(x) = 0 for all a in X(R). T h u s x is a ni lpotent element of P . By [10, 
Ex. 3.11], there is, therefore, a natura l number s such t ha t 2sx = 0. Hence. 
[2S(P 0 P ) ] = [E 0 2SP] = [2k+sE]. Since P 0 2SP is still isotropic, [6, Satz 
3.2.1, p. 18] shows tha t E 0 2sP ^ E' J_ M with M metabolic and of rank 
a t least 2. T h u s rank E 0 2SP = rank 2s+kE > rank E'. Therefore Lemma 2.2 
applied to the equali ty [2k+sE] = [P '] in P , shows t ha t 3-2k+s+1E is isotropic. 

Pemar^ 2.4. Let R = W{C)/I(Y) for a set F of signatures of R = W(C), 
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and set T = T ( F ) . Since [(1 )] = [(t)] mod 7 ( F ) for all t in 7\ it is clear t ha t 
for any subset [t\, . . . , tn) of T the images of [(ai , . . . , an)] and [(«i/i, . . . , 
antn)] in 7KJ are the same. 

Definition 2.5. For a set of signatures F of R = PF(C) with r = T ( F ) two 
spaces (ai, . . . , an), (bi, . . . , &,„) are T-related if there exist /i, . . . , /„, / / , . . . , 
tm' in r such tha t 

n m 

E [<<*<<<>] = Z K M / ) ] . 
l l 

COROLLARY 2.6. L<^ E' = (au . . . , a„), E ' = (bu . . . , &m). jf/zew [£] = 

[Ef] mod 7 ( F ) J o f a saturated set of signatures Y of R = W(C) if and only if 
there is a natural number I such that IE and IE' are T-related. 

Proof. If [E] = [Ef] modulo 7 ( F ) , Lemma 2.3 (i) shows tha t [E ® P] = 
[Ef 0 P] with P = (g)\ (1, ti), tf in T. Then writing P in diagonal form, im­
mediately shows tha t 2kE and 2kE' are T related since T is a subgroup of U(C). 

Conversely, suppose IE and / £ r are T-related. By Remark 2.4, it is clear 
tha t l[E] = / [£ ' ] modulo 7 ( F ) . Now P = R/I(Y) is an abst ract W i t t ring 
with no nonzero nilpotent elements by Proposition 1.8 applied to 7 ( F ) = 
7 ( F ( T ( F ) ) ) . Hence it is torsion free [10, Theorem 3.9 and Proposition 3.15] 
and so [E] = [E'] modulo 7 ( F ) . 

Definition. A commutat ive semilocal ring C will be said to satisfy (*) if it is 
connected and all of its residue class fields contain a t least 3 elements. 

LEMMA 2.7. Let C denote a semilocal ring satisfying (*), Y a nonempty set of 
signatures of R = W(C), at, i = 1, . . . , n elements of U(C), and ti/, j = 1, 
. . . , mu elements of T = T(Y). Let 

n mi 

E = YJ H (^iti/), 

F the quadratic space defined in Remark 2.1, and denote the quadratic form on 
E ® F by Q. 

(i) If there is a primitive element z of E 0 F with Q{z) = u in U(C), then 
there exists elements t\, . . . , tn in T with Y/[ aiU — u and Xa ath a unit for all 
I < n. 

(ii) If E 0 F is isotropic, then n > 1 and there exists elements tx, . . . , tnin T 
with Y/ïl a>it% = 0 and Y^\aiU a unit for all I < n. 

(iii) If E is isotropic, the same conclusions as in (ii) hold. 
(iv) If there is a primitive element e in E = (E, B) with B (e, e) = u in U(C), 

the same conclusions as in (i) hold. 

Proof, (i). Let z = x 0 / i + y 0 f2 with x and y in E. Then u = B (x, x) + 
B(x, y) + B(y, y)h. We proceed by induction on n. If n = 1, then 

u = aiy 2 ti/ix* + x&j + y?h)) 
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for elements Xj, jj of C. Then 

ai~lu = X) h/(Xj2 + Xjjj + yfh) 
l 

is a uni t of C with a (a\~lu) = 1 for each a in X(R) with <r(ti/) = 1 [8, Theorem 
2.5]. In part icular , therefore a{a\~lu) = 1 for all a in F, whence a\~~lu lies in J1, 
proving the s ta tement in case n = 1. Suppose t h a t (i) holds for w — 1. Not ing 
tha t E®F = En®F±.E' ® F where En = (an*ni'f . . . , antnmn

r) and 

n— 1 mi 

we may apply [2, Satz 2.7(b)] since both rank En ® F and rank E' ® F are 
at least two, to obtain the existence of primitive elements zn in En ® F and 
z' in E' ® F such that u = Q(zn) + Q(z') and Q(2n), Q(z') are units of C. 
Just as for the case n = 1, the unit an~

lQ(zn) = tn lies in 7\ By induction 
hypothesis there are elements t\, . . . , £w_i in T with QOs') = S i - 1 a^z a n d 
X^ a*** a unit for all / < n — 1. Hence w = Xll #*** a n d ]Ci aiU is a unit for all 
/ < n. 

(ii) Suppose n = 1 and £ ® F is isotropic. If m\ > 1 the quadratic space 

± aih/F, 
l 

and, in case mi = 1, the quadra t ic space aitn F _L aitu'F, is isotropic. Again 
by [2, Satz 2.7(b)] we find t ha t a sum of uni ts of the form ti/ (x2 + x;-^;- + 
y2h)y Xj, jj in C, is zero. T h u s 

m 

— h\{xi + xjyi + y A ) = 23 h/(xj2 + Xjjj + 3^2) 
2 

(or / n ' (x ' + x ' y + y' h) in case Wi = 1). 

However by [8, Theorem 2.5], for all a in X(R) with <r(h/) = 1 we mus t have 
o-( — ^ / ( x i 2 + xiyi + yi2h)) = 1, which contradicts , again by [8, Theorem 
2.5] the fact t ha t o-(/n'(*i2 + xiyi + yi2h)) = 1. T h u s n ^ 2. 

If w ^ 2 we again write E®F = En®F±Ef ® F and apply [2, Satz 
2.7(b)] to yield units Q(zn), Q(s ') such t h a t 0 = Q(zn) + Q(zf). Ju s t as in the 
proof of (i), there is a uni t tn in T with Q(zn) = antn and by (i) there are 
elements /i, . . . , 4 - i in T with Q(z') = X a - 1 a%h a n d X?i aih a uni t for all 
I < n — 1. Since 0 = Y^\ aih, the proof of (ii) is done. 

(iii) Let e be a primit ive iostropic element of £ . Then g ® fx is a primit ive 
isotropic element of £ ® -F, and (ii) yields the desired result. 

(iv) This follows immediately from (i) since Q(e ® fi) = B(e, e) = u. 

Remark 2.8. By applying [2, Satz 2.7(c)] repeatedly under the hypotheses of 
Lemma 2.7 (ii) it is possible to show, with no hypotheses on the residue class 
fields of C, t h a t there are units t\, . . . , tn in T such t ha t (ai/i, . . . , antn) ® F is 
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isotropic, i.e. t ha t there exist xit y i in C with 

n 

X) aihixi1 + XiJi + yt
2h) = 0. 

l 

Indeed, for one index i one can assume xt = 1, 3>7 = 0. However, using this 
we are unable to prove the if par t of Theorem 2.11. 

T H E O R E M 2.9. Let C be a semilocal ring satisfying (*), Y a saturated set of 
signatures of R = W(C), T = T(Y) and E = (<2i, . . . , an). If in R, the element 
[E] is congruent modulo I(Y) to the class of a space of rank less than n, there exist 
ti, . . . , tn in T such that J2n\ aiU = 0 and Yl\ aiU is in U(C) for all I < n. 

Proof. Lemma 2.2 and Corollary 2.6 show tha t there is a natural number 5 
such tha t sE is ^-related to a space ET with 6ET isotropic. Since QsE is T-
related to 6ET, there exist ^ / , j = 1, . . . , s, in T with 6 ^ = i E5=i (^th/) 
isotropic. Then Lemma 2.7(iii) finishes the proof. 

LEMMA 2.10. Let b1} . . . , bm be in U(C), where C is an arbitrary semilocal ring. 
Assume J2™ b{ = 0 and X)? - 2 °t is a unit. Then in W(C) we have [(bi, . . . , bm)] 
— [(ci, . . . , cm-2)]for some units Ci, . . . , cm_2 in C. 

Proof. For e, e' in (bi, . . . , bm) we abbreviate B(e, er) by e • e'. Let ex, . . . , em 

be the orthogonal basis of (bi, . . . , bm) with ex • et = bt. Consider the C-module 

m— 1 

5 = Cem® C 22 (ej) C (bi, . . . , bm ). 
i 

Since 21? bj = 0 we have 5 = (bm, —bm). Thus 5 is nondegenerate. Fur ther , 
since S ? - 1 ej, e2} . . . , em is still a basis of (bi, . . . , bm), the submodule 5 is a 
direct summand of (&i, . . . , bm). By [10, Lemma 1.1] therefore (bi, . . . , bm) = 
5 J_ SL. The element 

ra-2 /m—2 \ 

/ = 23 *i ~ (V&ro-l)^23 ^)em_i 

is easily seen to be in SL. Moreover an easy computat ion shows tha t 

/ • / = ( Ç bfj(-bm/bm^) 

so t h a t S1- is proper. By [10, Lemma 1.12], then 3d- = (ci, . . . , cw_2) , and since 
[5] = 0 in W(C), we obtain [ ( ^ , . . . , bm)} = [(clt . . . , ^ _ 2 > ] . 

T H E O R E M 2.11. Le/ C be a semilocal ring satisfying (*), F a saturated set of 
signatures of R = W(C), T = T(Y) and R = R/I(Y). For au i = 1, . . . , w, 
^ element x = X)ï cLt(U(C))2 of Z[U(C)/(U(C))2] is isotropic for R in the 
sense of Definition 1.3 if and only if there exist elements ti, . . . , tn in T with 
E W i = 0. 

Moreover, if x is anisotropic for R and x denotes its image in R, the set D(x) 
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defined in Definition 1.2 consists of the images in Z[U (C) / (U (C))2] of all units of 
C of the form Yj\aiU w ^ t * in T. 

In both instances, there always exist / / , . . . , tn
f in T with Y^l a\U — Y^[ aiU 

and J2\ axU a unit for all I < n. 

Proof. Let E = (ai, . . . , an). According to Definition 1.3 the element x is 
isotropic for R, if in R an equation [E] = [(&i, . . . , bm)] with m < n holds. 
Then Theorem 2.9 yields the desired conclusion. 

Conversely, if there are /i, . . . , tn in T with Y^[ aih = 0> Lemma 2.7(iii) 
allows us to assume, in addition, that Xa aih ls m U(C) for all / < n. Hence 
Lemma 2.10 yields the existence of units ci, . . . , cw_2, in C with [(ai/i, . . . , 
aJn)] = [(ci> • • • i Cn-2)] in R. By Remark 2.4, therefore [E] = [(aiti, . . . , 
«A)] — lid, • • • » Cn-2)] modulo 1(F) , v/hich proves that x is isotropic for JR 
in the sense of Definition 1.3. 

Finally, by Lemma 1.4, for an element u of U(C), the element u(U(C))2 is 
represented by x if and only if 

£ at(U(C))2 - u(U(C))2 

1 

is isotropic for R. By the first part of this theorem, this occurs if and only if 
there exist elements /, tu . . . , tn in T with YT\ axU — ut = 0. Since T = T(Y) 
is a subgroup of U(C), this is equivalent to u = Xa aih' with / / in T. Clearly 
by Lemma 2.7 (iv) the t/ may be chosen so that X \ axU is a unit for all / < n, 
completing the proof. 

If C is a field of characteristic not 2, Theorem 2.11 shows that our definition 
of D(x) coincides with the definition of DT(p) given in [3] just before Lemma 2 
of [3]. 

COROLLARY 2.12. For any semilocal ring C satisfying (*) and a saturated set of 
signatures Y the ring R = W(C)/I(Y) is dimensional in the sense of Definition 
1.18. 

Proof. Let r be an element of R with dim^r = n. From Definitions 1.1 and 
1.3 and Theorem 2.11 it is clear that there are units ai} . . . , an in C such that 
[(ai, . . . , an)] is a representative of r in W(C) and X i aiU ^ 0 for all w-tuples 
/1, . . . , tn of elements of T. Now if for some natural number m, m ^ 2, we had 
dim^(wr) < ww, the space m(ai, . . . , an) would satisfy the hypotheses of 
Theorem 2.9. Lemma 2.7 (iii) then produces a contradiction. 

We end this section by showing that for a saturated set of signatures F, 
the ring W(C)/I(Y) coincides with the ring WT> introduced in [3] for T' = 
T(F) U {0} and C a field of characteristic not 2. The first lemma is well known 
in this case (and relation (iii) is not needed then). 

LEMMA 2.13. Let C be a semilocal ring satisfying (*). Then W(C) is isomorphic 
to the commutative ring on generators {u}, u in U(C), subject only to: 
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(i){l} = l, (n) {1} + {-1} = 0 , (iii) \uv*} = {«}, 
(iv) {«}{»} = {«»}, (v) {1} + {u\ = {x2 + yM}({l} + M) 

where (iii) and (iv) hold for all u, v in U(C) and (v) is valid for all u in U(C) 
and allx, y in C such that x2 + y2u is in U(C). 

Proof. Let H denote the commutative ring described in the lemma. Clearly, 
(i)-(iv) hold in W(C) if {u} is replaced by [(u)] throughout. Let e,f denote the 
canonical basis of (1, u) with B{e, e) = 1, B(e,f) = 0, B(f,f) = u. Provided 
that x2 + y2u is a unit, (1, u ) has also xe + yf, yue — xf as another orthogonal 
basis with 

B(xe + yf, xe + yf) = x2 + y2u, B(yue — xf, yue — xf) = u{x2 + ^2w), 

i.e. (1, w) == (x2 + 3>2w, (x2 + y2u)u). Thus (v) is also valid in W(C) with 
{ } replaced by [( )] throughout. Hence by universality <p:H—+W(C) 
defined by <p({u}) — [(u)] and additivity is a ring surjection. 

Let G = U(C)/(U(C))2. Relations (i), (iii), and (iv) show that ^0 : Z[G] -> 
H defined by 

MZ±u(U(C))2) = Z±M 
is a ring surjection of Z[G] onto H. Since (ii) and (V) hold in H, for any u in 
U(C) and x, y in Cwith x2 + y2M in U(C), we have 

*o((l + u(U(C)Y)(l - (x2 + y2«)([/(C))2)) = 0 

= M(u)(OY) + M-(U(oy). 
But [10, Theorem 1.16, Corollary 1.17 and Lemma 1.19] state that the kernel 
of the projection Z[G] -» W{C) is generated precisely by these elements of 
ker ^o. Thus \f/0 factors through the homomorphism \p : W(C) —* H defined by 
}P(l(u)]) = \u) a n d additivity. Now, clearly <p\p = \p<p = 1, proving Lemma 
2.13. 

LEMMA 2.14. Let C be a semilocal ring satisfying (*). Let Y denote a saturated 
set of signatures of R = W{C) and T = T(F) . Then I(Y) is generated as an 
ideal of R, by [(1, —t)] for t in T. 

Proof. For all a in F and t in T, we have o-([(l, — £)]) = 0, hence [(1, — /)] 
is in I(Y). Conversely let r be in I(Y). Since Y is saturated, I(Y) = 
7 ( F ( r ( F ) ) ) = I(V(T)). Hence by [11, Corollary 4.16and Lemma 4.17], I(Y) 
is the union of the annihilators in R of the elements 

[P] = [<8> <u,)J, ^ 2 , ^ r . 

By [7, Theorem 4.1], if ,F is the quadratic space defined in Remark 2.1, the 
annihilators in R of the class of the quadratic space Fr = P 0 T7 is generated 
as an ideal of R by [(1, — w)] where u in £/(C) has the property uFf = F'. 
Since F' represents 1, it also represents u and so by the equivalence of (i) and 
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(ii) of Theorem 2.5 of [8], u lies in 

T(V(h, . . . , tk)) C T(V(T)) = r ( F ( r ( F ) ) ) = T(Y) = T. 

Now r[P] = 0 in W(C) certainly implies r[Ff] = 0 in Wg(C). T h u s r lies in the 
ideal generated by [ (1 , — t)]f completing the proof. 

T H E O R E M 2.15. Let C be a semilocal ring satisfying (*), Y a saturated set of 
signatures of R = W(C), T = T ( F ) , and R = R/I(Y). Then R is isomorphic 
to the commutative ring generated by {u\ for u in U(C) subject only to 

(i) {1} = 1, (ii) {1} + { -1} = 0 , (iii) {ut} = {u}} 

(iv) \uv] = {u}{v}, (v) {1} + {u} = \x2+y2u}({l} + {u}) 
for all u, v in U(C), all t in T, and all x, y in C such that x2 + y2u is a unit. 

Proof. By Lemma 2.13 there is an isomorphism p : R —> H where H is the 
ring defined in Lemma 2.13. Since Lemma 2.14 shows t ha t I(Y) is generated 
by [<1, - / ) ] for all / in T, the ideal <p(I(Y)) in H is generated by {1} - {/} 
for all t in T. Hence R = H/<p(I(Y)) is isomorphic to the ring described in 
Theorem 2.15. 

In Satz 9 of [3] it is shown tha t the ring WT> s tudied in t h a t paper has the 
presentat ion given in Theorem 2.15. T h u s WT> ~ W(C)/I(Y), where C is a 
field of characterist ic not 2, T' = T(Y) VJ {0} and F a sa tura ted set of signa­
tures of W(C). 

3. A p p l i c a t i o n s . In this section the results of the previous two are combined 
to yield information abou t W{C) for C semilocal satisfying (*). 

Definitions^3.1. (i) A subset T C U(C) is called saturated if T = r ( F ( ! T ) ) , with 
the notat ion of Definitions 1.7, and the convention introduced before L e m m a 
2.3, t h a t T ( F ) is considered as a subset of U(C) instead of U(C)/(U(C))2. 

(ii) For A, T subsets of U(C), the subset of elements of C of the form 
b = X i aitu ai'm A, tt in T, with b a unit or zero, and J2\ aih & unit f ° r all 
/ < n> will be denoted by S (A, T). T h e set of all semisignatures T of W(C) 
(Definition 1.12) satisfying 

r(Tu) = T(U) for all u in U(C), and 

r{a) — 1 for all a in A 

will be denoted by Z{A, T). 
If r is a semisignature of W(C), we have wri t ten in Definition 3.1, and shall 

continue to write, T(U) for T([(U)]); the set of units u of C with T(U) = 1 
will be denoted by r - 1 ( l ) . 

T H E O R E M 3.2. Let C denote a semilocal ring satisfying (*), A and T subsets of 
U(C), and let T be saturated. Then, 

(i) S (A, T) does not contain 0 if and only if Z (A, T) ^ 0. 
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(ii) IfZ(A,T) ^ 0,then 

S(A,T)= f i r - 'C l ) . 

(iii) IfZ(A, T) = ft, then U(C) U {0} = S ( 4 , T). 

Proof, (i) Let i? = W(C) and F = V{T). Since T = r ( F ( r ) ) we h_ave 
V(T(Y)) = V(T(V(T))) = V(T) = F, so t ha t F i s also_ sa turated. If R = 
R/I(Y), as already noted in the proof of Corollary 2.6, R is a reduced W i t t 
ring for G = U(C)/ (U(C))2. Fur thermore, in case S (A, T) does not contain 0, 
Theorem 2.11 shows tha t the image of A in Z[G] is anisotropic for R. Since, 
by Corollary 2.12 the ring R is dimensional, Theorem 1.17 yields a semi-
signature f of R with f ( [ ( a ) ] + I(Y)) = 1. By Remark 1.13 (i), f lifts to an 
element r of Z(A, T). 

Conversely, let r be an element of Z(A, T) and for ai , . . . , an in A let £ = 
(ai, . . . , aw). Now by Proposition 1.11, the semisignature r induces a semi-
signature f on i? = R/I(Y) with f ([£]) = T([E]) = w, so t ha t {a(*7(C))2 | 
a in ^4} is a subset of Z[G] anisotropic for JR. Consequently by Theorem 2.11, 
the set S (A y T) does not contain zero. 

(ii) By Remark 1.13 (i) and Proposition 1.11 every semisignature f of R 
for which f([(a)]) = 1 for all a in A is induced by an element r of Z(A, T). 
Denoting this set of f's by Z, Corollary 1.20 shows tha t D(A), the image of 
D(A) inR, is H^ZT-^I). If for u in U(C), the element [ ( M ) ] is in D(A), then 
by Theorem 2.11 there is a unit v in S (A, T) with [(w)] = [(v)]. Hence for all 
a in F we have o - (^ - 1 ) = 1, i.e., uv~l is in T, so t ha t w is in S (A, 2") also. Thus , 
the inverse image of D(A) in U(C) is S (A, T). Hence C[TZZU,T) T~~1{1) lies 
in S(A, T). On the other hand, if Yl\ aih n e s m S (A, T), it must be a uni t by 
(i). Then since for all r in Z(A, T) we have r{ait^) — r(a^) = 1 the proof of 
[11, Lemma 2.3 (ii)] can easily be adapated to show tha t r ( X ï aih) = 1> i-e., 

S(A,T)C H r - x ( l ) . 
T£Z(A,T) 

T h u s the proof of (ii) is complete. 
(iii) Let u be in U(C). Since Z(A, T) is empty , by (i), S(A, T) contains 0, 

i.e., there exist elements a\, . . . , an in A t\ , . . . , tn' in T with ^J[ a J/ = 0. 
Exact ly as in the proof of Lemma 2.10, the space {a,\t\ , . . . , antn' ) is isotropic, 
as is, therefore ( — u, a,\t\ , . . . , antn'). Since T is sa tura ted we have T ( F ) = 
T(V(T)) = T. By Lemma 2.7(iii) then, there are elements /, t\y . . . , £n in T 
with w£ = 2 ï a ^ î a n d S i a ^ î m ^ ( O for all / < n. This completes the proof 
of (iii) since T = T ( F ) is a subgroup of U(C)\ and S (A, T) C U(C) U {0} 
by definition. 

L E M M A 3.3. Let Cbe a semilocal ring satisfying (*), R = PF(C) and ai , . . . , an 

tw U(C). If E = (ai, . . . , aw ), Z/̂ ŵ E is weakly isotropic if and only if 0 lies in 
S({ai an], T(X(R))). 
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Proof. Clearly V(T(X(R))) = X(R) so that T(X(R)) is a saturated subset 
of U(C) containing 1. If mE is isotropic for some natural number m, Lemma 
2.7(iii) shows that 0 is in S({au . . . , an], Y(X(R))). Conversely if 0 lies in 
this set, there exist /i, • • • , tn in T(X(R)) such that Yf[ aîU = 0 with J^\ arfi 
a unit for / < n. Let P = <g)̂  (1, tt); then E ® P = (aih, . . . , antn) J_ Ef 

and thus, as in the proof of Lemma 2.10, is isotropic. Hence by Lemma 2.3 (iii), 
the space E is weakly isotropic. 

<£> 
PROPOSITION 3.4 [13, Lemma 1.24, p. 16]. Let C\ —* C2be a homomorphism of 

connected semilocal rings. Let n be a semisignature of W(Ci), and denote T\~1{\) 
C U(Ci) by A, and W(C2) by R. If C2 satisfies (*), n extends to a semisignature 
r2of R,i.e., n = r2W((p), if and only if all spaces (<p(ai), . . . , (p(an))for atin A 
are anisotropic. 

Proof. By [10, Proposition 3.15], I(X(R)) is the torsion subgroup of R. 
Clearly n extends to R if and only if it extends to R = R/I(X(R)). By 
Corollary 2.12, the latter is dimensional and thus Proposition 1.21 shows that 
n extends if and only if all elements J2 <p(ai)(U(C))2, at in A, are anisotropic 
for R. By Theorem 2.11 this is equivalent to 0 not being inS(<p(A), T(X(R))). 
Lemma 3.3 then completes the proof. 

LEMMA 3.5. Let Rbe a Witt ring for G and Y a saturated set of signatures of R. 
Then all the signatures of R = R/I(Y) are induced by the elements of Y. 

Proof. Let â : R —> Z be a signature and a : R —* R —» Z the lifted signature 
of R. Then ker a D I(Y) D a(T(Y)). Thus a(t) = 1 for all / in T(F) , i.e., 
a is in 7 ( T ( F ) ) = Y. 

Definition 3.6. Let C be a semilocal ring and F a set of signatures of R = 
W(C). The set F is said to satisfy HMP if the following holds: If for every a 
in F we have \<r(E)\ < rank E for a C-space £, then there exists a Pfister form 
P = n ^ (1, tt) with *z in T(F) such that E ® c P is isotropic. If F = 
X(W(C)), then C is said to satisfy HMP, and by Lemma 2.3(iii), C satisfies 
HMP if and only if every C-space for which \<r(E)\ < rank E for all a in 
X(W(C)) is weakly isotropic, the usual definition of HMP given in [4] and [15]. 

PROPOSITION 3.7. Let C be a semilocal ring satisfying (*), R = W(C), and Y 
a saturated set of signatures of R. Then Y satisfies HMP if and only if R = 
R/I(Y) satisfies HMP in the sense of Definition L22. 

Proof. Assume first that R satisfies HMP and that for a C-space E we have 
\v(E)\ < rank E for all a in X(R), which by Lemma 3.5 we identify with F. 
Then if Ë denotes the image of [E] in R we must have dim^Ë < rank E, since 
by Definition 1.22 there is a signature a0 in F with \a0(E)\ = dim^Ë. According 
to Definition 1.1, this means that there exist units bi, . . . , bk in C with k < 
r ank£ , such that [E] = [(bu . . . , bk)] mod I(Y). But then by Lemma 2.3 (ii), 
there exists a Pfister form P = TL™ (1, tt), tt in T(F) , such that E ® c P is 
isotropic. 

https://doi.org/10.4153/CJM-1978-076-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-076-1


WITT RINGS 893 

Conversely, assume tha t F satisfies HMP and let the element XI \ a>i(U(C))2 

of Z[U(C)/(U(C))2] be anisotropic for R. By Theorem 2.11 this means tha t 
for all tu . . . , tn in T ( F ) , all the elements YT\ a%h of C are different from 0. 
Let E = (au . . . , a n ) , then by Lemma 2.7(hi), the spaces E ® c P are aniso­
tropic for all Pfister forms P = II™ (1, s{) with 5< in T ( 7 ) . Since F satisfies 
HMP, there exists a signature o- in F with |o-([E])| = n = d im^E , so tha t R 
satisfies H MP in the sense of Definition 1.22. 

COROLLARY 3.8 [13, Theorem 2.12, p. 32; 3, Satz 25(iv)] . Let C be a semilocal 
ring satisfying (*) and Y a saturated set of signatures of C. Then the following are 
equivalent: 

(i) Y satisfies H MP. 
(ii) For all a, b in U{C), there exists a Pfister form P — II™ (1, tt), tx in 

T ( F ) with (1, a,b, —ab) ® c P isotropic, so that if Y = X(W(C)), by Lemma 
2.3 (ii), the space (1, a, b, —ab ) is weakly isotropic. 

(iii) Every semisignature r of W(C) with r ( l ) = 1 and constant on cosets of 
T = r ( F ) is a signature. (Note that if Y = X(W(C)) the constancy condition 
on T is automatically fulfilled by Remark 1.10(i).) 

Proof. Again let R = W{C) and R = R/I(Y). By Corollary 2.12, the W i t t 
ring R is dimensional and by Proposition 3.7, the set F satisfies HMP if and 
only if R does. Applying Proposition 1.23 and Lemma 2.3(h) then yields the 
implication (i) => (ii), while Proposition 1.23, Lemma 2.7(iii), and Theorem 
2.11 yield the implication (ii) => (i). The equivalence of (i) and (iii) again 
follows from Proposition 1.23 and the fact tha t , as noted in Proposition 1.11 
and Remark 1.13 (i), the semisignatures of R are induced by the semisignatures 
of R constant on the cosets of T = T ( F ) in U{C)/{U(C))\ 

Remark 3.9. We shall say tha t a sa turated set of signatures F of R = W(C) 
satisfies SAP if every subset of F closed and open in the induced Zariski 
topology is of the form V(u) C\ Y for u in U(C). By Proposition 3.7, Lemma 
3.5, Corollary 2.12, and Remark 1.24, a sa turated subset F satisfies SAP if 
and only if it satisfies HMP, provided C satisfies (*). In case F = X(R) this 
yields Theorem 3.1 of [15] for semilocal rings satisfying (*) and not just for 
semilocal rings with 2 in U(R). Of course, by using a small amount of quadrat ic 
form theory, Knebusch [9], has proved [15, Theorem 3.1] for arb i t rary con­
nected semilocal rings. 

T H E O R E M 3.10. Let C be a connected semilocal ring satisfying (*), Y a saturated 
set of signatures of R = W(C), T = T(Y), R = R/I(Y), and E a C-space of 
rank n. If for all semisignatures T of R constant on cosets of Tin (U(C)/(U(C))2), 
we have \T([E])\ < n, there exist t\, . . . , tk in T such that E® ( ® î ( l , tt)) is 
isotropic. 

Proof. As in the proof of Proposition 3.7, we denote the image of [E] in R by 
Ë. Let m = dim^jË. Thus there are elements au • • • , am in U(C) such tha t 

(3.11) [£] = [< a i , . . . , a . ) ] modulo 7 ( F ) . 
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By Definition 1.1 we also have 

dim«(ai, . . . , am) = m = dimB[(ai, . . . , am)]. 

Suppose first that m ^ rank E. Now for all semisignatures r of R constant 
on cosets of T we have, by Proposition 1.11 and Remark 1.13 (i) that 
r([(ai, . . . , am)]) = T([E]). Hence the hypothesis of the theorem shows that 

|r([(ai, . . . , am)])\ < m = dim^([(ai, . . . , am)]). 

Therefore, Proposition 1.25 and Corollary 2.12 show that dim f l((ai, . . . , am)) 
< m, a contradiction. Therefore m < rank E. But then Lemma 2.3 (ii) applied 
to (3.11) completes the proof. 

COROLLARY 3.12. If, in Theorem 3.10 the space E = (bi, . . . , bn), with bt in 
U(C), then 0 lies in S({bi, . . . , bn], T). 

Proof. By Theorem 3.10 there exist t\, . . . , tk in T with (bi, . . . , bn) ® 
(1, h) ® . . . ® (1, tk) isotropic. Multiplying out and applying Lemma 
2.7 (iii) yields the result. 

In case Y = X(R), T = T(X(R)) Theorem 3.10 furnishes another proof of 
[8, Theorem 5.13] in the case of trivial involution. 

COROLLARY 3.13. Let C be a semilocal ring satisfying (*). If for a C-space E 
we have \T(E)\ < rank Efor all semisignatures r of R = W(C), then E is weakly 
isotropic. 

Proof. By Remark 1.10(i) we may apply Theorem 3.10 for Y = X(R). 
Hence there are tu . . . , th in T(X(R)) such that E ® (1, h) ® . . . 
<g) (1, tk) is isotropic. By Lemma 2.3(iii), the space E is then weakly isotropic. 
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