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SIGNATURES AND SEMISIGNATURES OF ABSTRACT
WITT RINGS AND WITT RINGS OF SEMILOCAL RINGS

JERROLD L. KLEINSTEIN AND ALEX ROSENBERG

0. Introduction. This paper originated in an attempt to carry over the
results of [3] from the case of a field of characteristic different from two to that
of semilocal rings. To carry this out, we reverse the point of view of [3] and
do assume a full knowledge of the theory of Witt rings of classes of non-
degenerate symmetric bilinear forms over semilocal rings as given, for example,
in [10; 11]. It turns out that the rings W, of [3] are just the residue class rings
of W(C), the Witt ring of a semilocal ring C, modulo certain intersections of
prime ideals.

The first section of this paper deals with abstract Witt rings [10, Def. 3.12].
We generalize the usual notions of dimension, isotropy, and representability
to these. Additionally, we study the homomorphisms, both as rings and as
abelian groups, of abstract Witt rings to Z; the former are called signatures and
certain of the latter, semisignatures. It turns out, for example, that an element
of an abstract Witt ring is mapped to 0 by all signatures if and only if it is
mapped to 0 by all semisignatures. The main result of Section 1 is a necessary
and sufficient condition for the existence of a semisignature mapping a pre-
scribed set of units to 1. This result may be viewed as a generalization of the
main part of the implication (i) = (ii) of [8, Thm. 5.7]. The section ends with
consideration, still in the abstract case, of extensions of semisignatures and the
Hasse-Minkowski property [4].

In Section 2, we consider a connected semilocal ring C all of whose residue
class fields contain at least 3 elements. If R = W(C) is the Witt ring of classes
of nondegenerate symmetric bilinear C-forms, we show that the results of
Section 1 are applicable to R = W(C)/I(Y), where I(Y) is a special inter-
section of non-maximal minimal prime ideals of R. We show how the abstract
notions of dimension, isotropy, and representability translate to R and also
prove that R satisfies the necessary and sufficient condition for the existence of
semisignatures established in Section 1. This section ends by giving a pres-
entation of R by generators and relations.

In Section 3 we apply the results of the first two to translate and generalize
results on semisignatures of R to results on semisignatures of R. We deal with
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extensions of semisignatures, the Hasse-Minkowski property and with indefi-
nite forms; that is, forms which are mapped by all semisignatures to an integer
less than the form’s rank in absolute value. Finally, we deduce (8, Thm. 5.13],
in the case of trivial involution, from our results.

1. Abstract Witt rings. Let G be a group (necessarily abelian) of exponent
2, i.e. for all g in G, we have g? = 1. For a proper ideal K of the group ring
Z[G], the ring R = Z[G]/K is called a Wit ring for G if the torsion subgroup,
R, of the additive group of R is 2-primary [10, Def. 3.12]. R is called reduced if
R, = 0. By [10, Props. 3.15 and 3.16] a reduced Witt ring for G has no non-zero
nilpotent elements. For g in G we denote the image of g in R by g, although for
the identity element of both G and R we often write 1. Clearly every element »
of R may be written as ».1 e;; with ¢, = =1 for, not necessarily distinct, ele-
ments g; of G. By G’ we denote the multiplicative subgroup of Z[G] consisting
of the elements +g, g in G, and write §’ for 4.

Definition 1.1. For 7 in R, dimgr, or dim 7 if there is no possibility of con-
fusion, is the smallest natural number # such thatr = > 13/, g/ in G'. Clearly,
forry,...,7nin R, wealways havedim (3T 7,) £ X1 dim 7.

If Fis a field of characteristic not two and R = W(F) is the Witt ring of
equivalence classes of symmetric nondegenerate bilinear forms over F, then
W(F) is a Witt ring for U(F)/(U(F))?, where U(F) denotes the unit group,
F — {0}, of F, [10, Ex. 3.11]. For » in W(F), dim 7 is then the vector space
dimension of the unique anisotropic representative of 7 [12, Thm. 1.7, p. 58].

Definition 1.2. For g’ in G’, the element 7 in R is said to represent the element
¢ of G, if thereisa pin R withr = g + p and dim p < dim r. The subset of
Z[G] represented by r will be denoted by D(r).

Definition 1.3. For g/, ..., g’ in G’, the element >.1 g/ of Z[G] is called
anisotropic for R if dim (2.1 g;) = n. Otherwise Y1 g,/ will be called isoiropic
for R.

Since each 7 in R can be written as »_1 g/, it is clear that by choosing # mini-
mal, we obtain an anisotropic representative in Z[G] of r. Furthermore, it is
clear that these definitions coincide with the usual ones if R = W(F), F a field
of characteristic not two.

LEMMA 1.4. For rin R, let 31 g/ be an anisotropic representative of v in Z[G].
Then 31 g + ¢, for some g’ in G', is an element of Z[G] isotropic for R if and
onlyif —g' isin D (r).

Proof. If —g'isin D(r), there exists an element p in R withr = p — g’ and
dim p < dim 7. Thus p = r 4+ g/, and so dim (r + g') < dim r = n. By Defi-
nition 1.3 this means that > 1 g,/ + ¢’ is isotropic for R.

Conversely, if >°1 g/ + g’ is isotropic for R, there exist &/, ..., h,’ in G’
with >T 2/ = r 4+ g andm = dim (r + g’) < # + 1. Solving for r shows that
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n=dimr £m + 1. Thus m = nor n — 1. Now, by definition of R, the ele-
ment y.1 b — (X1gd + ¢') of Z[G] is in K, and so by [10, Thm. 3.9 (ii)],
the natural number n + m + liseven. Hencem = n — 1,ie.,dim (r + g’) <
n = dim 7. Since r = (r 4+ §’) — g, Definition 1.2 shows that —g’ is in D(r).

Definition 1.5. If R is a Witt ring for G, the set of ring homomorphisms
R — Z is denoted by X (R) and called the set of signatures of R.

Remark 1.6. For ¢ in X (R), the ideal ker ¢ is a minimal non-maximal prime
ideal of R and the mapping ¢ — ker ¢ is a bijection of X (R) onto the set of
minimal non-maximal prime ideals of R [10, Lemma 3.1 and Remark 3.2]. Of
course, by passing to inverse images in Z[G], the set X (R) is also bijective with
the set of minimal prime ideals of Z[G] containing K. By (10, Prop. 3.4],
X(R) # @ if and only if R, = Nil R, the nilradical of R. Throughout the rest
of this section we assume X (R) # 0.

Definition 1.7 (cf. [11, Sec. 4]). (i) For any subset M of G’ in Z[G], V(M) =
{oin X(R)|o(g’) = 1 forall ¢’ in M}.

(ii) For ¥ C X (R), we put T(Y) = {¢'in G'|o(g’) = 1forall ¢in V}.

(iii) A subset ¥ of X (R) is saturated if ¥ = V(T'(Y)).

(iv) For ¥ C X (R), we put I(Y) = N,ey ker o, an ideal of R.

(v) For any subset M of G’ in Z[G] we denote the (proper) ideal of R
generated by 1 — g/, ¢’ in M, by a(M).

Prorosition 1.8 [cf. 11, Lemma 4.15 and Corollary 4.16]. For any subset M
of G':

(1) R/a(M) is again a Witt ring for G.

(i1) The radical of a (M), written (a(M))1/2, 2s I(V(M)), with the convention
I1(@) = Mo(R), the unique maximal ideal of R containing 2 [10, Lemma 2.13
and Theorem 3.9].

Proof. The proof of (i) is essentially the same as that of [11, Lemma 4.15].
Asfor (ii), since s(1 — ') = Oif and only if ¢(g’) = 1, itis clear that a(M) C
ker ¢ if and only if ¢ is in V' (M). Since by [10, Lemma 3.1 and Theorem 3.9 (i)]
the only prime ideals of R are either 3¢ (R), a ker o, or maximal ideals properly
containing a ker o, the result is clear if V(M) # @ since M(R) contains all
ker ¢ [10, Ex. 3.11]. If V(M) = @ and a(M) were contained in a maximal ideal
of R other than I,(R), the residue class ring R/a(M) would not be a Witt
ring for G [10, Theorem 3.9], contradicting (i). Thus (ii) is true also if V(M)
= 0.

LEMMA 1.9. Let M 5 @ be a subset of G’ in Z[G) and let M be the multiplica-
tive subgroup of G’ generated by M.
(1) For r in_(a(]\[))”2 and N : R — Z an additive homomorphism, constant

on the cosets of M in G', we have \(r) = 0.
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(if) For r in R we have o (r) = 0 for all ¢ in V(M) if and only if N(r) = 0 for
all additive homomorphisms R — Z constant on the cosets of M in G'.

Proof. 1t is readily verified that X is constant on cosets of M in G’ if and only
if for every g’ in G and & in M we have \(g'h) = \(g').

To prove (i), we note that by Proposition 1.8 (i), the ring R/a (M) is again
a Witt ring for G and thus its nilradical is torsion [10, Lemma 3.3]. Thus, for
some natural number m, we see that mr is in a(M). But the constancy of \ on

the cosets of M, forces \(a(M)) = 0. Hence 0 = \(mr) = m\(r), which im-
plies A\(r) = O since \(r) isin Z. _

To prove (ii), we note that every o in V(M) is constant on the cosets of M
in G’, so that one implication is clear. Conversely, if for every ¢ in V(M) we
have o(r) = 0, then by Proposition 1.8 (ii), 7 is in (a(M))2 = I(V(M)).
Thus, by (i), M) = 0 for all additive homomorphisms R — Z, constant on
cosets of M in G'.

Remarks 1.10. (i) Let M = T(X(R)). Then M = M and the constancy
condition of Lemma 1.9 is automatically fulfilled for all additive homomor-
phisms X\ : R — Z. For if for all ¢ in X (R) we have o (A') = 1,letr = g'h’ — g’
in R, where g’ is in G’. Then for every ¢ in X (R), we have o(r) = 0. Hence by
Remark 1.6, the element 7 is in Nil R and so by [10, Lemma 3.3 and Lemma
3.12], r is in R,. But then clearly A(r) = 0 for any additive homomorphism
N : R — Z, which is precisely the required constancy condition.

(ii) From (i) and Lemma 1.9 (ii) we see that for an element 7 of R, we have
o(r) = 0 for all ¢ in X(R) if and only if N(») = 0 for all additive homo-
morphisms A : R — Z.

ProrposiTionN 1.11. Let ¥ C X (R) be a saturated set of signatures and R =
R/I(Y). Then if N is an additive homomorphism R — Z constant on the cosets of
T(Y) in G, we have N(I(Y)) = 0 so that \ induces an additive homomorphism X
from the Witt ring R to Z..

Proof. Since Y is saturated, V = V(T'(Y)). Thus setting M = M = I'(Y),
we obtain (a(M))'/2 = I(Y) by Proposition 1.8 (ii). Proposition 1.8 (i) and
[10, Remark 3.13 (ii)] then show that R is a Witt ring for G, and Lemma 1.9 (i)
proves that N(I(Y)) = 0.

Definition 1.12 (cf. [8, Def. 5.1]). Let R = Z[G]/K be a Witt ring for G.
An additive homomorphism 7 : R — Z is called a semisignature if for all g in G
we have 7(g) = +1. Note that since 7 is additive, —7(g) = 7(—g) and that
since R is additively generated by the elements 47, a semisignature is com-
pletely determined by its values on the elements g, g in G.

Remarks 1.13. (i) Let R = Z[G]/K and R = Z[G]/K’ be two Witt rings
for G such that K C K’. If = denotes the canonical projection R — R, then
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for any semisignature 7 of R, there is, as usual a unique semisignature 7 of
R making

R

.7-

R —" 7

commute. Clearly, 7 is constant on the cosets of M in G’, where
M = {g in G'l¢g =1 mod K'}.

(1) If R = W(F), where F is a field of characteristic not two, and 77 a
Priordnung as defined in [3, 1.], then Lemma 1.9 (ii) with M = 77 — {0}
immediately shows that the notions of “‘equivalence’” and ‘‘strong equivalence”
imply each other, which is Satz 7 of [3].

Definitions 1.14. Let A C G’ C Z[G] be a subset of G’ and R a Witt ring
for G.

(i) The set 4 is said to be antsotropic for R if all elements Y1 a; of Z[G]
with «;, not necessarily distinct, elements of 4 and arbitrary #, are anisotropic
for R.

(ii) D(4) = {¢'in G'|¢" in D(2_1 a,) for some, not necessarily distinct, «; in
A and arbitrary n}.

Lemma 1.15. (i) 4 C D(4).
(i) If A1 C Aq then D(4:) C D(Ay).
(iit) If Aq s a totally ordered chain of subsets of G', then \J D(4.) = D (U Aa).

Proof. For any ¢’ in G', we have dim g' = 1 since the unit g’ of Z[G] cannot
be in K. Moreover, in R we have g’ + 0 = g’ so that ¢’ isin D(g’). This proves
(i). Parts (ii) and (iii) follow from Definition 1.14 (ii).

LemMA 1.16. Let A be an anisotropic subset of G'. Then
(i) D(D(4)) = D(4).

(ii) D(4) N —=D(4) = 8.

(iii) D(A4) is an anisotropic subset for R of G'.

Proof. (i) By Lemma 1.15 (i), 4 C D(4), so that by Lemma 1.15 (ii),
D(A) C D(D(4)).

Now let ¢’ be in D(D(4)). Then there are elements dy, . . ., d; in D(4) and
an element 7 in R such that dim » < k and, in R

k

g"’*‘f': Z (Zz

1

Since the d,'s are in D(4), there are elements «,;, j = 1, ..., n;, in 4 and
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elements p; in R with dim p; < #n; such that

d,+ pi = § 1: aqj.
=
Thus in R,

ni

k k
§'+7’+ZP1=ZZdu-
i=1 i=1 j=1

Now, since 4 is anisotropic, the dimension of the right hand side is 3.5 n,. As
noted in Definition 1.1,

k k k
dim(r—l— > pi) <dimr+ >, dmp, < k-1 + 2, (n,— 1)
1 1 1

k

=(Z} ni)—l.

Hence ¢’ lies in D (X521 31 d4;) C D(A). Thus D(D(A)) = D(4).

(i1) Suppose ¢’ were in D(4) M —D(A4). Then there would exist elements
@iy ..., 0y by, ...,0,in A and elements p, ¢ in R, with dim p < #n,dim g < m
and, in R

m

g_I‘I‘P:;di, g,—q=—251

1
These two equations yield, upon subtraction

n m

P‘I‘Q: Zl:di-l_zlgp

Since dim (p 4+ ¢) < dim p + dim ¢ < = + m, the last equality contradicts
the anisotropy of A. Thus D(4) N\ —D(4) = 0.

(iii) Letd;, 2 = 1, ..., n, liein D(4) and suppose that the element >_1 d; of
Z[G] is isotropic for R. Since d, is anisotropic for R, there exists an integer ¢,
1 £t < nsuch that 3.1 d; is anisotropic for R but 3.1 d; + d ;. is isotropic for
R. By Lemma 1.4, this implies —d 4, isin D(X1d;) C D(D(4)) = D(A), by
(1). But then d,y; lies in D(4) M —D(A), contradicting (ii). Hence (iii) is
proven.

THEOREM 1.17. Let R be a Witt ring for G. Then the following are equivalent:

(1) For all v in R and all natural numbers m, we have dim (mr) = m (dim 7).

(i1) Let A C G’ be a subset with the property that all finite sums Y a; with a,
distinct elements of A are anisotropic for R. Then there exists a semisignature T of
Rwitht(@) = 1forallain A.

(iii) For any finite subset g\, ..., g, of G and natural numbers n; > 0, if
> 1g4 is anisotropic for R, then

(% ) - 0(% nat)
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Proof. (i) = (ii). Letay, . . ., a, be distinct elements of 4. By hypothesis the
element .1 a; is anisotropic for R, i.e., has dimension #. Now for any positive
natural numbers n;, 2 =1, ..., #n, let m denote their maximum. By (i),

dim (m (2.1 d;)) = mn so that by Definition 1.1, the element Y 1 n,a; is also
anisotropic for R. Hence the set 4 is anisotropic for R in the sense of Definition
1.14 (i).

The remainder of the proof is inspired by [8, p. 63]. Consider the family of
anisotropic subsets of G’ containing D (4) which are of the form D (4,) with 4,
again anisotropic for R. Since the union of a chain of anisotropic subsets of G’
is again anisotropic for R, Lemma 1.15 (iii) shows that Zorn’s lemma applies.
Thus, let D(4,) be a maximal element of this family. If D(4,) U —D(4,) #
G’ let g be an element of G such that neither g nor —g is in D(4,). If the set
{D(4,), g} were isotropic for R, there would exist elements d;, ..., d, in
D(A4,) and a natural number / such that >"1 d; + Ig would be isotropic for R.
But by Lemma 1.16 (iii), D(A4,) is anisotropic for R, and so if >1d; + g were
isotropic for R, Lemma 1.4 would yield —g in

(Z d) CD({dd,i=1,...,n) CD(D(4)) = D(40)

by Lemma 1.16 (i). Hence > 1d; + g is anisotropic for R. By (i) of the theorem
soisl >1d; + lg, and from Definition 1.1, it is clear that then >.1 d; + g is
also anisotropic for R, a contradiction. Thus, the set {D(4,), g} is anisotropic
for R and D({D(A4,), g}) 22 D(4y), contradicting the maximality of D(4,).
Hence G’ = D(4,) \JU —D(4,).

Next, we define an additive homomorphlsm 170: ZL[G] — Z by 70(¢g’) = 1 if
g'isin D(Ao) and 7o(g’) = —11if g’ isin —D(A4,). Since, by Lemma 1.16 (ii),
D(4,) Y —D(4,) = 0, the homomorphism 7, is well-defined. Let >.1 g,/ be
an element of K, the kernel of the ring surjection Z[G] - R. We reindex so
that g1/, ..., g  liein D(4,) and g1/, ..., &' liein —D(4,). Now in R we
have

k n
2 8l =2, (=g

1 k+1
Butbothg/,2=1,...,kand —g/,2 =k + 1,..., nare elements of D(4,),
which, by Lemma 1.16 (iii) is anisotropic. Hence & = n — k, so that 7,(K) = 0
and 7, induces a semisignature on R which is 1 on D(4,) D 4.

(ii) = (i). Let r be in R and dim » = nso that » = >.1 &;/. The sums 3_ h/’
extended over all subsets of 4 = {h{, ..., k,/} are then clearly anisotropic
for R. Thus by (ii) there exists a semisignature r; : R — Z with (k) =
Now, clearly for all p in R and any semisignature 7 of R, we always have
|7 (p)| = dim p. Thus m(dim 7) = mri(r) = 7.(mr) < dim (mr). Since the
opposite inequality has already been noted in Definition 1.1, the implication
(ii) = (i) is proven.
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(ili) = (i). Suppose (i) is false. Then there exists an element r in R with
dim (mr) < m(dim r) for some natural number m. Let » be an element of
minimal dimension with this property. Since for all ¢ in X(R), we have
o(mg') = £m, and if dim(mg') < m, we would have |o(mg")| < m, we must
have, since X (R) is assumed non-empty, dim# > 1. Thus let» = > 5,/ with
n = dim 7 > 1. Since the element > 7 mg,/ is isotropic for R, there exist na-
tural numbers n;, 0 < n; £ m, with n; < m for at least one index, such

that 3.1 n.g is anisotropic for R, but for some 2, 1 < k = #n, the element
S imgd + g isnot. By Lemma 1.4 this means that —g,’ liesin D (X1 ng/) =
D(r) by (iii) of the theorem. Without loss of generality, we assume k& = 1.

Let p = >.*~13,/. By the hypothesis on 7, dim (2p) = 2(dimp) = 2(n — 1)
so that > %~1 2g/ is anisotropic for R. Therefore, 2g," + > 57! g/ is also aniso-
tropic for R, whence dim (g, + p) = n. Now — g, in D (r) implies the existence
of an element w in R, with dim w < #, such that » = —g," 4+ w. Since

n—1
2+ T == ) =~

Definition 1.2 shows that —g,’ lies in D (g," + p). Again, by (iii) of the theorem
—g,' liesin D(p). But then by Lemma 1.4, the element Y7 g,/ is isotropic for R,
a contradiction. Thus (i) must hold.

(i) = (iii). As in the proof of (i) = (ii), if D27 g/ is anisotropic for R, so is
> 1 migy for any n; > 0. From Definitions 1.1 and 1.2 it is clear that if p = p’
+ 7in R with dim p = dim p’ + dim » then D(p’) C D(p), so that D(3_1 /)
C DX ngd).

Let ¢’ be in D(X ] ng,) and denote X7 g/ by p'. If m = max (n;), then
¢’ isin D(mp"). If ¢’ were not in D(p’), Lemma 1.4 implies that the element
St g — g of Z|G] is anisotropic for R, or dim (p’ + (—3')) = 1 + =. By (i),
then, dim (mp’ + m(—g')) = m + mn so that the element > 7 mg,” + (—g’)
of Z[G] is anisotropic for R. But, again by Lemma 1.4, this contradicts g’ in
D(mp'). Hence g’ isin D(p’) and D (X1 n:g.) C D(31g/), which proves (iii).

Definition 1.18. A Witt ring for G is called dimensional if it satisfies one of the
conditions of Theorem 1.17. Note that by 1.17 (i) such a ring is reduced.

Remark 1.19. In Section 2 we shall show that the class of dimensional Witt
rings includes the residue class rings of Witt rings of classes of symmetric
nondegenerate bilinear forms over semilocal rings modulo the radical. How-
ever, not all reduced Witt rings for groups of exponent two are dimensional,
nor, since Z[G] is clearly dimensional, are surjective images of dimensional Witt
rings necessarily dimensional, as is shown by the following example:

Let G be the direct product of 8 groups of order 2, i.e. G = 113 {1, g,} with
g2 = 1. Let

Po= g + g+ g5 — 18285 and qo= ga+ g5+ g6 + g7 + g5 — 2425268785
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in Z[G] and let K be the principal ideal in Z[G] generated by 2p, — go. A
character of G is given by mapping the g; arbitrarily to 1. It is then easily
verified that for any character x of G, the induced ring homomorphism ¥,
[10, p. 135] sends py to £=2 and ¢, to 0, 4=4. Hence for all characters x of G,
we obtain ¥, (2py — qo) = 0, £4, =£8. Therefore, by [10, Theorem 3.9 (ii)]
the ring R = Z[G]/K is a Witt ring for G, and, thus [10, Remark 3.13 (iii)]
so is the reduced ring R = Z[G]/K'/2, where as in Proposition 1.8 (ii), the
radical of K is denoted by K'/2. We also note if x, is the identity character,
x; the character defined by x;(g;) = (—1)%, and x,, the character defined by
xs(g) = —1, then yy, (K'/2) = ¢, (K) = 0,j = 0,1,...,9. Thus X (R) # ¢
and contains, at least, the signatures ¢, induced by ¢,,,7 = 0,1,...,9.

Let the images of pg, go in R be denoted by p, ¢. Then 2p = ¢ in R, and
o;(p) =2, 0,(q) =4,7=0,1, ..., 8, and a9(p) = —2 and ay(q) = —4.
Clearly dim 2p = dim ¢ =< 6. Therefore, to show that R is not dimensional, it
suffices to prove that dim p = 4.

Since oo(p) = 2, the element p of Risnot 0 and sodim p = 1. If dim p = 1,
then for all ¢ in X (R) we would have ¢(p) = =+1, contradicting o¢(p) = 2.
If dim p = 3, then for all ¢ in X (R), we would have o(p) = £1+£1+1
+3, +1, again contradicting o,(p) = 2.

Suppose now dim p = 2. Then p = @ ==w,, where w; = LI} g, w, =
I1§ ¢ ,7i, with €5, 1 = O or 1, are elements of G. Applying oo, yields 2 = +141.
Hence p = @, + @.. Applying o;,2 = 1,...,8,shows2 = (—1)¢i 4+ (—1)7,
so that €, =7, = 0, and w; = wy, = 1. But p = 1 + T contradicts o4(p) =
—2, so that dim p 5 2. Hence dim p = 4 and R is a reduced Witt ring which
is not dimensional.

CoroLLARY 1.20. Let R be a dimensional Witt ring for G, A a subset of G’
anisotropic for R, and Z = Z(A4), the (non-empty) subset of semisignatures r of
Rwithr(a) = 1forallain A. Then

N (1) = D(4),

T€Z

the image of D(A) in R, where v=1(1) denotes all g in R, ¢’ in G, with r(g’) = 1.

Proof. Let ¢’ be an element of G’ not in D(4). By Lemma 1.4, for any
ai, ..., a,in 4, the element > % a; + (—¢’) of Z[G] is anisotropic for R, as is
> ma; + I(—g'), ny [ natural numbers, since R is dimensional. Hence the
subset 4 \U {—¢'} is anisotropic for R, and so by Theorem 1.17, there exists
a semisignature 7o of R with 79(@) = 7o(—g’) = 1 for all ¢ in 4. Since 7 is in
Z and 74(g') = —719(—g’) = —1, the element g’ does not lie in MN,cz 7=1(1).
If now g’ does lie in D(4), then by Definition 1.2, there are a1, ..., a, in 4
and an element 7 of R with dim 7 < wand g’ + 7 = > % d,. Now for any semi-
signature 7 of R, we have |r(r)| < n and for all 7in Z, 7(g' + 7) = 7(g') +
7(r) = n. Hence for all 7 in Z, 7(g’) = 1 and 7(r) = n — 1. Thus g’ lies in
MNrez 7 1(1), proving Corollary 1.20.
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Prorosition 1.21. Let Gy £ Gy be a homomorphism of groups of exponent 2.
Let R, = Z[GJ)/K ., 1 =1, 2, be Witt rings for G, and assume that the induced
homomorphism Z[G,] — Z[G,] sends K, into Ki. Denote the resulting ring
homomorphism Ry — Ry by ¢ also. Then, if Ry is dimensional, a semisignature
71 of Ry can be extended to a semisignature 1o of Ry if and only if any element
> o(gi) of Z[Gs) is antsotropic for R for any g with r1(g)) = 1.

Proof. To say that r, extends 7; means, of course, that for all »; in Ry, we
have 7,(r1) = 72(¢(r1)). Hence, if 71 can be extended to 7, and 7,(g;/) = 1,
then 72(2" ¢(g/)) = n, so that 2% ¢(g,/) must be anisotropic for R,.

Conversely, let A C Gy’ be defined by 71(@) = 1. Then G/’ = 4 U —A4. By
hypothesis, ¢(4) is anisotropic for Ry and so by Theorem 1.17 there is a semi-
signature 7, of Ry with 75(¢(4)) = 1 = 7,(4). Now since 1, is a homomor-
phism of additive groups, 7:(—¢(4)) = 72(¢(—4)) = —1 = r,(—4). Since
any 7, in R; is a sum of elements in 4 and — 4, this proves 72(e(r)) = 7,(r).

Definition 1.22. A Witt ring R for G satisfies the Hasse-Minkowskt principle
(ITMDP) if for every r in R, there exists a ¢ in X (R) with |¢(r)| = dim 7. Note
that if R satisfies I1MP, it is necessarily dimensional, and hence reduced.

ProrositioN 1.23. [13, Theorem 2.12, p. 32]. Let R be a dimensional Witt
ring for G. Then the following are equivalent:
(1) R satisfies HMP.
(ii) For all a, b, in G', the element 1 + « + b — ab of Z[G] s isotropic for R.
(ii1) Every semaisignature T of R, with 7(1) = 1, is a signature.

Proof. (i) = (ii). By examining the various possibilities for ¢(a), ¢(8) it is
easily seen that ¢(I + @ + b — @) = +£2. Thusdim I 4+ a +b — ab) = 2
and 1 + ¢ 4+ b — ab is isotropic for R.

(ii) = (iii) Let 7 be a semisignature of R with 7(1) = 1 which is not a
signature. Then there exist elements «, b in G’ with (@) = () = 1 but
7(ab) = —1.Hencer(I 4+ @ +b — ab) = 4andsodim I 4+ a +& — ab) =
4, contradicting (ii).

(iii) = (i) Let 7 be an element of R, dim 7 = n,and r = 3% g/ for g/ in G’.
Since R is dimensional Theorem 1.17 applies to yield a semisignature r of R
with7(g/) = 1,7 =1,...,n If (1) = 1, then 7 is a signature with 7(r) = n
= dim r. If 7(1) = —1, then —7 is a signature with |—7(r)| = #» = dim 7,
completing the proof.

Remark 1.24. As in [11, Lemma 3.3], X (R) carries a natural topology in-
duced by the Zariski topology of Spec R. R is said to satisfy S4 P if every closed
and open subset of X (R) is of the form V(g’) for g’ in G'. The referee has
kindly pointed out that for dimensional Witt rings for G, SAP and HMP are
equivalent and we gratefully present his proof here. We first note the following.

LEMMA. Let R be a Witt ring for Gandr = 3% 3’ an element of R with dim gr =
m. Thenn = m (mod 2).
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Proof. There exist k/ in G’ such that r = >» &/, so that the element

g/ — 2mh of Z|G] lies in K = Ker (Z[G] — R). Let M, be the unique
maximal ideal of Z[G] containing 2 [10, Lemma 2.13], then by [10, Theorem
3.9 (iv)] we have K C Myand son — m = 0 (mod 2) since Z[G] — Z[G]/ M,
is given by setting the elements of G equal to one and reducing mod 2.

ProrosITION. Let R be a reduced Witt ring for G. Then R satisfies HMP
if and only if R satisfies SAP.

Proof. Suppose R satisfies SAP and that 7 is an element of R with dimzr =
n. If for all ¢ in X (R) we have |¢(r)| < u, then just as in the proof of [15,

Theorem 3.1] there exist &/, ..., h,—' in G’ with ¢(r) = o(Z"% k,) for all
o in X (R). Since R is reduced, » = >"~2 i/ and dimgr < n — 2. This contra-
diction shows that for some ¢ in X (R) we have |o(r)] = #n so that R satisfies
HMP.

Conversely, suppose R satisfies HMP. Since the sets 17(g’), ¢’ in G’, form a
subbasis of the topology on X (R) and V(—¢g') = X(R) — V(g'), it suffices,
as in the proof of Theorem 2.2 of [15], to show that for any a, b in G’ there exists
an element ¢ in G’ with V(a) M V(b) = V(c). By Proposition 1.23, for any
a, b in G, the element — (1 —a¢ — b — (—a)(—b)) = =14+ a + b+ ab of
Z[G] is isotropic for R. If dimz(@ + b 4+ ab) < 3, then by the lemma, there
exists an element d in G’ with@ + b + @ = d in R. But then for any signature
o in V(a) N V(b), we would get o(d) = 3, which is impossible. Hence 0 =
Via) N\ V(b) = V(—1), in this case. If dimg(@ + & + @) = 3, then by
Lemma 1.4, the element 1 lies in D(@ 4+ b + ab). Thus there exists p in R with
1+ p=a-+b-+aband dimgp < 3. Now, dimzgp = 2, else dimg(@ + b +
ab) < 3. Thus there are elements ¢, d in G’ with p = ¢ +dand1 +¢ +d =
@ + b + ab. Then clearly V(a) N V(b) C V(c). If o is any signature not in

V(a) M V(b), then it is immediate that ¢(@ + b + @b) = —1 = 1 + o () +
a(d), so that ¢(¢) = ¢(d) = —1. Hence V(¢c) C V(e) N V(b), proving the
proposition.

ProrosiTION 1.25. Let Y be a saturated set of signatures for a Witt ring R for
G and let R = R/I(Y). If R is dimensional, then for an element r of R the in-
equality |7 (r)| < dimgr holds for all semisignatures v of R that are constant on
the cosets of T(Y) in G if and only if dimg(r + I(V)) < dimgr.

Proof. Let n = dim » and » = 3% g/. Denoting residue classes modulo
I(Y) by ~, we have 7 = > % 3/. Thus, if dimg?7 = n, the element >_% g,/ of
Z[G] is anisotropic for R. Since R is dimensional, Theorem 1.17 yields a semi-
signature 7 of R with 7(#) = #. By Remark 1.13 (i), there is then a semi-
signature 7 of R satisfying the constancy condition with 7(r) = #n. This con-
tradiction shows dimz7 < dimgr. Conversely, suppose there exists a semi-
signature 7 of R constant on cosets of I'(Y) in G’ with dimzr = |7(r)|. By
Proposition 1.11 7 then induces a semisignature 7 of R, with |7(7)| = dimzr so
that dim 7 = dimgr, a contradiction.
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2. The semilocal case. In this section we prove some properties of Witt
rings of bilinear forms over semilocal rings that enable us to apply the results
of Section 1. Throughout the rest of this paper C will denote a connected semi-
local ring and U(C) its group of units. By a space over C we shall mean a pair
(E, B) where E is a finitely generated projective (whence free) left C-module
and B is a symmetric nondegenerate bilinear form on E. Isometries will be
written as 22 and for any natural number m, the space E L ... L E (m times)
will be denoted by mE. An element ¢ of E is called primaitive if it can be aug-
mented to a basis of E. A space (E, B) is isotropic if there is a primitive element
e in E with B(e, e) = 0, and weakly isotropic if for some natural number m,
mkE is isotropic. The space Ce; L ... L Ce, with B(e;, ;) = a;in U(C) will,
as usual, be denoted by {ai, ..., a,). The Witt ring of equivalence classes of
C-spaces will be denoted by W(C) and the class of a space (E, B) in W(C) by
[£]. For any space (E, B) there always exist a4, . . ., a, in U(C) with [E] =
[{a1, ..., a,)], [10, Theorem 1.16].

I't will also be necessary to consider quadratic C-spaces |12, pp. 110-111] and
the left W(C)-module W,(C) of equivalence classes of quadratic C-spaces
[12, pp. 110-111 or 1, Kapitel 1]. We shall use similar notations for quadratic
spaces as for spaces.

As pointed out in [8, p. 49], there always is a natural number % with both
2h — 1and 4k — 1in U(C). Following one of the ideas of [8] we note:

Remark 2.1. Let (F, q) be the quadratic space Cf1 @ Cfy, ¢(f1) = 1, ¢(f2) =
hy ¢(f1 + fo) — q(f1) — q(f2) = 1. If (E, B) is a C-space, then (E ® F, Q)
is a quadratic C-space with Q(e; ® f1 + es ® f2) = Bley, e1) + Bley, €2) +
B(es, es)h for e, e, in E. (The unadorned tensor product sign always means
tensor product over C.)

Lemwma 2.2. Let E, E' be two C-spaces with rank E = n > m = rank E’. If,
in W(C), the equation [E] = [E'] holds, then 6E 1s isotropic, if in addition, 2 s
iwn U(C), then E 1s isotropic.

Proof. If 2 is in U(C) this is immediate from the definitions and the Witt
cancellation theorem [14]. In general, [E ® F] = [E' ® F] in W,(C). Now
this means that there exist natural numbers k, k' with EQ F |l FH~E ® F
1 #’'H, where H is the quadratic C-module Cg; @ Cg, with quadratic form
q' given by ¢'(¢1) = ¢'(g2) = 0 and ¢'(¢1 + g2) — ¢’ (&) — ¢'(g2) = 1 [1, p.
31]. But the Witt cancellation theorem holds for quadratic C-modules [1, p.
109; 5, Satz 0.1], and thus since # + 2k = m + 2k’ and #n > m, we obtain
E® F~E @ F1 ( — k)H, with ¥ — k> 0. Hence E ® F is isotropic
and by [8, Lemma 5.14] the space 6E is also.

By [10, Corollary 1.21],R = W(C)isa Wittring for thegroup U(C)/(U(C))2.
We shall view the signatures of R as defined in Section 1 either as homomor-
phisms of R to Z or as homomorphisms of U(C) to {41} sending (U(C))2to 1.
If YV is a set of signatures of W(C) (or C) we shall slightly alter one of the nota-
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tions of Section 1 and consider T'(Y) as a subset of U(C) instead of
(UC)/(U(€))*).

LeyMa 2.3, Let Y be a saturated set of signatures of R = W(C).
(i) If for two spaces E and E'

[E] = [E'] modulo I(Y),

there extists a Pfister form

k
P=Q® (1,t;), t,€ T =T1(V),
1

such that in R the equation [E)[P] = [E'][P] holds.
(i) If, in addition, rank E > rank E’ then there also exists a Pfister form

k1
Py=® (1,4, LT,
1

with E @ Pyisotropic.
(i) A space E 1s weakly isotropic if und only if there exists a Pfister form

P = é A,t4), ;€ T(X(R))

such that E @ P isisotropic.

7

Proof. (i) Since Y is saturated, ¥ = 17/(I'(Y)). In particular, therefore
I(V(T)) = I(V(T(Y))) = I(Y). By Proposition 1.8 (ii) or [11, Corollary
4.16] then, I(Y) is the radical of the ideal of W (C) generated by [ (1, —¢)] for
all in 7. Now by [11, Lemma 4.17] this is precisely the union of all anihilators
in R of the elements [@% (1, {;)], t;in T, proving (i).

(i) By (i) we have [E ® P] = [E' ® P]in R with

rank (E ® P) = 2¥ rank £ > 2¥ rank E' = rank (£’ ® P).

Hence by Lemma 2.2 the space 6 (£ ® P) = E ® 6P is isotropic. Now since 1
is in 7, the space (Q? (1, 1)) ® P = P, is a Pfister form of the desired kind
and clearly E @ P11~ E ® 6P L E ® 2P is isotropic.

(iii) If mE is isotropic and 2¥ = m then 2)E = E @ (®* (1, 1)) is also iso-
tropic, and, since 1 isin T'(X (R)), the implication one way is proved. Converse-
ly, suppose E ® P is isotropic for P = @* (1, t;), t;in T(X(R)). Then for
any o in X(R), we have o([P]) = 2F and so if x = [E @ P] — [2E] in R,
then o(x) = 0 for all ¢ in X (R). Thus x is a nilpotent element of R. By [10,
Ex. 3.11], there is, therefore, a natural number s such that 2%x = 0. Hence.
[2%(E @ P)] = [££ ® 25P] = [2F*E]. Since E. ® 2°P is still isotropic, |6, Satz
3.2.1, p. 18] shows that £ ® 2P =~ E’ 1 M with M metabolic and of rank
at least 2. Thusrank £ ® 2°P = rank 2°**E > rank E’. Therefore Lemma 2.2
applied to the equality [2¥°E] = [E'] in R, shows that 3-2¥$+1[ is isotropic.

Remark 2.4. Let R = W(C)/I(Y) for a set ¥ of signatures of R = W(C),
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and set 7" = T'(Y). Since [{1)] = [{¢)] mod (V) for all tin T, it is clear that
for any subset {t1, ..., f,} of T the images of [{ai, ..., a,)] and [{ait, . ..,
ayt, )] in R are the same.

Definition 2.5. For a set of signatures ¥V of K = W(C) with 7" = T(Y) two
spaces {a1,...,a,), {br,...,b,)are T-reluted if there exist ty, ..., by 'y ...,
t,,, in T such that

n m

Z [{a )] = Zl: [:t)]

1

COROLLARY 2.6. Let E = (a1, ..., «,), E' = (b, L y b ). Then [E] =
[E'] mod I(Y) for a saturated set of signatures YV of R = W(C) if and only if
there is a natural number | such that [E and IE" are T-related.

Proof. If [E] = [E’'] modulo I(Y), Lemma 2.3 (i) shows that [E ® P] =
[E' @ P] with P = @% (1, {,), t; in 7" Then writing P in diagonal form, im-
mediately shows that 2E and 2%£’ are T related since 7"is a subgroup of U(C).

Conversely, suppose [E and [E" are T-related. By Remark 2.4, it is clear
that /[E] = [[E'] modulo I(Y). Now R = R/I(Y) is an abstract Witt ring
with no nonzero nilpotent elements by Proposition 1.8 applied to [(Y) =
I(V(T'(Y))). Hence it is torsion free [10, Theorem 3.9 and Proposition 3.15]
and so [E] = [E'] modulo I(Y).

Definition. A commutative semilocal ring C will be said to satisfy (*) if it is
connected and all of its residue class fields contain at least 3 elements.

Levmwma 2.7, Let C denote @ semilocal ring satisfying (*), Y a nonempty set of
signatures of R = W(C), ay, @ = 1, ..., n elements of U(C), and t;;/, ] =1,
.y my, elements of T = T(Y). Let

E = Z Z <(lit¢j,>,
=1 j=1

F the quadratic space defined in Remark 2.1, and denote the quadratic form on

E ® FbyQ.

(i) If there is @ primitive element z of £ @ F with Q(z) = u in U(C), then
there exists elements by, .. ., t, in T with - ait; = u and Zf @ity « unit for all
I < n.

(i) If E ® I'1is isotropic, then n > 1 and there exists elements ty, ... t,in T
with D% ad; = 0 and Z; i aunit for alll < n.
' (iii) If E is isotropic, the same conclusions as in (ii) hold.
(iv) If there is a primitive element e in E = (E, B) with B(e,¢) = uwin U(C),
the same conclusions as in (i) hold.
Proof. (i). Letz =x @ fi + vy ® fewithxand yin E. Thenu = B(x, x) +
B(x,y) + B(y, y)h. We proceed by induction on n. If » = 1, then

my
U = (11( Zl: tlj’(ij + xy; + y.7‘2h))
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for elements x;, v; of C. Then
’”Ll

a = ; t (e + %y, + v, 1)

isa unit of C with ¢(a;'u) = 1 foreach ¢in X (R) with ¢ (¢;;/) = 1[8, Theorem
2.5]. In particular, therefore ¢(a:~'#) = 1 for all ¢ in ¥, whence a;7u liesin T,
proving the statement in case # = 1. Suppose that (i) holds for » — 1. Noting
that E @ F=E, @ F L E' ® F where E, = {(ayt,, ..., tulpm, ) and

n—1 mq
E=% 5 )
= =

we may apply [2, Satz 2.7(b)] since both rank E, ® F and rank E’ ® F are
at least two, to obtain the existence of primitive elements z, in E, ® F and
gz’ in E' ® F such that u = Q(z,) + Q') and Q(z,), Q(z’) are units of C.
Just as for the case n = 1, the unit ¢,”'Q(z,) = {, lies in 7. By induction

hypothesis there are elements ty, ..., f,—1 in T with Q(z') = X%! at; and
Z{ ad;aunitforall/ < »n — 1. Hence u = 3 " a;t;and le a4 1s a unit for all
I < m.
(ii) Suppose # = 1 and E ® F is isotropic. If m; > 1 the quadratic space
1 dltl]-,F,
1

and, in case m; = 1, the quadratic space ait11'F L ait1i' F, is isotropic. Again
by [2, Satz 2.7(b)] we find that a sum of units of the form &,/ (x;2 + x;y; +
v;2h), x4, v;in C, is zero. Thus

m

—tn' (1 + %y + 9i'h) = ; tif () 4 x4 yih°)

(or i1’ (x"* + x'y' 4+ y'*h) in case my = 1).
However by [8, Theorem 2.5], for all ¢ in X (R) with ¢(f;;/) = 1 we must have
o(—ti’ (%12 + x1y1 4+ ¥y12h)) = 1, which contradicts, again by [8, Theorem
2.5] the fact that o ({11 (12 + x1y1 + y:28)) = 1. Thus n = 2.

If n = 2 we again write £E @ F=E, @ F 1 E' ® F and apply [2, Satz
2.7 (b)] to yield units Q(z,), Q(z’) such that 0 = Q(z,) + Q(z’). Just as in the
proof of (i), there is a unit ¢, in T with Q(z,) = a,t, and by (i) there are
elements 1, ..., t,—1 in 7" with Q(z') = >-" ! a4; and X} a4, a unit for all
I < m—1.Since 0 = X% at;, the proof of (ii) is done.

(iii) Let e be a primitive iostropic element of E. Then e ® f, is a primitive
isotropic element of £ ® F, and (ii) yields the desired result.

(iv) This follows immediately from (i) since Q(e ® f1) = Bl(e, ¢) = u.

Remark 2.8. By applying [2, Satz 2.7 (c)] repeatedly under the hypotheses of
Lemma 2.7 (ii) it is possible to show, with no hypotheses on the residue class
fields of C, that there are units {y, . . . , ¢, in T such that {(ait1, ..., axt,) ® Fis
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isotropic, i.e. that there exist x;, y;in C with

n

; G/iti(xf + XV + yfh) = 0.

Indeed, for one index ¢ one can assume x; = 1, ¥, = 0. However, using this
we are unable to prove the if part of Theorem 2.11.

THEOREM 2.9. Let C be a semilocal ring satisfying (*), YV a saturated set of
signatures of R = W(C), T = T(Y)and E = (a1, ..., a,). If in R, the element
[E] s congruent modulo I(Y') to the class of a space of rank less than n, there exist
ty ooy by in T such that 3% ag, = 0 and 274 ait; is in U(C) for all I < n.

Proof. Lemma 2.2 and Corollary 2.6 show that there is a natural number s
such that sE is 7T-related to a space E; with 6E isotropic. Since 6sE is T-
related to 6Ey, there exist ¢;;/, 7 = 1,...,s,in T with 6 > %, > % (@)
isotropic. Then Lemma 2.7 (iii) finishes the proof.

Lemwma 2.10. Let by, . . ., by bein U(C), where C is an arbitrary semilocal ring.
Assume 3" b; = 0and 272 b, 1s a unit. Then in W(C) we have [ (b1, . . ., by )]
= [{c1, ..., Cm_2)] for some units cy, ..., Cp_2in C.

Proof. Fore, ¢ in (by,...,b, ) weabbreviate B(e,¢’) by e-¢'. Letey, ..., ey
be the orthogonal basis of (by, ..., b, ) withe; - e; = b;. Consider the C-module

m—1

S=Cem@C21: (¢;) C (b1, ..., bn).

Since >-™ b; = 0 we have S =< (b,,, —b, ). Thus S is nondegenerate. Further,
since D™ le,, ey, ..., e, is still a basis of (b, ..., by), the submodule S is a
direct summand of (by,...,b,). By [10, Lemma 1.1] therefore (b1, ..., b,) =
S L S+i. The element

f= miz e; — (l/b,,,_l)(mz—l:2 b]-)em_l

is easily seen to be in S+. Moreover an easy computation shows that

m—2
ff= (Z bf) (= bn/bp1)
so that St is proper. By [10, Lemma 1.12], then S+ = {c¢1, ..., tm_2), and since
[S] = 0 in W(C), we obtain [{by, ..., by)] = [{c1, - - ., Cuo2)].

THEOREM 2.11. Let C be a semilocal ring satisfying (*), YV a saturated set of
signatures of R = W(C), T = T'(YV) and R = R/I(Y). For a;, 1 = 1, ..., n,
the element x = 3" a,(U(C))% of Z[U(C)/(U(C))?] is isotropic for R in the
sense of Definition 1.3 if and only if there exist elements ty, ..., t, in T with
Z'; Ay = 0.

Moreover, if x is anisotropic for R and % denotes its image in R, the set D (%)
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defined in Definition 1.2 consists of the images in Z[ U (C) /(U (C))?] of all units of
Cof the form 3 "a .t ;witht;in T.

In both instances, there always exist t', ..., t," in T with 3" ag; = D" agd;
and YL aidd aunitfor alll < .

Proof. Let E = (ay, ..., a,). According to Definition 1.3 the element x is
isotropic for R, if in R an equation [E] = [(y, ..., bn)] with m < # holds.
Then Theorem 2.9 yields the desired conclusion.

Conversely, if there are ¢, ..., t, in T with X% a, = 0, Lemma 2.7 (iii)
allows us to assume, in addition, that >} a;is in U(C) for all I < n. Hence
Lemma 2.10 yields the existence of units ¢y, ..., ¢,_2, in C with [{a:ity, ...,
antn)] = [{c1, ..., cp—2)] in R. By Remark 2.4, therefore [E] = [{aity, ...,
antn)] = [{c1, - - ., €o—2)] modulo I(Y), which proves that x is isotropic for R
in the sense of Definition 1.3.

Finally, by Lemma 1.4, for an element « of U(C), the element u(U(C))? is
represented by % if and only if

n

}; a;,(U(C))* — u(U(C))*

is isotropic for R. By the first part of this theorem, this occurs if and only if
there exist elements ¢, f1, .. ., t, in T"with > % a; — ut = 0. Since T = T'(Y)
is a subgroup of U(C), this is equivalent to u = > % a ¢, with ¢/ in T. Clearly
by Lemma 2.7 (iv) the ¢,/ may be chosen so that >°} @, is a unit for all I < #,
completing the proof.

If Cis a field of characteristic not 2, Theorem 2.11 shows that our definition
of D (%) coincides with the definition of D ,(p) given in [3] just before Lemma 2
of [3].

CoOROLLARY 2.12. For any semilocal ring C satisfying (*) and a saturated set of
signatures Y the ring R = W(C)/I(Y) is dimensional in the sense of Definition
1.18.

Proof. Let  be an element of R with dimz” = n. From Definitions 1.1 and
1.3 and Theorem 2.11 it is clear that there are units aq, . . ., a, in C such that
[(a1, ..., a,)]is arepresentative of r in W(C) and X% a;t; # O for all n-tuples
ti, ..., t, of elements of T. Now if for some natural number m, m = 2, we had
dimg(mr) < mn, the space m{ai, ..., a,) would satisfy the hypotheses of
Theorem 2.9. Lemma 2.7 (iii) then produces a contradiction.

We end this section by showing that for a saturated set of signatures Y,
the ring W(C)/I(Y) coincides with the ring Wy introduced in [3] for 77 =
T(Y) U {0} and C a field of characteristic not 2. The first lemma is well known
in this case (and relation (iii) is not needed then).

LeEMMA 2.13. Let C be a semilocal ring satisfying (*¥). Then W(C) s isomorphic
to the commutative ring on generators {u}, u in U(C), subject only to:
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@ {1 =1, @) {1} +{=1} =0, (ii) {w?} = {u},

(iv) {ul{o} = {uo},  (v) {1} + {u} = {x* + y2} ({1} + {u})
where (iii) and (iv) hold for all u, v in U(C) and (v) is valid for all u in U(C)
and all x, y in C such that x* + y*u is in U(C).

Proof. Let H denote the commutative ring described in the lemma. Clearly,
(i)-(iv) hold in W(C) if {u} is replaced by [ (#)] throughout. Let ¢, f denote the
canonical basis of {1, u) with B(e,e) = 1, B(e, f) = 0, B(f, f) = u. Provided
that 2 + y2u is a unit, (1, # ) has also xe + yf, yue — xf as another orthogonal
basis with

B(xe + yf, xe + vf) = x* + y2u, B(yue — xf, yue — xf) = u(x? + y*u),

ie. (1, u) = (x* 4+ y2u, (x* + y2u)u). Thus (v) is also valid in W(C) with
{ ] replaced by [( )] throughout. Hence by universality ¢ : H — W(C)
defined by ¢({#}) = [(«)] and additivity is a ring surjection.

Let G = U(C)/(U(C))2 Relations (i), (iii), and (iv) show that ¢, : Z[G] —
H defined by

Yo(2 £ u(U(C)?) = X = {u

is a ring surjection of Z[G] onto H. Since (ii) and (v) hold in H, for any « in
U(C) and x, y in C with x* 4+ y2u in U(C), we have

Yo((1 + u(U()*) A — (&* + yu)(U(C))?) =0
= %o ((U)(O))?) + ¢o(—(U(C))?).

But [10, Theorem 1.16, Corollary 1.17 and Lemma 1.19] state that the kernel
of the projection Z[G] - W(C) is generated precisely by these elements of
ker yo. Thus ¢ factors through the homomorphism ¢ : W(C) — H defined by
Y([(u)]) = {u} and additivity. Now, clearly ¢¢ = ¢ = 1, proving Lemma
2.13.

LemMA 2.14. Let C be a semilocal ring satisfying (*). Let YV denote a saturated
set of signatures of R = W(C) and T = T(Y). Then I(Y) is generated as an
ideal of R, by [(1, —t)] for tin T.

Proof. For all ¢ in Y and ¢t in T, we have o ([ {1, —¢)]) = 0, hence [{1, —¢)]
is in I(Y). Conversely let v be in I(Y). Since Y is saturated, I(Y) =
I(V(T(Y))) = I(V(T)). Hence by [11, Corollary 4.16 and Lemma 4.17], I (Y)
is the union of the annihilators in R of the elements

[P] = [é (l,ti>], E=2,t,¢T.

By [7, Theorem 4.1], if F is the quadratic space defined in Remark 2.1, the
annihilators in R of the class of the quadratic space F' = P ® F is generated
as an ideal of R by [{1, —u)] where u in U(C) has the property uF’' = F’,
Since F’ represents 1, it also represents # and so by the equivalence of (i) and
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(i1) of Theorem 2.5 of [8], u lies in
TVt ..., 4) CT(V(T) = T(V(I'(Y))) = T(Y) =T.

Now #[P] = 0in W(C) certainly implies r[F’] = 0in W,(C). Thus r lies in the
ideal generated by [(1, —t)], completing the proof.

THEOREM 2.15. Let C be a semilocal ring satisfying (*), Y a saturated set of
signatures of R = W(C), T = T(Y), and R = R/I(Y). Then R is isomorphic
to the commutative ring generated by {u} for w in U(C) subject only to

@ {1} =1, Gi) {1} + {=1} =0, (i) {ut} = {u},

(iv) {uv} = {upl{o}, (v) {1} + {u} = {«® + y2u} ({1} + {u})
for all w, v in U(C),all t in T, and all x, v in C such that x* + y*u 1s a unit.

Proof. By Lemma 2.13 there is an isomorphism ¢ : R — H where H is the
ring defined in Lemma 2.13. Since Lemma 2.14 shows that I(Y) is generated
by [(1, —¢)] for all ¢ in T, the ideal ¢(/(Y)) in H is generated by {1} — {¢}
for all ¢ in T. Hence R = H/o(I(Y)) is isomorphic to the ring described in
Theorem 2.15.

In Satz 9 of [3] it is shown that the ring W, studied in that paper has the
presentation given in Theorem 2.15. Thus W, = W(C)/I(Y), where C is a
field of characteristic not 2, 77 = T'(¥) U {0} and Y a saturated set of signa-
tures of W(C).

3. Applications. In this section the results of the previous two are combined
to yield information about W(C) for C semilocal satisfying (*).

Definitions 3.1. (i) Asubset T C U(C) iscalled saturatedif T = T(V(T)), with
the notation of Definitions 1.7, and the convention introduced before Lemma
2.3, that T'(Y) is considered as a subset of U(C) instead of U(C)/(U(C))2.

(ii) For A4, T subsets of U(C), the subset of elements of C of the form
b=32"ag¢ya;in 4, t;in T, with b a unit or zero, and 3} ai; a unit for all
! < n, will be denoted by S(4, T"). The set of all semisignatures r of W(C)
(Definition 1.12) satisfying

7(Tu) = 7(u) forall uin U(C), and
7(@) =1 forallain 4
will be denoted by Z(4, T).
If 7 is a semisignature of W (C), we have written in Definition 3.1, and shall

continue to write, 7(#) for 7([{x)]); the set of units u of C with 7(u) =1
will be denoted by 7~1(1).

THEOREM 3.2. Let C denote a semilocal ring satisfying (*), A and T subsets of
U(C), and let T be saturated. Then,
(1) S(4, T') does not contain 0 if and only if Z(4, T) # @.
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(i) If Z(A, T) # 0, then
SA4,T)= N Q).

T€Z(A,T)
(i) If Z(A, T) = @,then U(C) U {0} = S(4,T).

Proof. (i) Let R = W(C) and Y = V(T'). Since T = I'(V(T)) we have
V(T(Y)) = V(I (V(T))) = V(T) = Y, so that Y is also saturated. If R =
R/I(Y), as already noted in the proof of Corollary 2.6, R is a reduced Witt
ring for G = U(C)/(U(C))% Furthermore, in case S(4, T") does not contain 0,
Theorem 2.11 shows that the image of 4 in Z[G] is anisotropic for R. Since,
by Corollary 2.12 the ring R is dimensional, Theorem 1.17 yields a semi-
signature 7 of R with 7([{a)] + I(Y)) = 1. By Remark 1.13 (i), 7 lifts to an
element 7 of Z(4,T).

Conversely, let 7 be an element of Z(4, T') and foray, ..., a,in A let E =
(a1, ..., a,). Now by Proposition 1.11, the semisignature 7 induces a semi-
signature 7 on R = R/I(Y) with 7([E]) = r([E]) = #, so that {a(U(C))?
a in A} is a subset of Z[G] anisotropic for R. Consequently by Theorem 2.11,
the set S(4, T") does not contain zero.

(ii) By Remark 1.13 (i) and Proposition 1.11 every semisignature 7 of R
for which 7([{e¢)]) = 1 for all ¢ in 4 is induced by an element 7 of Z(4, T).
Denoting this set of #'s by Z, Corollary 1.20 shows that D(4), the image of
D(A)in R, is Nirez 7~1(1). If for u in U(C), the element [ ()] is in D(4), then
by Theorem 2.11 there is a unit v in S(4, T') with [(®)] = [{®)]. Hence for all
cin Y we have o (uv~1!) = 1,i.e.,uv"'isin T, so that u isin S(4, T') also. Thus,
the inverse image of D(4) in U(C) is S(4, T). Hence Nieza.m 7 1(1) lies
in S(4, T). On the other hand, if 2% a; lies in S(4, T, it must be a unit by
(1). Then since for all 7 in Z(A4, T') we have 7(a¢;) = 7(a;) = 1 the proof of
[11, Lemma 2.3 (ii)] can easily be adapated to show that 7(3_% ait,) = 1, i.e.,

SU,1C N 7).
1€2(4,7)
Thus the proof of (ii) is complete.

(iii) Let u be in U(C). Since Z(4, T') is empty, by (i), S(4, T) contains 0,
i.e., there exist elements a1, ..., ¢, in 4 &', ..., ¢/ in T with > " ag/ = 0.
Exactly as in the proof of Lemma 2.10, the space (ait1/, . . ., a,t,’) is isotropic,
as is, therefore (—u, aiti/, ..., ayt,’ ). Since T is saturated we have I'(Y) =
I'(V(T)) = T. By Lemma 2.7 (iii) then, there are elements ¢, {;, ..., t,in T
with ut = > " a¢,and 3} a4, in U(C) for all I < . This completes the proof
of (iii) since T" = T'(Y) is a subgroup of U(C), and S(4, T) C U(C) U {0}
by definition.

LeMMA 3.3. Let C be a semilocal ring satisfying (*), R = W(C) and a,, ..., a,
in U(C). If E = (a,, ..., a,), then E is weakly isotropic if and only if O lies in
S({d], LR an}v P(X(R)))
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Proof. Clearly V(T'(X(R))) = X(R) so that I'(X (R)) is a saturated subset
of U(C) containing 1. If mE is isotropic for some natural number m, Lemma

2.7(iii) shows that 0 is in S({ay, ..., a,}, T(X(R))). Conversely if 0 lies in
this set, there exist t;, ..., t, in T(X (R)) such that 31 ai¢; = 0 with 27} a4,
a unit for [ < u. Let P = @ (1, t;); then E @ P = (aitr, .+ ., azty) L E

and thus, as in the proof of Lemma 2.10, is isotropic. Hence by Lemma 2.3 (iii),
the space E is weakly isotropic.

PROPOSITION 3.4 [13, Lemma 1.24, p. 16]. Let Cy > Cy be a homomorphism of
connected semilocal rings. Let T, be a semisignature of W(Ci), and denote 7,71(1)
C U(C1) by A, and W(Cs) by R. If Csy satisfies (*), 11 extends to a semisignature
T90f R, t.e., 71 = 12 W (0), if and only if all spaces {¢(a1), ..., ¢(ay))fora;in A
are anisotropic.

Proof. By [10, Proposition 3.15], I(X(R)) is the torsion subgroup of R.
Clearly 7, extends to R if and only if it extends to R = R/I(X(R)). By
Corollary 2.12, the latter is dimensional and thus Proposition 1.21 shows that
r1 extends if and only if all elements > ¢(a;) (U(C))?, a;in A, are anisotropic
for R. By Theorem 2.11 this is equivalent to 0 not being in S(¢(4), T (X (R))).
Lemma 3.3 then completes the proof.

LemMA 3.5. Let R be a Witt ring for G and Y a saturated set of signatures of R.
Then all the signatures of R = R/I(Y) are induced by the elements of Y.

Proof. Let ¢ : R — Z be a signature and o : R — R — Z the lifted signature
of R. Then ker ¢ D I(Y) D a(T(Y)). Thus ¢(¢t) = 1 for all ¢t in T(YV), i.e.,
ocisin V(I'(Y)) = V.

Definition 3.6. Let C be a semilocal ring and Y a set of signatures of R =
W(C). The set Y is said to satisfy HMP if the following holds: If for every ¢
in ¥ we have |¢(£)| < rank E for a C-space E, then there exists a fister form
P = HT (1, t;y with ¢, in T(Y) such that E ® ¢ P is isotropic. If ¥V =
X (W(C)), then C is said to satisfy HMP, and by Lemma 2.3(iii), C satisfies
HMP if and only if every C-space for which |¢(£)| < rank E for all ¢ in
X (W(C)) is weakly isotropic, the usual definition of HMP given in [4] and [15].

ProrositioN 3.7. Let C be a semilocal ring satisfying (*), R = W(C), and ¥V
a saturated set of signatures of R. Then Y satisfies HMP if and only if R =
R/I(Y) satisfies HMP in the sense of Definition 1.22.

Proof. Assume first that R satisfies HM P and that for a C-space E we have
|o(E)| < rank E for all ¢ in X (R), which by Lemma 3.5 we identify with V.
Then if £ denotes the image of [E] in R we must have dimgFE < rank E, since
by Definition 1.22 there is a signature oo in ¥ with |¢o(E)| = dimzE. According

to Definition 1.1, this means that there exist units by, ..., b, in C with £ <
rank E, such that [E] = [(by, ..., b;)] mod I(Y). But then by Lemma 2.3 (ii),
there exists a Pfister form P = H'l" {1, t;), t; in T(Y), such that E ® o P is
isotropic.
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Conversely, assume that ¥ satisfies HMP and let the element > % a,(U(C))?
of Z[U(C)/(U(C))?] be anisotropic for R. By Theorem 2.11 this means that
for all ¢y, ..., t, in T'(Y), all the elements D% at; of C are different from 0.
Let E = {ay,...,a,), then by Lemma 2.7 (iii), the spaces E ® o P are aniso-
tropic for all Pfister forms P = HT (1, s;) with s, in T'(Y). Since Y satisfies
HMP, there exists a signature ¢ in ¥ with |¢([E])| = n = dimzE, so that R
satisfies HMP in the sense of Definition 1.22.

CoROLLARY 3.8 [13, Theorem 2.12, p. 32; 3, Satz 25(iv)]. Let C be a semilocal
ring satisfying (*) and YV a saturated set of signatures of C. Then the following are
equivalent:

(1) Y satisfies HMP.

(ii) For all a, b in U(C), there exists a Pfister form P = 11T (1, t,), t, in
T(Y) with (1, a, b, —ab) Q ¢ P isotropic, so that if ¥ = X (W(C)), by Lemma
2.3 (ii), the space (1, a, b, —ab) is weakly isotropic.

(iii) Every semisignature v of W(C) with 7(1) = 1 and constant on cosets of
T = T(Y) s a signature. (Note that if ¥V = X (W(C)) the constancy condition
on 7 1s automatically fulfilled by Remark 1.10(i).)

Proof. Again let R = W(C) and R = R/I(Y). By Corollary 2.12, the Witt
ring R is dimensional and by Proposition 3.7, the set V satisfies HM P if and
only if R does. Applying Proposition 1.23 and Lemma 2.3(ii) then yields the
implication (i) = (ii), while Proposition 1.23, Lemma 2.7 (iii), and Theorem
2.11 yield the implication (ii) = (i). The equivalence of (i) and (iii) again
follows from Proposition 1.23 and the fact that, as noted in Proposition 1.11
and Remark 1.13(i), the semisignatures of R are induced by the semisignatures
of R constant on the cosets of 7" = T(V) in U(C)/(U(C))2.

Remark 3.9. We shall say that a saturated set of signatures ¥ of R = W(C)
satisfies SAP if every subset of ¥ closed and open in the induced Zariski
topology is of the form V(u) M ¥ for « in U(C). By Proposition 3.7, Lemma
3.5, Corollary 2.12, and Remark 1.24, a saturated subset Y satisfies SAP if
and only if it satisfies HMP, provided C satisfies (*). In case ¥V = X (R) this
yields Theorem 3.1 of [15] for semilocal rings satisfying (*) and not just for
semilocal rings with 2 in U(R). Of course, by using a small amount of quadratic
form theory, Knebusch [9], has proved [15, Theorem 3.1] for arbitrary con-
nected semilocal rings.

THEOREM 3.10. Let C be a connected semilocal ring satisfying (*), Y a saturated
set of signatures of R = W(C), T = I'(Y), R = R/I(Y), and E a C-space of
rank n. If for all semisignatures v of R constant on cosets of T in (U(C)/(U(C))?),
we have |T([E])| < n, there exist ty, ..., by in T such that E® (Q%(1, t,)) is
isotropic.

Proof. As in the proof of Proposition 3.7, we denote the image of [E] in R by
E. Let m = dimzE. Thus there are elements ay, . .., a, in U(C) such that

3.11) [E] = [{ay, ..., an)] modulo I(Y).
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By Definition 1.1 we also have
dimg{a, ..., an) = m = dimg[{ai, . .., an)].

Suppose first that m = rank E. Now for all semisignatures 7 of R constant

on cosets of 7" we have, by Proposition 1.11 and Remark 1.13 (i) that

7([{ay, . .., am)]) = 7([E]). Hence the hypothesis of the theorem shows that
lr([{ay, .. ., a)D)| < m = dimzg({{ay, ..., an)]).
Therefore, Proposition 1.25 and Corollary 2.12 show that dimz({ay, . . ., ap))

< m, a contradiction. Therefore m < rank E. But then Lemma 2.3(ii) applied
to (3.11) completes the proof.

COROLLARY 3.12. If, 1n Theorem 3.10 the space E = (b1, ..., b,), with b, in
U(C), then O lies in S({by, . .., b}, T).
Proof. By Theorem 3.10 there exist ¢, ..., t, in T with by, ..., b,) ®

{1, Hh) ® ... ® (1, t) isotropic. Multiplying out and applying Lemma
2.7 (iii) yields the result.

Incase ¥ = X(R), T = T'(X(R)) Theorem 3.10 furnishes another proof of
[8, Theorem 5.13] in the case of trivial involution.

CoOROLLARY 3.13. Let C be a semilocal ring satisfying (*). If for a C-space E
we have |7 (E)| < rank E for all semisignatures T of R = W(C), then E is weakly
isotropic.

Proof. By Remark 1.10(i) we may apply Theorem 3.10 for ¥V = X (R).
Hence there are ¢y, ..., #; in T'(X(R)) such that E ® (1, t4) ® ...
® (1, #) is isotropic. By Lemma 2.3(iii), the space E is then weakly isotropic.
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