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Constructing skew left braces whose
additive group has trivial centre

Adolfo Ballester-Bolinches , Ramón Esteban-Romero ,
Paz Jiménez-Seral , and Vicent Pérez-Calabuig

Abstract. A complete description of all possible multiplicative groups of finite skew left braces whose
additive group has trivial centre is given. As a consequence, some earlier results of Tsang can be
improved and an answer to an open question set by Tsang at Ischia Group Theory 2024 Conference is
provided.

1 Introduction

Skew brace structure plays a key role in the combinatorial theory of the Yang–
Baxter equation. Skew left braces, introduced in [8], can be regarded as extensions
of Jacobson radical rings and show connections with several areas of mathematics
such as triply factorized groups and Hopf–Galois structures (see [1, 3, 4])

Skew left braces classify solutions of the Yang–Baxter equation (see [8]). This
connection to the Yang–Baxter equation motivates the search for constructions of
skew braces and classification results.

Recall that a skew left brace is a set endowed with two group structures (B,+), not
necessarily abelian, and (B, ⋅)which are linked by the distributive-like law a(b + c) =
ab − a + ac for a, b, c ∈ B.

In the sequel, the word brace refers to a skew left brace.
Given a brace B, there is an action of the multiplicative group on the additive group

by means of the so-called lambda map:

λ∶ a ∈ (B, ⋅) �→ λa ∈ Aut(B,+), λa(b) = −a + ab, for all a, b ∈ B.

Braces can be described in terms of regular subgroups of the holomorph of the
additive group. Recall that the holomorph of a group G is the semidirect product
Hol(G) = [G]Aut(G). Let B be a brace and set K = (B,+). Then H = {(a, λa) ∣ a ∈
B} is a regular subgroup of the holomorph Hol(K) isomorphic to (B, ⋅) (see [8,
Theorem 4.2]). If we consider the subgroup S = KH ≤ Hol(K), then

S = KH = KE = HE ,
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where E = {(0, λb) ∣ b ∈ B} and CE(K) = K ∩ E = H ∩ E = 1. We call S(B) =
(S , K , H, E) the small trifactorized group associated with B.

In [9], Tsang showed it is possible to construct finite braces by just looking at
the automorphism group of the additive group instead of looking at the whole holo-
morph. This is a significant improvement both from an algebraic and computational
approach.

Theorem 1 (see [9, Corollary 2.2]) If the finite group G is the multiplicative group of
a brace with additive group K, then there exist two subgroups X and Y of Aut(K) that
are quotients of G satisfying

XY = XInn(K) = YInn(K).

She looked for a sort of converse of the above theorem in the case of finite braces
with an additive group of trivial centre, and proved the following.

Theorem 2 (see [9, Proposition 2.7]) Suppose that the centre of a finite group (K ,+) is
trivial and let P be a subgroup of Aut(K) containing Inn(K). If P = XY is a factorization
by two subgroups X and Y such that X ∩ Y = 1, XInn(K) = YInn(K) = P and X splits
over X ∩ Inn(K), then there exists a brace B whose additive group is isomorphic to
(K ,+) and whose multiplicative group is isomorphic to a semidirect product [X ∩
Inn(K)]Y for a suitable choice of the action α∶Y 
→ Aut(X ∩ Inn(K)).

The above two theorems are the key to prove the main results of [9, 10].
In [11], Tsang posed the following question.

Question 3 Is it possible to extend Theorem 2 by dropping the assumption that X splits
over X ∩ Inn(K)?

The aim of this article is to give a complete characterization of the multiplicative
groups of a brace with additive group of trivial centre. As a consequence, we present
an improved version of Theorem 2 (on which the main result of [9] heavily depends),
and we give an affirmative answer to Question 3.

Theorem A Let K be a finite group with trivial centre. For every brace B with additive
group K = (B,+) and multiplicative group C = (B, ⋅), there exist subgroups X and Y of
Aut(K) satisfying the following properties:
(a) XY = XInn(K) = YInn(K),
(b) there are two subgroups N and M of Inn(K) such that N ⊴ X and M ⊴ Y,
(c) there exists an isomorphism γ∶Y/M 
→ X/N such that

Inn(K) = {x y−1 ∣ x ∈ X , y ∈ Y , γ(yM) = xN},
(d) ∣K∣ = ∣X∣∣M∣ = ∣Y ∣∣N ∣.
In this case,
(e) C has two normal subgroups T and V with T ∩ V = 1, X ≅ C/T and Y ≅ C/V,

that is, C is a subdirect product of X and Y.
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Conversely, for every pair X, Y of subgroups of Aut(K) satisfying conditions (a)–(d),
there exists a brace B with K = (B,+) and C = (B, ⋅) satisfying (e).

Corollary 4 Let K be a finite group with trivial centre. Suppose that there exist
subgroups X, Y of Aut(K) such that X ∩ Y = 1 and XY = XInn(K) = YInn(K). Then
there exists a brace with additive group K and a multiplicative group that is isomorphic
to a subdirect product of X and Y.

Proof Assume that X ∩ Y = 1. Consider N = X ∩ Inn(K), M = Y ∩ Inn(K). Then
∣X∣∣M∣ = ∣K∣ as ∣X∣∣Y ∣ = ∣Inn(K)∣∣Y ∣/∣Y ∩ Inn(K)∣. Analogously, ∣Y ∣∣N ∣ = ∣K∣. More-
over, since

Y/M ≅ YInn(K)/Inn(K) = XInn(K)/Inn(K) ≅ X/N ,

we have an isomorphism γ∶Y/M 
→ X/N given by γ(bM) = aN , where b ∈ Y , a ∈ X
such that ab−1 ∈ Inn(K). Since X ∩ Y = 1, for each k ∈ K, conjugation by k can be
expressed as ab−1, for a unique a ∈ X and b ∈ Y . Then, the groups X and Y satisfy
Statements (a)–(d) of Theorem A, and therefore, there exists a brace whose additive
group is K and whose multiplicative group is isomorphic to a subdirect product of X
and Y. ∎

Corollary 4 also allows to give a considerably shorter proof of the main results of
[9, 10] about the almost simple groups K that can appear as additive groups of braces
with soluble multiplicative group. By Corollary 4, it is enough to find two subgroups
X and Y of Aut(K) such that X ∩ Y = 1 and XY = XInn(K) = YInn(K). Therefore,
Codes 2, 3, and 4 in the proof of [9, Theorem 1.3] can be avoided, as well as checking
in every case that the subgroup X splits over X ∩ Inn(K).

In Section 3, we present a worked example of a construction of a brace with
additive group K = PSL2(25) by means of subgroups X and Y of Aut(K) satisfying
all conditions of Theorem A but X ∩ Y ≠ 1.

2 Proof of Theorem A

Proof of Theorem A Suppose that B is a brace with additive group K and lambda
map λ. Let H = {(b, λb)∣ b ∈ B} be the regular subgroup of Hol(K) appearing in
the small trifactorized group S(B) = (S , K , H, E) associated with B. Recall that H
is isomorphic to the multiplicative group (C , ⋅) of B, E = {(0, λb)∣ b ∈ B} ≤ Hol(K),
and S = KH = KE = HE with K ∩ E = H ∩ E = 1.

Observe that S acts on K by means of the homomorphism π∶ (b, ω) ∈ S ↦ ω ∈
Aut(K). On the other hand, S also acts on K by conjugation. In fact, this action
naturally induces a homomorphism α∶ S → Aut(K). In particular, for every b ∈ B
and every k ∈ K, (0, λb)(k, 1)(0, λb)−1 = (λb(k), 1), that is, α(0, λb) = λb = π(0, λb).
Thus, α(E) = π(E) = π(H).

The restrictions of π and α to H induce two actions of H on K, with respective
kernels Ker π∣H = K ∩H ⊴ H and Ker α∣H = CH(K) ⊴ H. Moreover, it holds that

Ker π∣H ∩Ker α∣H = K ∩H ∩CH(K) = K ∩H ∩CS(K)
= H ∩CK(K) = H ∩ Z(K) = 1 (see Figure 1).
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Figure 1: Structure of the multiplicative group in Theorem A.

Let X ∶= α(H) and Y ∶= π(H) = α(E) = {λb ∣ b ∈ B} such that X ≅ H/CH(K) and
Y ≅ H/(K ∩H). Since α(K) = Inn(K), we have that

α(S) = α(HE) = α(KH) = α(KE)
= α(H)α(E) = α(K)α(H) = α(K)α(E)
= XY = (Inn(K))X = (Inn(K))Y .

Take R ∶= (H ∩ K)CH(K) ⊴ H. Then, N ∶= α(R) ⊴ α(H) = X and M ∶= π(R) ⊴
π(H) = Y . It follows that N = α(H ∩ K) ≤ α(K) = Inn(K). On the other hand, M =
π(CH(K)) and if (b, λb) ∈ CH(K), then for every k ∈ K,

(b, λb)(k, 1)(b, λb)−1 = (b + λb(k) − b, 1) = (k, 1),

that is, λb coincides with the inner automorphism of K induced by −b. Thus, M ≤
Inn(K). Moreover, we see that

Y/M ≅ (H/Ker π∣H)/(R/Ker π∣H) ≅ H/R
≅ (H/Ker α∣H)/(R/Ker α∣H) ≅ X/N ;

here the isomorphism γ∶Y/M 
→ X/N is given by γ(λb M) = αb λb N , where αb is
the inner automorphism of K induced by b. Given a ∈ γ(λb M), we have that aλ−1

b ∈
αb N ⊆ Inn(K). Furthermore, given x ∈ Inn(K), we have that x = αb for some b ∈ B
and so γ(λb M) = αb λb N = xλb N with (αb λb)λ−1

b = x.
Since Ker π∣H ∩Ker α∣H = (H ∩ K) ∩CH(K) = 1, we have that ∣R∣ = ∣H ∩ K∣∣CH(K)∣

and ∣M∣ = ∣R/(H ∩ K)∣ = ∣CH(K)∣, ∣N ∣ = ∣R/CH(K)∣ = ∣H ∩ K∣. As ∣X∣ = ∣K∣/∣CH(K)∣
and ∣Y ∣ = ∣K∣/∣H ∩ K∣, the claim about the order follows.

Item (e) follows by the fact that H is isomorphic to the multiplicative group (C , ⋅)
of B, so that T and V are respectively isomorphic to Ker α∣H and Ker π∣H .
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Now, suppose that Aut(K) possesses subgroups X and Y satisfying conditions (a)–
(d). Let

W = {(x , y) ∣ x ∈ X , y ∈ Y , γ(yM) = xN}

be a subdirect product of X and Y with amalgamated factor group Y/M ≅ X/N
(see [6, Chapter A, Definition 19.2]). By [6, Chapter A, Proposition 19.1], and the
hypothesis, we have that ∣W ∣ = ∣K∣. Since Z(K) is trivial, the map ζ ∶K 
→ Inn(K),
where ζ(k) is the inner automorphism of K induced by k, is an isomorphism.
By hypothesis, the map W 
→ Inn(K) given by (x , y) �→ x y−1 is surjective.
Since ∣W ∣ = ∣Inn(K)∣ = ∣K∣, it is a bijection. We can consider H = {(b, y) ∣ (x , y) ∈
W , ζ(b) = x y−1} ⊆ Hol(K). Given (b, y), (b1 , y1) ∈ H, we have that (b, y)(b1 , y1) =
(b + y(b1), yy1), ζ(b) = x y−1, and ζ(b1) = x1 y−1

1 with (x , y), (x1 , y1) ∈ B. Then

ζ(b + y(b1)) = ζ(b)ζ(y(b1)) = ζ(b)yζ(b1)y−1 = x y−1 yx1 y−1
1 y−1 = (xx1)(yy1)−1

with (xx1 , yy1) = (x , y)(x1 , y1) ∈W . Furthermore, if (b, y) ∈ H, with ζ(b) = x y−1,
we have that (b, y)−1 = (y−1(−b), y−1) and

ζ(y−1(−b)) = y−1ζ(−b)y = y−1ζ(b)−1 y = y−1 yx−1 y = x−1(y−1)−1

with (x−1 , y−1) = (x , y)−1 ∈W . We conclude that H is a subgroup of Hol(K). As
the projection onto its first component is surjective, it turns out that it H is a
regular subgroup of Hol(K) by [2, Proposition 2.5] and so it is isomorphic to the
multiplicative group of a brace with additive group K (see [8, Theorem 4.2]).

We finish the proof by showing that the map ϕ∶H →W given by (b, y) �→
(ζ(b)y, y), where ζ(b) = x y−1 and (x , y) ∈W , is an isomorphism. Indeed, if ζ(b) =
x y−1, ζ(b1) = x1 y−1

1 , where (x , y), (x1 , y1) ∈W , we have that

ϕ(b, y)ϕ(b1 , y1) = (ζ(b)y, y)(ζ(b1)y1 , y1) = (x , y)(x1 , y1) = (xx1 , yy1),
ϕ((b, y)(b1 , y1)) = ϕ(b + y(b1), yy1) = (ζ(b + y(b1))yy1 , yy1)

= (ζ(b)yζ(b1)y−1 yy1 , yy1) = (x y−1 yx1 y−1
1 y1 , yy1)

= (xx1 , yy1).

We conclude that ϕ is a group homomorphism. Assume that ϕ(b, y) = (ζ(b)y, y) =
(1, 1), with ζ(b) = x y−1 and (x , y) ∈W , then y = 1 and so ζ(b) = x = 1, which implies
that b = 0. Consequently, ϕ is injective. As W and H are finite and have the same order,
we obtain that ϕ is an isomorphism. Since C is isomorphic to H we have just proved
that (e) holds for C. ∎

3 A worked example

In general, we do not have that X ∩ Y = 1. Let us consider K = PSL2(25). Its auto-
morphism group A = Aut(K) is generated by Inn(K), the diagonal automorphism d
induced by the conjugation by the matrix

D = [ζ 0
0 1] ∈ GL2(25),
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where ζ is a primitive 24th-root of unity of GF(25), and the field automorphism f. The
group A possesses a subgroup X generated by the inner automorphisms c1, c2, and c3
induced by the matrices

C1 = [
ζ4 0
0 ζ20] , C2 = [

1 0
ζ 1] , C3 = [

1 0
1 1] ,

respectively, and d f . We have that c1 has order 3, ⟨c2 , c3⟩ is an elementary abelian
group of order 25, c1 normalises ⟨c2 , c3⟩, (d f )c1(d f )−1 = c−1

1 , d f has order 8, and d f
normalizes ⟨c2 , c3⟩. Then the group ⟨d f , c1 , c2 , c3⟩ has order 600.

Let u1 and u2 be the inner automorphisms induced by the conjugation by

U1 = [
ζ3 ζ 16

ζ 13 ζ 11] , U2 = [
ζ5 ζ5

ζ9 ζ22] .

Let Y = ⟨u1 , d f u2⟩. We have that u1 has order 13. Let

R = [ζ 0
0 ζ] ∈ Z(GL2(25)), T = [3 0

4 2]

and let t be the automorphism induced by conjugation by T. Then (d f u2)2 =
d f u2d f u2 = d f u2d5u2 is the automorphism induced by conjugation by

DU
(5)
2 D5U2 = R15T,(1)

where U
(5)
2 denotes the matrix whose entries are obtained from the entries of U2 by

applying the Frobenius field automorphism, that is, (d f u2)2 = t. As (R15T)2 = R3,
we conclude that d f u2 has order 4. We can also check that (d f u2)u1(d f u2)−1 = u8

1 .
It follows that Y has order 52.

By [5], X and Y are maximal subgroups of the almost simple group Inn(K)⟨d f ⟩.
Observe that (d f )4c2

3 = (d f d f )2c2
3 = (dd5)2c2

3 = d 12c2
3 is induced by D12C2

3 = R18T,
consequently, (d f )4c2

3 = t. This, together with Equation (1), shows that t ∈ X ∩ Y .
We note that Inn(K)X = Inn(K)Y = Inn(K)⟨d f ⟩. Moreover, ∣X ∩ Y ∣ divides
gcd(∣X∣, ∣Y ∣) = 4. If ∣X ∩ Y ∣ = 4, then X ∩ Y is contained in X ∩ Inn(K), but it is
not contained in Y ∩ Inn(K). This shows that ∣X ∩ Y ∣ ≤ 2. Hence ∣X ∩ Y ∣ = 2. As
XY ⊆ Inn(K)⟨d f ⟩,

15 600 = ∣Inn(K)⟨d f ⟩∣ ≥ ∣XY ∣ = ∣X∣∣Y ∣∣X ∩ Y ∣ = 15 600 ⋅ 2
∣X ∩ Y ∣ = 15 600,

and so XY = Inn(K)⟨d f ⟩.
Let N = ⟨c1 , c2 , c3 , (d f )2⟩ ⊴ X, M = ⟨u1⟩ ⊴ Y . Then ∣N ∣ = 150, ∣M∣ = 13, N ≤ X ∩

Inn(K), M ≤ Y ∩ Inn(K), Y/M ≅ X/N ≅ C4, and ∣K∣ = ∣X∣∣M∣ = ∣Y ∣∣N ∣. The isomor-
phism between Y/M and X/N is given by γ((d f u2)r M) = (d f )r N for 0 ≤ r < 4, and,
since d6 ∈ Inn(K), it is clear that
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(d f )(d f u2)−1 = c0u−1
0 ∈ Inn(K),

(d f )2(d f u2)−2 = d6 t−1 ∈ Inn(K),
(d f )3(d f u2)−3 = (d f )(d6 t−1u−1

2 )(d f )−1 ∈ Inn(K).

Let z ∈ XY ∩ Inn(K). Recall that X ∩ Y = ⟨t⟩. Then there exist x ∈ X, y ∈ Y with
z = x y−1 = (xt)(yt)−1. We observe that t = (d f )4c2

3 ∈ N , but t ∉ M by order con-
siderations. Given x ∈ X, y ∈ Y , there exist r, s ∈ {0, 1, 2, 3} such that xN = (d f )r N
and yM = (d f c3)s M. We also observe that x ∈ Inn(K) if, and only if, y ∈ Inn(K).
To prove that we can choose x ∈ X, y ∈ Y such that z = x y−1 and γ(yM) = xN , it is
enough to prove that for such a choice we have that z = x y−1 and r = s. Note that
if x ∈ N , then r = 0; if x ∈ Inn(K)/N , then r = 2; and if x ∉ Inn(K), then r ∈ {1, 3}.
Analogously, if y ∈ M, then s = 0; if y ∈ Inn(K)/M, then s = 2; and if y ∉ Inn(K), then
s ∈ {1, 3}. We also have that tM = (d f u2)2 M and that tN = N , as t ∈ Inn(K), t ∈ N ,
but t ∉ M. If x ∈ N and y ∈ M, we can choose r = s = 0 and γ(yM) = xN . Suppose
that x ∈ N and y ∉ M. Then y ∈ Inn(K) and so, xN = N and yM = (d f u2)2M.
Consequently, xtN = N , ytN = N , and γ(ytN) = xtN . Suppose that x ∉ N and y ∈
M. We have that x ∈ Inn(K) and so, xN = (d f )2N and yM = M. It follows that xtN =
(d f )2N and ytM = (d f u2)2 M, that is, γ(ytM) = xtN . Suppose that x, y ∈ Inn(K),
x ∉ N , and y ∉ M. Then xN = (d f )2N , yM = (d f u2)2 M, and γ(yM) = xN . Finally,
suppose that x and y ∉ M. Then xN = (d f )r N and yM = (d f u2)s M, with r, s ∈ {1, 3}.
If r = s, then γ(yM) = xN . If r ≠ s, then xtN = (d f )r N and ytM = (d f u2)s+2M,
with r ≡ s + 2(mod 4). Thus γ(ytM) = xtN .

It follows that X, Y satisfy all conditions of Theorem A. We can also check with
GAP [7] all this information about these subgroups.

Acknowledgements We would like to thank the referee for his thoughtful com-
ments toward improving our article.
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