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1. Introduction. The function ¢ (x) was defined by

’

G.N. Watson, [9, (i)] in 1931 by the integral relation *

% % 1
o (x) =x f J (t)T (x/t)t “dt
B, vV o u \4
1
v+
2. -2v-1_,1 1
_x 2 TS p-5v) 1 1 1 12
= 25 2 oF3(v+1,1—2p+Ev,1+Ep+'2—v,x /16)

1
T(v+1)I (145 p +-1—v)
2 2
+ another term with p and v interchanged;
3 3
-Rp +'é') <0< R(v +E).

He showed (without proof) that it is a symmetric Fourier kernel.
Later K. P. Bhatnagar, [1, (i), (ii)] in 1953 and 1954 investigated
in some details the properties of this kernel and extended it to n
parameters and defined

[o0]
% The integral fo J (t)Jv(f) *dt was originally evaluated by
n

C.V.H. Rao. See Messenger of Maths, 47, (1918), 134-7. Also
see Bessel Functions by Watson. (1922) 437.
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where R(pk +%)_>_ 0, k=1,2,...,n and the p's may be permuted

among themselves.

V.P. Mainra, [3,(ii)] in 1958 defined the function

N _ ~
wp,V (x) = fo wp,v(Xt) J)\(t)ﬁdt,

and further generalised this kernel as

v1, v [ [
~ m
® (x):f fJ(t) J (t )T (T)...J (T _)x
Bty © °© vy ! m by 1 Pnop 2
1
t t (t t )2
I (X m "'m’  dT,...dT__dt...dt , m<n
B o M n- m
- T T T ...T
n-1""n n-2 1 n-2
R(p ,v )>-1, r=1,2, n,
Ir
s =1, m

In 1961, Charles Fox [2] showed that the G-Function as defined by
C.S. Meijer, [4] is a symmetric Fourier kernel. For certain
values of the parameters the kernel degenerates into the kernels
of Bhatnagar and Mainra, but he did not investigate the properties
of this kernel. B. Singh [5, (i)] in 1964, Y.P. Singh [7, (i)] and
P. Singh [6] in 1966 showed that many of the results given in
Watson's Bessel Functions follow as particular cases of the
integrals involving the generalised kernels mentioned above.
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In the present paper, the author has proved certain
interesting results involving the functions £(t), g(t) and their
transforms F(x) and G(x) in these generalised transforms.

The following results are either known or can be proved

easily.
1 ~ =, J n - o
W 36 = kI8 6 = T, @V RE) > -
3
~ . 1.2
(2) w (x) = fo » (xt) J (t )t “dt
Byr oo Py o P Pn
o0}
-1.dt, R > -1
= 5 (et) & (St Rl
Bye r Pn+t’ L™
r = 1,2, n
VeV ®
m ~
(3) & x) = [ & (xt) & , (Ddt, m<n,
1,...|J.n |_L1,...p.n 2 Vm
> -
R.(pr+VS) 2,
r =1, n, s=1, m
1
~N H.‘L‘+2
(4) w (x) = 0(x ), r=1,2,...n for small x
Hy Fn
t-n 1 2
= x2n [cos (ann + a)(A + 0(x n )
1 1
+ sim(an-rl + @) O(XH)]
1-n+m 1 2
Vi,..‘vm m 1:1:1 " n-m
(5) & " = x [cos{(2n-m)x +oz)(A1 + 0(x
17" "Tn
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n-m n-m m 2(‘3‘ +_r_1) X
+ sin(2(n-m) x +a ) 0(x )+ = 4 2
1 n=1
(P -+ob{2)
n o
p/2+1
for large x and a',ari,A, Ai’Pn are constants, = 0(x 2)
for small x, r=1,2,...n.
(6) The Mellin transforms of ¢ (x) and
1 Fn
n n
v, .V 1 1 s 1 n s 1
-5 — + 2 L= 202 =
231&1 In(x) are Zn(s 2) lﬁ(Z 2+4) 'F(Z Jr2 +4)
1’ n n n
1 S 3 n S 3
—_ _ =4+ = a2 2
I 2 2 4) T 2 2 +4)
and
n n v v
1 s 1 1 1 s 3 ‘m
2(n--m)(s-z) ]."(2+2+4) I( + +4)F(2-2+4). F(Z -
n n v v
1 s 3 n s 3. Lt,s. 1 _m
1“(2—2+4). .r(2 2+4)1“( +2+4). 1“(Z +

and belong to L(-, o) if %——:—1>G’ s = o + it,

Results (2) and (3) can be proved by an application of
Parseval's theorem [8, p. 54].

Notations employed

¢}
£ (x) = fo ()& (xt) dt
Byree by By we oty
Vi, v 0 v1, u
f )= [ (& ™ (xt) dt
Bgreoeby © g n
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o0
If g(x) = f f(t)&y (xt)dt, g(x) is called the & (x)
o }.1- )y e . op. p, ) o e e
1 n 1 n
transform of f(x).

If g(x) = £(x), f(x) is said to be R

YRR

THEOREM 1. Let f(t) and G(t) be continuous and belong

to L(0,o) and F(x), G(x) be the ¢ (x) transforms of
— —_— T By el
f(t) and g(t) respectively. Then

o0 o0

fo F(x) G(x)dx = fo f(t)g(t)dt .

o o o
J, FGaGGIdx = [ Glx)dx [ £(t) 8“1’ . -un("t’dt
o o
= fo £(t)dt fo G(x)[,}'ui, 3 .Hn(xt)dt

o]

fo £(t)g(t)dt .

il

This is the Parseval theorem fer the transform ¢ (x)
VR
1

introduced by Bhatnagar [1, (i)].

THEOREM 2. Let £(t), G(t) and g(t) satisfy the
conditions of Theorem 1. Then

00 0
[ F(x)G(x)dx = [ 1 (g (t)dt
© LI 1
0
= = [0 fH (t)uH (1)dt
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00
f £(t) % (xt) dt
o 5 .
1 n
0 _ 00
= f\/tf(t)dt f at
(o] o H'l""”r-i’ 1‘+1'“Hn
R(ps)>—'1, s=1,2,...n,
. 1
=[£G
P AR n
Therefore
S 00
N
/; G(x)dx j; ﬂt)wp" (xt)dt
n
0] (e 0] 1
— - ~n
= fo G(x)dxf £ (y ")
r
00 0
-1 -1
= fof (v Ny “dy [ G(x)&
r Hi’
Now
0
fo G(x) & (x)dx
By P Peggr by

o0 o]

[, etar [ &

1l

pi,...

J
(xy) "

r

Bgreeobp g Prpg
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00 VR , | s e oL
-1 1 r-1"Yr+1
=y [, et & % (t/y)dt
Bpree By
1 0 1 2 t
=yt Lema ey =yt S 5 (e a
jg b j;g('y H( Y
Ir
-1 -1
=y g (y )dy.
I'Lr
Therefore
[0} 0

i}

-1 - -2
J, Flx) Glx)ax = [ £, g &b Yy fay

r r

0

"

T T

All the conditions of De la Vallée Poussin's theorem (see

Carslaw, H.S. Introduction to the Theory of Fourier's Series

f (y) (yv)dy , r =1,2,...n.
/s . (e, (ndy

and Integrals. Art., 89, p.209) are satisfied and a change in the

order of integrations can be effected.

COROLLARY 1. Let

F(x) = f:f‘%pi,...un(’“’dt’ Glx) = f:og‘t)%i,,..pn‘xt’dt-
Then

o 0

J, FxGxdx = [ f“y'““r(wg 1r---|~Lr(Y)dy’ r o= 1,2,...n

R(pr)>-1, r = 1,2,.

under the conditions of the theorem.

COROLLARY 2. Let
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F(x) = fo £(t) & - (xt)dt
1 m
P
_ ~
G(x) = fo g(t) & e .Hn(xt)dt, m<n,
then
o0 o0
Jo Fx)G(x)dx = [ f”i'*’“z "‘“r(Y)g“f VTR -un(Y)dY’
r<m<«< n, R(ps)>—'1, s =1,2,...n,.

under the conditions of the theorem.

Proof.

0 o0 0

fo F(x)G(x)dx = fo G(x)dx fo in: " (V)&

-1 .
T UL -um(X/Y)Y dy

o -1 * T L
= [ f (v)y dy [ e(©® (yt) ydt
o R o R
(o}
= [ f (v) g (y)dy .
O By b R ] SRR N
Examples

1. Let f(t) = g(t), so that F(x) = G(x).

1 3 11

® g 2 22

[ox F(Hax)® &, 1 (p7x") dx
o Zb—g,O

* The second integral on the right can be deduced from equation

(2).
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1 1 11 1 11 *
4 4 2 4 4 2 4 4
=Jp K ,(@27a p)J (272 p),
2b-— 2b-—
2 2
or
w L 3
f 2(1 +a xz) 2 © 1 (px)dx
2b--,0
1 -
-2 2 2
-2 Btk R (B
2b - 2b-=v @
2 2
1 3 1 . 7
2 - 2 2
f(x) = x /(14a°x%)%, F(x) = 2a %x° K ([%%) 5 (22
b1 3T ERE
"2 "2
and
o 1 = ;—“\‘ 4 0 2
J 2x 12X a xdx _a
x4 K (/)3 (=) ax = —/ f = =,
3 V {
° LZb-% N N T M
R(b) > - =
1
2. Let f(x) = F(x) = x2 Kv(x) which is R_v v’ -1 < R(v) < 1.
% v+—'1-

fv(y) = f K (x \'XYJ (xy)dx = vy 2/('l'l'yz)-

% See 1], References. This can be proved by an application of
Parseval's theorem on Mellin Transform.
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Therefore

00 00 2v+1

2 y \Al
= dv =
fo {fv(y)} dy fo 2.2 v 2 sin v
(1+y )
Also
00 o0 1
2 2 2 VT
fo {(F(x)} "dx = fo {x Kv(x)} dx = > oin vm
Hence
0 )
' 2 2
Jo ARGy Tax = [ {i()} " dy .
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