
Canad. Math. Bull. Vol. 33 (1), 1990 

SOLUTIONS WITH SINGULAR INITIAL DATA 
FOR A MODEL OF ELECTROPHORETIC SEPARATION 

BY 

JOEL D. AVRIN 

ABSTRACT. Unique global strong solutions of a Cauchy problem aris­
ing in electrophoretic separation are constructed with arbitrary initial data 
in L1, thus generalizing an earlier global existence result. For small dif­
fusion coefficients, the solutions can be viewed as approximate solutions 
for the corresponding zero-diffusion Riemann problem. 

1. Introduction. Electrophoresis describes various processes by which proteins 
and other biological materials are separated in solution by an imposed electric field 
([5], [6], [12]). The modeling equations for electrophoretic separation developed in 
[12] are of advection-diffusion type and relate the electric field E = E(x,t) to the 
chemical species concentrations ut — u\(x, t), i' — 1,. . . , m, as follows: 

(l.lfl) (Ui)t = di(ui)xx + [z/Q/Ew/k, 
m 

(\Ab) Ex = (-e/e) ^ zkuk 

k=\ 

Here t is nonnegative and x lies in a suitable domain of R which depends on the 
particular separation technique used. Meanwhile e, e and each d/, Q/, and z; are 
constants: e is the molar charge and e is the permittivity of the solvent, while dt and 
Qi are the diffusivity and mobility of the /th species. Each z; is +1 or —1 depending 
on whether the /th species is a positive or negative ion. For further background on the 
physical significance of equations (1.1), please see [6] or [12]. 

Here, as in [4] and [6], we focus on a particular separation technique known as 
isotachophoresis, or ITP, in which the reaction column is long and connected at both 
ends to large electrolyte reservoirs which negate the influence of reactions occurring 
at the electrodes. This makes the concentrations constant at the column ends and 
effectively renders the system infinitely long ([6], [12]). Thus x varies over the entire 
real line in (1.1) and the concentrations satisfy the fixed Dirichlet boundary conditions 

(1.1c) Ui(-oo) — or/, H/(+oo) = fa. 
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As in [4] and [6] we assume the following conditions which also are appropriate for 
ITP: 

(1.2) (Ml-)x(±oo,f) = 0, 

(i.3) J 2 z ^ = J2 z^ 

Condition (1.3), in particular, is a natural condition to impose in light of the separation 
mechanism and it plays an important role in [4] and the present work. Condition (1.2) 
is appropriate due to the asymptotically constant behavior of the concentrations; its 
connection with various types of initial data will be discussed in the next section. 

The remaining boundary conditions apply to the electric field E. It is often the 
case that the electric current / is constant through the medium; as in [4] and [6] 
we assume that here. We will see that as in [4] it is appropriate to assume that 
£/(jt, t) = (—e/e) XX=i zkuk is in Ll(R). Integrating (I.lb) we then have that 

/ 
E(x,t)= / U(y,t)dy+C{t). 

In fact it is shown in [4] that C does not depend on time: the development in section 
2 of [4] shows that the constant current condition allows us to set 

/

x m 

Y^ZkUk<y,t)dy+E-
-°° *=i 

where £_ is a constant that can be determined explicitly by (1.1c), the value of/, and 
the choice of initial conditions 

(1.5) Ui(x,0) = u?. 

Similarly it can be shown that £(+oo, t) is in fact equal to a specifiable constant E+ 

(independent of time). We refer the reader to [4, section 2] for more details of the 
derivation of (1.4). Here we only need to know that these details allow us to use (1.4) 
to define E. Thus we can eliminate (1.1/?), plug (1.4) into (1.1a), and thus rewrite 
(1.1) as a system of m integro-differential equations in the unknown w,-. 

In [4] equations (1.1) were handled by first defining functions w/(x) as follows: 

(1.6) WiQc): 

where £/ is such that at ^ t[ ^ j3i and £/ makes w; a C°° function of x. Note that 
(w{)x G C£° = C£°(R) and that by (1.3) E L i z^k G C£° as well. Setting ut = vf- + w/ 
and plugging into (1.1) we obtain the following equations in v,: 

(1.7) (v/), = di(vi)xx + Ci[E(y + w)(vy + w{)]x + dj(Wi)xx 
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where c, = z/Q, and E(v + w) is defined by (1.4) with uk replaced by vk + w*'. Global 
strong solutions of (1.7) were found in [4] with initial data vf = v/(0) G W2'](R). In the 
next sections we will extend this result to allow for singular initial data, establishing 
global strong solutions for arbitrary vf G Ll(R). With the w/ thus defined in terms of 
vt and wt, we note that it is indeed appropriate to assume that Y%=\ zkuk is in Ll(R), 
so that E in (1.7) can be defined by (1.4) as discussed above. 

The assumption vf G Ll(R) includes as a special case vf = f(x) + g(x) where 
fix) G ^ E Wn>l(R) with n è 2 and g(x) G Lj(R), where Ll

0(R) is the set of all 
functions in L1 with compact support. Included in the set of all such f(x) + g(x) are 
locally piecewise constant functions, a class of initial data that arises in practice when 
(1.1) is considered with each dt = 0 ([8]). Thus one application of our theory is the 
production (for small d{) of approximate solutions to the hyperbolic problem for a 
wide class of initial data. 

Note that for vf = fix) + g(x) as specified above, the boundary conditions (1.1c) 
and (1.2) are automatically satisfied by M/(JC,0) = vf + vv,. We will show in the next 
section that for each t > 0 Ui(x,t) G Wn'1 for all n ^ 2, thus «z will satisfy the 
conditions (1.1c), (1.2) for all t ^ 0. 

One can regard (1.7) as a pure Cauchy problem, however, independent of (1.1) and 
the associated boundary conditions. There have been a number of results in recent 
years on nonlinear parabolic problems with initial data in LP, see e.g. [3], [9], [10], 
[13], [14] (in addition to these applications, the Benjamin-Bona-Mahony equation was 
discussed with LP initial data in [2]). We remark that the boundary conditions (1.1c) 
and (1.2) are satisfied for arbitrary initial data vf in L1 when t is positive. 

2. Local Existence. If, for a vector valued function / = ( / i , . . . , fm) with f G L1 

we define 

/

x m 

J2 zkfk(y)dy, 

then we note that 

(2.2) E(y + w) = F(y) + E(w) 

where E(w) is obtained by replacing uk by wk in the right-hand side of (1.4). Let Wt(t) 
denote the semigroup generated by di(-)xx, then equations (1.7) have the corresponding 
integral equations 

(2.3) vl(t) = Wl(t)v? + Gl(w1t) 

+ c{ [ Wti-sKEivW + w^iW + Fivis^Wilcds 
Jo 

where F, E are as in (2.1), (2.2) and 

(2.4) Gt(w,t)= [ Wl(t-s)[clE{w)wl^dl(wi)x]xds. 
Jo 
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Our goal in this section is to solve (2.3) by a contraction-mapping method for 0 S 
t S 7 with 7 > 0 suitably chosen. 

By the Sobolev embedding theorems ([1], [7]) for each integer n ^ 0 there is a 
constant Cn such that for all / E Wn+l>1 

(2.5) U/IUoo S CJ/IU,, 

where || • ||n?00 denotes the norm on Cg(R). Direct differentiation of the explicit kernel 
for Wi(t) shows that there is a constant Kt such that for all / E W1'1 and all f E (0, 1] 

(2.6) ||W/(0/IU+i,i ^ H | | / | | M . 

As in [13] or [14], by considering (2.6) first on dense subsets of smooth functions, 
we have for all / E Wn'1 that 

(2.7) l i m ^ | | ^ ( 0 / I U i , i = 0 . 

We note, in fact, that many of the techniques that follow are based on arguments that 
appeared in [13] and [14], also later in [3]. 

Since (Wi)x and YHc=\ ZkWk a r e b ° m m ^o° li follows that \ciE(w)wi\x is in C^°, 
hence G;(w,f) is in Whl for all j è 0. In fact, there exists a constant M, depending 
only on e, e, Q, 4 , and the supremum norms of w/, (w/)A, (vv,)xx, such that |G/(w, 0| = 
M7 for all t E [0,7]. For fixed vf E W"'1 it follows by this last remark and (2.6) and 
(2.7) that there exist positive numbers a, f3, 7 such that f3 | 0 as 7 [ 0 and 

(2.8a) ||W/(0vf+ G,(w,0|U,i S a , 

(2.86) ^ || W/COv? + Gf-(>v, 0lU+i,i ^ ft 

for all t E (0, 7]; here a = ||v?||n,i + M7. 
For a, /3, 7 as above let M be the space of all curves v(t) — (vi(0?. • •, vm(/)) such 

that for each / 

(1) vt : [0,7] —• Wn'x is continuous and ||v,(0|Ui ^ 2a, 0 S ^ 7; 
(2) v, : (0,7] —• W24"1'1 is continuous and tf ||v,(0|i„+i,i S 2/3, 0 < f^ 7. 

M is a nonempty complete metric space with metric p where, for v, u E M 

p(w,v) = sup sup {||v/(r) — M,-(0|U,I9^*||v,-(0 — w/(0|U+i,i j -
lûiûm 0<tûT l J 

Let (Sv)(t) = ((5/Vi)(r),..., (5'mvm)(0) where for each / (5,-v/)(r) is the right-hand side 
of (2.3). In the proof of the following result we obtain a fixed point of S, hence a 
local solution of (2.3), by showing that S is a contraction on M. 
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THEOREM 2.1. For each integer n ^ 0 and each vf € Wn'1 there exists a T > 0 
such that (2.3) has a unique solution vt G C([0,T]; r ^ n C ^ O , ! ] ; W™+1). 

PROOF. Let 7 = | - e/e\, then from (1.4) and (2.1) note that for v G M 

(2.9) ||£(v(0 + w) | |oo^7 
1 w 

E z*H 
U=I 

i ~ 

J 
+ £_ ^ l(2am) + L{ 

u=i 

where Li depends only on 7, £ - , and the H>/; meanwhile 

m 

(2.10) ll^(v(0)||oo ^ 7 5 Z HV*WHi = 7 ( 2 a m ) ' 
*=1 

and, if F*(v(0) = [F(v(0)L, and D,-/ denotes (djf)/(dxj\ O^j^n 

m 

(2.11) | |D7^(v(0)| | i ^ 7 ] T ||v*(0lLi ^ 7(2a/n), 
it==i 

similarly 

(2.12) ||D;E,(v(0 + w)||i ^7(2am)+L 2 

where L-2 depends only on 7, F_, and the w;. 
If 1 ^ 7*^ « we see from (2.5) that 

m 

(2.13) ||0yF(v(O)||cx, = ||O7-i^(v(0)||oo ^ 7 ] T l|0;-iv*(O||c 
£ = 1 

^ 7 E CnhdOWnA £ 7C„(2am) 
*=i 

and similarly 

(2.14) HP/ £(v(0 + w) ||a, ^ lCn(2am) + U 

where L3 depends only on 7, £ - , and the w,. Meanwhile it is clear that for each i and 
for 0 ^ y ^ n 

(2.15) 

and that 

(2.16) 

||D; v,(0||oo ^ C«+i||v,(0||«+i,i ^ C„+1(2/3rî) 

WDjivdAOh £ ||v,(0||„+i,i ^2 /3 r* . 
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Using (2.9)-(2.16) we thus have for all v G M and all / = 1,. . . ,/w that 

(2.17) ||[£(v(0 + w)v,(0 + F(v(0)w,L||,7l 

^ ||Ejr(v(0 + w)v/(r)|U,i + I^CvW + wJ^O^OlU,! 

+ ||F^(v(0)w/||w,i + I I /^VWHH^IUI 

"£" 

L7. 
||Oy ^,- (V(0 + W) || ! | |^_y V̂ OHc 

+ ||£(v(0 + w)||0O||(v,),.(f)||i 
n k r J 

" ||D;£(v(r) + w)||oo||Dt-;(v/)J(0||i 
k=\ y=l 

it 

L7J 
II^F^vWjUiHD^i 

£=0 7=0 

+ | | ^ ( v ( 0 ) | | o o | | ( w ^ | | l 

« k 
+ Z1 X! ll^'^CvWjIlooll^-M^ll! 

* = 1 7 = 1 

^ Nl(l(2am) + L2)Cn+l(2(3rh 

+ (l(2am) + L2)(2(3rh + N2(lCn(2arn) + L3)(2(3rh 

+ Ntf(2am) + NAl(2am) + N5lCn(2am) 

where Ni and N2 depend only on n while N3, N4 and N5 depend only on n and the 
w/. Hence there exist constants A, B and C depending only on 7, £ - , «, m, and the 
wi such that 

(2.18) \\[E(v(t) + w)vi(t) + F(v(t))wilx\\nA ^ (aA+£)7?H + aC. 

Hence from (2.18) and (2.8) we see that for all v G M and f G [0, T] 

(2.19) ||(Sv)(0|ki =^a+|c/| / [(aA+B)f3s~i+aC]ds ^ a+\cl\[(aA-^B)2f3ThaCT] 
Jo 

where we have used the fact that each Dj commutes with Wj(t) for all 7 == 0 and hence 
Wj(t) is a contraction on W1'1. 

Now if c, d G (0,1) a simple scaling argument (see [13]) shows that 

/•1 

(2.20) / a - 5 r c 5 - d ^ = r1_ (l - s r v - ^ . 
Jo Jo 

Combining (2.20) with (2.8), (2.18), (2.19) and (2.6) we see that 

(2.21) ||(Sv)(0|Ui,i ^ / 3 + k / | [ Kti-srhW + BWs-i+aCWs 
Jo 
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Recalling that we can arrange that /? j 0 as T | 0, it is now clear from (2.19) and 
(2.21) that we can select T and /3 small enough so that S maps M into M. A similar 
argument shows that S is a contraction on M, thus completing the proof of Theorem 
2.1. We note in particular that the theorem includes the case n = 0, thus allowing the 
initial data vf to be arbitrary functions in L1. 

3. Global Existence and Regularity. If we set n — 0 in Theorem 2.1, so that 
v/ G L1, then note that, for 0 < t ^ T with T as in the theorem, the local solution 
ut(t) is in Wx>1. Fixing to G (0, T) and setting vf = v;(*o), Theorem 2.1 can now be 
applied with n = 1 to obtain a solution v/(0 of (2.3) on some interval [0, TQ] such that 
vi G C((0, To]; W2'1). If we now replace T by min{r, To} we see by the uniqueness 
assertion of Theorem 2.1 that vz-(0 = v~i(t — to) for to < t ^ T. As fo is an arbitrary 
element of (0,7) we can conclude that v/ G C ((0,7]; W2'1). But in [4] global strong 
solutions of (1.7) were found for arbitrary initial data v,° in W2'1. Using arguments 
similar to those above and applying Theorem 2.1 of [4] we thus have established the 
following global existence result. 

THEOREM 3.1. For arbitrary vf G L1 equations (1.7) have unique global strong 
solutions vt G C([0,+oo); L1) n C ! ((0,+oo); W2'1). 

It is now clear that we can continue the bootstrap process described above for 
n ^ 1, and regularity in t follows from regularity in x by standard arguments (see e.g. 
[11, p. 42]). We thus can improve Theorem 3.1 as follows: 

THEOREM 3.2. For arbitrary vf G L1 equations (1.7) have unique global strong 
solutions, Vi G C([0,+oo); L1) nCy((0,+oo); Wn'x) for all j ^ 1 and all n^ 1. 

4. Remarks. We note that in [10], solutions with singular initial data were pro­
duced for conservation laws arising in gas dynamics. For small enough initial data 
in L2 Pi L°°, the solutions could be extended globally. In the present work, we also 
construct solutions that can be viewed as approximate solutions to a Riemann problem 
for small values of the d(. We are able to avoid both boundedness and size restrictions 
on vf because of the special structure of our equations. 

In [8], solutions of (1.1) were found with each dj = 0 with the additional assump­
tions of electroneutrality (e = 0) and monotonicity of the initial data. One could relax 
these assumptions by constructing solutions in the limit as d( I 0 of the solutions 
guaranteed by Theorem 3.1. We hope to investigate this limit in a future paper. 
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