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Abstract

Letay, ..., aq be a basis of the Lie algebra g of a connected Lie group G and let M be a Lie subgroup
of .G. If dx is a non-zero positive quasi-invariant regular Borel measure on the homogeneous space
X =G/Mand S : X x G — C is a continuous cocycle, then under a rather weak condition on dx
and S there exists in a natural way a (weakly*) continuous representation U of G in L,(X;dx) for all
p € [1, o0].

Let A; be the infinitesimal generator with respect to U and the direction g, forall i € {1,...,d}. We
consider n-th order strongly elliptic operators H = }_ ¢, A* with complex coefficients ¢,. We show that
the semigroup S generated by the closure of H has a reduced heat kernel ¥ and we derive upper bounds
for  and all its derivatives.

2000 Mathematics subject classification: primary 43A8S5, 22D30, 22E25, 22E45, 35K05.
Keywords and phrases: reduced heat kernel, homogeneous space, quasi-invariant measure, Gaussian
estimate, strongly elliptic operator, cocycle representation.

1. Introduction

We analyze Gaussian bounds for the heat kernel of the semigroup generated by a
strongly elliptic operator on a homogeneous space. Gaussian estimates for kernels
associated to various kinds of semigroup generators have been deduced, amongst
others, for second-order elliptic operators on domains in R", by Davies [3]; for the
Laplace-Beltrami operator on complete Riemannian manifolds by Li and Yau in [11];
for the Laplace-Beltrami operator on a complete Riemannian manifold with non-
negative Ricci curvature by Davies [3] and Grigor’yan [8]; on a non-compact manifold
with Ricci curvature bounded from below by Grigor’yan [8]; for subelliptic operators
which are sums of squares of Hormander vector fields on compact manifolds endowed
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with a Radon measure by Jerison and Sanchez-Callé [9]; for weighted subcoercive
operators on a Lie group [5] and for strongly elliptic operators on a homogeneous
space G/M, with G unimodular and M compact, endowed with the G-invariant
measure on G/M [6]; for elliptic operators on Lie groups using Harnack inequalities
by Varopoulos in [18]; for sublaplacians on nilmanifolds and homogeneous spaces
X = G/M with G and M unimodular by Maheux [14]; for elliptic operators on
amenable Lie groups and certain homogeneous spaces by Lohoué and Mustapha in
[12]; for elliptic operators on Euclidean spaces by Aronson [2]. Our aim is to deduce
Gaussian estimates for the heat kernel associated to a strongly elliptic operator on a
general homogeneous space G/M endowed with a non-zero positive quasi-invariant
regular Borel measure. The strongly elliptic operators are affiliated to the natural
representation corresponding to this quasi-invariant measure, a continuous cocycle
S : X x G — C and translations. Note that the Lie groups G and M need not be
unimodular and M is allowed to be disconnected but still o-compact. Further note
that the class of operators and the class of representations considered in this paper are
quite large. The Radon measures considered in [9] are replaced by quasi-invariant
measures in this paper.

If k is the heat kernel of the semigroup generated by the Laplace-Beltrami operator
on a complete non-compact Riemannian manifold X with Ricci curvature bounded
from below then Grigor’yan proved that there exist a, b, w > O such that

(1) k(x;y) < at M2 (Voly (B(x; 1)) Voly (B(y; 1)))~"/? e~bdn’™”!

uniformly forall x, y € X and t > 0, where d denotes the Riemannian metric on X and
N is the dimension of X (see, for example, [8, page 445] and [11]). On the other hand,
in [6] we derived Gaussian bounds for the heat kernel « of the semigroup generated
by an n-th order strongly elliptic operator affiliated to the left regular representation
of a unimodular Lie group G in a homogeneous space X = G/M, with M compact,
endowed with the G-invariant measure on X. More precisely, there exist a, b, w > 0
such that

() lic (3 y)| < @ 1=V gt gmbdteThleT?

uniformly for all x, y € X and ¢t > 0, where d is the path distance on X associated
to the vector fields induced by the left regular representation of G on X and N is the
dimension of X. In this paper we drop the assumptions on G and M and (therefore
also) the G-invariance of the measure on X (see also [12]). For the sublaplacian on
homogeneous spaces X = G/M with G and M unimodular, similar Gaussian bounds
were derived in [14]. Let dx be a quasi-invariant measure on X. Under a rather weak
condition on the measure dx there is a continuous representation of G in L,(X;dx),
which can be extended to all the L,-spaces. In the main theorem of this paper we
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prove that the semigroup generated by an n-th order strongly elliptic operator has a
heat kernel x and there exist a, b, @ > 0 such that

(3) Ik x; )] < at™N"et (Volx (B(x; 1)) Voly (B(y; 1)))~1/2 g-bdnrehe?

uniformly for all x,y € X and ¢t > 0, where d denotes the path distance on X
associated to the vector fields induced by the left regular representation of G on X, N
is the dimension of X, B(x; 1) is the d-ball with center x and radius 1 and the volumes
are with respect to the quasi-invariant measure dx. Compare these upper bounds with
the kernel estimates deduced in [12, 14]. In general, the volume factor

(Voly (B(x; 1)) Volx (B(y; 1))) ™"

in (3) is necessary and bounds of the form (2) are not valid in general. There already
exist examples of quasi-invariant measures dx on R for which (2) does not hold
whereas (3) is still valid. Alternatively, the bounds (3) are in general sharper than the
bounds in the situation of (2). Note that one has an exponent —1/2 in the volume
factor, even for n-th order operators, as in the upper bounds (1) of Grigor’yan and Li
and Yau.

The infinitesimal generators associated to the continuous representation are sums
of a vector field and a potential. The potential is caused by the quasi-invariance of the
measure dx on X and the cocycle S.

The proof of (3) for the Laplacian is via a Nash inequality and for higher order
operators with the aid of a reduction formula. The Nash inequality, which we deduce
in Section 4 via a Young inequality, involves a quotient between r" and the volume of
balls of radius r, where N denotes the dimension of X again. In Section 3 we deduce
a scaling property which determines this quotient. The reduction procedure to obtain
the Gaussian bounds (3) for all (higher) order operators is established in Section 5.
Moreover, we deduce Gaussian bounds and reduction formulas for all derivatives of
the heat kernel «.

2. Preliminary notation and main results

In this section we introdiice some preliminary notation and conditions which ensure
the existence of nice representations and reduced heat kernels. We also state the main
results of the paper. The results of this section are from [16, Chapter 2].

Throughout this paper let G be a d-dimensional connected (possibly non-unimod-
ular) Lie group with (left) Haar measure dg and modular function A and M a
dy-dimensional Lie subgroup with (left) Haar measure dm and modular function Ay,.
Note that G and M are both closed (possibly non-unimodular) o -compact topological
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groups, and that M is not necessarily connected. Consider the homogeneous space
X = G/M. For all g € G we denote by g the left coset gM. Let dx = dg be a
o -finite quasi-invariant non-zero regular Borel measure on X, that is, dx has the same
null sets as all the left translates of dx. If X is compact then dx is a finite measure.

By the Radon-Nikodym theorem, there exists a function R : X x G — (0, 00) such
that for each g € G the function x — R(x, g) is Borel measurable, for all ¢ € C.(X)
the function x > @(x)R(x, g) belongs to L;(X; dx), and,

/w(g"x)dx =f<p(x)R(x,g)dx.
X . X

In the sequel we only consider quasi-invariant measures dx for which there exists a
continuous function R : X x G — (0, o0) such that

(4) _/(p(g"x)dx =/¢>(X)R(x,g)dx
X

X

forall g € Gand ¢ € C.(X). For each g € G, the function x — R(x, g) is bounded
from above and bounded away from O on compacta in X, and hence the right-hand
side of (4) makes sense for all ¢ € C.(X). Then it follows that

&) R(x, gh) = R(hx,g) R(x,h) and R(x,g)”' = R(gx,g™")

forallx € X and g, h € G, and therefore R(x, ¢) = 1 forall x € X. The relations (5)
mean that R is a cocycle.

Let ay, ..., a4 be a fixed basis of the Lie algebra g of G such thatay, ..., a,, isa
basis for the Lie algebra m of M. The modulus | - | on the Lie group G is defined by

L/ d 1/2
lgl = inf / i) dt,
g A ;

where the infimum is taken over the set of all absolutely continuous paths

d
y 10,11 > G suchthat y(©) =e, y() =g, and y(1) = % 4|
140

i=1

fora.e.i € [0, 1], where X,, ey X,, denote the vector fields induced by the infinitesi-
mal generators in the directions ay, . . ., a; with respect to the left regular representation
of Gin L(G;dg). The modulus on M, denoted by | - |y, is defined analogously. Let
B, ={ge€ G:|gl <e)and B.py = {m € M : |m|y < €} be the corresponding balls
foralle > 0.

In order to construct continuous representations leaving all L,-spaces invariant,
and to define reduced heat kernels, in the sequel we demand R to satisfy the following
condition.
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There exists a Cg > 1 such that
(6) Cz' < R(x,8) < Cg

foralix € X and g € B,.
Throughout this paper, let Cg be the constant as in (6). Clearly, (6) is valid if X is
compact. It is easy to show that there exist C, n > 0 such that

7 Cle sl < R(x, g) < Ceml

forallx € X and g € G.
The following lemma will be used frequently in this paper.

LEMMA 2.1. If g € G and ¢ : X — Cis a measurable function then the following
conditions are equivalent:
D ¢ € Li(X;dx).
() x +— @(g~'x) belongs to L (X ;dx).
(HI) x > @(x) R(x, g) belongs to L,(X;dx).

Moreover, if one of the three conditions is satisfied then (4) is valid.

PROOF. The lemma follows from (4), (7) and approximation. O

The following two lemmas play a key role in this paper. For proofs we refer to [10,
Lemma 3.3, Lemma 3.10, Theorem 3.11] and [10, remark on page 349].

LEMMA 2.2. Given the measure dx and the corresponding continuous function R,
one can construct a unique continuous function p : G — (0, 00) with the following
Sfour properties:

M Ifge Gandm € M, then
plgm) _ Ay(m)
p(g)  Ag(m)’
an Ife : G — [0, cc) is measurable, then the function ® : X — [0, oo] given

by ®(g) = [,, ¢(gm) dm(g € G) is well defined, and ¢ € L((G; p dg) if and only if
® € L(X;dx). Moreover, ifp € L\(G; pdg), then

8)

&) fw(g)p(g)dg = / P (x)dx.
G X
(III) The function p satisfies the identity
; p(gk)
10 Rk, g) = —>~<
(10) (k. g) )

forall g, k € G.
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LEMMA 2.3. Let M be a Lie subgroup of a connected Lie group G with modular
Junctions Ay and Ag, respectively. Then the following two statements hold.

(O Ifp: G — (0,00) is a continuous function, which satisfies (8), and R is
defined as in (10), then there exists a (up to constant) unique quasi-invariant regular
Borel measure dx on X satisfying (4).

() There exists a (in general not unique) C*®-function p : G — (0, 00) which
satisfies (8).

Let S: X x G — C be a continuous cocycle, that is, S(x, gh) = S(hx, g) S(x, h)
and S(x,e) = 1forall g, h € G and x € X. Throughout this paper, we assume that
there 1s a Cs > 1 such that

(11) C;' < |IS(x, 8| < Cs

forallx € X and g € B,. Note the similarity between S and R. Thereexist C', " > 0
such that

(12) (C')—le—n’lgl <|8(x, ) < C e

forallx € X and g € G. By (7), (12) and Lemma 2.1 we can introduce for all
p € [1, o] the representation U of G in L, (X;dx) by

(13) (U(g)p)(x) = S(g7'x, g) R(x, g7") (g7 'x)
= S(x,g—l)—lR(x’g—l)l/Z‘p(g—]x)

forall p € L,(X;dx).

Since the map g +— U(g) is locally bounded on each L, (X;dx) with p € [1, 00],
and C.(X) is dense in each L,(X;dx), one deduces the following proposition for
p € [1, 00). The case p = oo is obtained by duality.

PROPOSITION 2.4. The representation U is strongly continuous in L,(X;dx) for
all p € [1, 00) and weakly* continuous in L.(X;dx). Moreover, U is a unitary
representation in Lo(X;dx) if |§] = L.

For i € {1,...,d}, let A; = dU(a;) denote the infinitesimal generator in the
direction a; affiliated to the representation U, that is, the infinitesimal generator of
the one parameter group ¢ — U(exp(—ta;)). We also need multi-indices notation.
For N € N, let J(N) = D 2,{1, ..., N}* denote the set of all multi-indices over the
indexset{l,...,N}. lfa = (,..., i) € J(d)thenweset A* = A, o---0A,, and,
we denote by |a| = k the length of the multi-index o.

Letn € N beeven, and for all @ € J(d), with |a| < n, let ¢, € C. We consider the
operator H = Z“,(d):wlsn c A%, affiliated to the representation U in (13), and with
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domain D(H) = [yc/ayiai<n P(A%). The operator H is called an n-th order strongly
elliptic operator if thereisa ¢ > Osuch thatRe(—1)"23_ ., .\ c % > |§]" forall
& € R, where§* = ¢, --- &, foralla = (i), ..., i) € J(d). By [15, TheoremI.5.1],
the closure of H generates a continuous semigroup S = S§,. Moreover, forall r > 0
there exists a smooth fast decaying Lie group kernel K, € L,(G;dg) such that
Sip = [ Ki(g) Ulg)pdg forallp € ;2 L,(X;dx).

In order to show that the semigroup § = S, generated by H has a continuous heat
kemnel « : X x X — C we need some preparation. The following lemma will be
applied several times in this paper.

LEMMA 2.5. Let f : G — C be a measurable function and a, b > 0 such that
If (@) < ae "™ forall g € G. Then the following three statements are valid:

() The integral

(14 / £ gm™ k™) Sk, gm™ k") (p(g) p(km)) "2 Ag(m™'k") dm
M

exists forall g, k € G.
(II) There exists a function F : X x X — C such that

F(s, k) = f £ (gm™ k") Sk, gm=" k) (0(g) p(km) "2 A g(m™" k") dm
M

forall g, k € G.
(1) If Y is a compact subset of X then the function F is boundedon Y x Y.

PROOF. There exist C, n > 0 such that
(15) Ag(m™'k™") < C e

forall k € G and m € M. Moreover, since p(km)~" = p(e)~'R(e, km)~!, it follows
from (7) that there exist C, n > 0 such that

(16) o(km)™" < C emkml
forall k € G and m € M. Further, it follows from (12) that
) |S(k, gm™"k™")] < €' &8l neml

forall g,k € Gandm € M.
Now, let g € G. Since |km| < |gm~'k~'| + |g| forallm € M and k € G, and
(a + b)* < 2X(a* 4+ b*) forall A > O and a, b > 0, it follows that

2—n/(n—l)|km|n/(n—l) < Igm—lk—l'n/(n—l) 4 |g|n/(ﬂ'|)
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forallm € M and k € G. Therefore, it follows from (15), (16) and (17) that there
exist a’, b’ > 0 such that

f lf (gm—1k~1) S(i(, gm‘lk—l)l (p(g) p(km))—l/ZAG(m_lk_l) dm
M
=< a/eblllln/(n—nen’lglp(g)-l/z/ e_bl"‘mln/(,._l,dm
M

for all k € G. Statement (I) is proved, if we can show that <I>(I'<) <ooforallk € G,
where

(18) (I)(ic) =f e—b’|km|n/(n—1)dm
M
forall k € G. Let k € G. Itis clear that

|m|n/(n—l) 5 (Ikm‘ + |k|)n/(n—l) 5 2n/(n—l)|km|n/(n—l) +2n/(n—])|k|n/(n-—l)
< 4lkm|"""D 4 4 |k|M/=D

for all m € M. Therefore,

_y n/(n—1) _a-1 Rin=1)  ptypiniln=t)
(19) e b'lkm| < e 4='b' |m| eblk]

for all m € M. It follows that

(20) D(k) < W / e " g

M
We next show that there is an 1 > 0 such that Voly,,(M N B,) < e" forall r > 1. Let
r > 1. Thenthereexist N € Nand g,...,gv € Gsuchthat giBys, ..., gnByjsis
a maximal set of disjoint balls with radii 4! in B,,. Suppose that there isa g € B,
such thatno g, ..., gy is contained in gB, ;. If i € {1,..., N}and h € g;B,4, then

lg'hl > lg7 el — g 'Rl > 27 =47 =47,

gn By j; cover B,. If o = Volg(B,,4), then it follows from the disjointness of the balls
8B4, ..., gn B4, and the left invariance of dg, that

and gB,,, C B, is disjoint from all g, By,s, ..., gvByjs. Therefore, g By, ...,

N a < Volg(B,,).
But, there exists a @ > 0 such that Volg(B,) < ¢® forall s > 1. Hence, N < a~'e®".
Furthermore,

N N
MnNnB. CM ﬁL_JgiBl/z = U(M N giBi ).

i=1 i=1
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Ifi €{l,...,N},mo€ MNg;Bipandm € MNg;B,p, thenmg'm € MOB 3B, <
M N B, and hence M N g; B, € me(M N By). Then it follows from the left invariance
of the Haar measure dm, that there is an n > 0, independent of r, such that

Voly (M N B,) < N Voly (M N B)) < Voly (M N B)a e < ™.

Hence, it follows from (20) that

o<
. /1yl (=1 _4-! _1yn/in-t
d)(k) < ebIkI E :/ e 471y (r-1) ’dm
r=1 {meM:r—1<|m|<r}

00
/14 |n/ (1) —4-! /-1
Seb'k' 2 :/ e 41y (r-1) dm
r=1 MNB,
oo

nf(n—1) A~ (r_1 /=]
< eUlkl § :er)re 4710 (r—1) < 00,

r=1

and hence ® (k) < oo for all k € G, and Statement (D) follows immediately.
Next, one can define the function F : G x G — Cby

Fg, k)=/f(gm4k")5(i€, gm~'k7') (o(g) ptkm)) "2 AG(m™ k") dm
M

forall g,k € G. Since F(gm,, kmy) = F(g, k) forall g,k € G and m,, m, € M,
the function F : X x X — C, givenby F(g, k) = F(g, k) forall g, k € G, is well
defined, and Statement (II) follows directly.

If Y is a compact subset of X then, by [10, Lemma 2.4], there exists a compact
subset K of G such that K is mapped onto Y by the natural projection map from G
onto X = G/M. Since F is bounded on K x K, it follows that F is bounded on
Y x Y, and Statement (III) follows. This completes the proof of the lemma. O

By [15, Theorem II1.4.8], there exist a, b > 0 and @ > 0 such that
@l IKi(g)] < @ 174/m e b

forall g € G and r > 0. So, by Lemma 2.5 (I)-(II), one can define, for all # > 0, the
functionk, : X x X — Cby

2) «(3:k) = f K,(gm™'k™")S(k, gm™ k") (p(g) plhkm))™*Dg(m™ k) dm
M
forall g, k € G.

We call the function &, the reduced heat kernel of the semigroup S = §, because of
the following identity.
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PROPOSITION 2.6. If p € [1,00], ¢ € L,(X;dx) and t > O, then

(S,0)(x) = f (55 y)o(y) dy
X
forae x € X.

PROOF. Let ¢, ¢ € C.(X) and ¢t > 0. Then

W, Sip) = /G K.(8) (¥, U(g)p)dg = / / K ()Y (x)(U(g)p)(x) dx dg.
GVvX

Since U is a continuous representation in L,(X;dx), it follows from the Cauchy-
Schwartz inequality that there are C > 1 and 5 > 0 such that

| [k @TE W@ dx < 1K@ UEel:
X

< Ce"|K.@) 1Yz el

forall g € G. So, it follows from (21) that

Joh

Then Fubini’s theorem gives

K.(gw(x)(U(g)w)(x){dx dg < 0.

(23) (¥, Si9)

= [ 3@ [ k0564 0RG K 0§ akag

- [v® || RSk kDRG0 86 p(k) dkd

= fx 26} /G K.(gk™")S(k, gk™YR(g, kg™)'* Ak )o(k) dk dg

= fx ¥ (@ /G K (gk™")S(k, gk™") (o (k)p ()™ Ak~ Yok p (k) dk dg.
By (7) there exist C, n > 0 such that

(pk) p(8))™'2 = p(e)™'R(é, k)™"*R(é, 8)™'* < p(e)' C & MIT1e,
and Ag(k™") < Ce™ forall g, k € G. Moreover, it follows from (12) that

[S(k, gk™")| < C " ki+IgD
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for all g, k € G. Hence, it follows from (21) that the function

k> K. (gk™")S(k, gk™")(o(k)p(g)) " P Ak e (k)

belongs to L(G; pdg) for all g € G. Then (9) and (23) give

(24) (W, Si0) = / TE) f ( / K, (gm='k")S Gk, gm'k")
X X M
x (p(g)p(km»—‘”Ac(m-‘k-‘>dm) o) didg
=/w<x>/x,<x;y)<p<y>dydx
X X

forallt > Oand ¢, ¥ € C.(X).

Since C.(X) is dense in L, (X;dx) for all p € [1, 00], it follows that (24) is valid
forall ¢ € L,(X;dx) and € L,(X;dx), where p~'+ ¢! = 1, and the proof of
the proposition is complete. O

The function ¢t — «,(x;y), withx, y € X fixed, extends to a holomorphic function,
since S = §, is holomorphic (see also [1, Theorem 3.1]).

Now, we discuss the regularity of the reduced heat kernel x,. We need some
notation. Consider the contragredient

representation of U in each L,(X;dx) defined by

(Ulg)p)(x) = S(x, g HR(x, g7)p(g7'x) (ae. x € X)

forallg € L,(X;dx). Foralli € {1,...,d}, let R; denote the infinitesimal generator
in the direction a; affiliated to U. The left derivative in the direction a; on the Lie
group G is denoted by A and the right derivative by R.If B € J(d), then by Lb(8)
we denote the set of all (y, 8) € J(d)? such that y is a multi-index obtained from g
by omission of some indices and § is the multi-index formed by the omitted indices
(see, for example, (4, page 747]). Moreover, if 8 = (j1,...,j;) € J(d) then we
set ds = (R;,Ag)(e) - (R,,AG)(e) Next, we show that, for fixed + > 0, the heat
kernel «, is pointwise C* in the second variable, with respect to R, ..., R,, and,
moreover, if B € J(d) and R? denotes the pointwise (multi-)derivative, with respect
to the second variable, then Rk, is pointwise C* in the first variable, with respect
to the infinitesimal generators Ay, ..., Ay. Further, if o, 8 € J(d), A“ denotes the
pointwise (multi-)derivative, with respect to the first variable, and R denotes, again,
the pointwise (multi-)derivative, with respect to the second variable, then A* Rfk, is
also given by a reduction formula. The proof is quite similar to the proof of Lemma 2.5
using induction and (22).
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PROPOSITION 2.7. If t > O, then the kernel k, is pointwise C* in the second
variable, with respect to Ry, ..., Ry, and if B € J(d), then RPk, is pointwise C®
in the first variable, with respect to Ay, ..., Ay. Furthermore, if «, B € J(d) then
A®RPk, is given by the following reduction formula

@) WREh= Y d [ @R K)em kS gk
voeLbpy UM

x (p(g) p(km))" P Ag(m™ k") dm

forall g, k € G.

Next, let V be the representation of G in L, (X;dx) defined by

(V(@)e)x) =¢(g7'x) (ae. x € X)

forallg € L (X;dx)and g € G. Let B; = d V(a;) denote the infinitesimal generator
of the one parameter group ¢ +— V(exp(—ta;)) in Lo (X;dx). Consider the metric
d: X x X — [0, 00) on X defined by

d
(26) dx;y) =sup{ V() ~ ¥ (@) : ¥ € Croo(X) realand Y [Byr[* < 1]

i=l

for all x,y € X, where C,(X) denotes the space of all infinitely differentiable
functions on X with uniformly bounded derivatives. Introduce the balls B(x;r) =
{yeX:d(x;y) <rjforallx € Xandr > 0.

Now we are able to state the main result of this paper.

THEOREM 2.8. Let X = G/M be a homogeneous space with G a connected Lie
group and M a Lie subgroup. Suppose that R is continuous and satisfies (6). Further
suppose that S is continuous and satisfies (11). Let H be an n-th order strongly elliptic
operator associated to U, given by (13), and let k, be the corresponding reduced heat
kernel. Then for all a, B € J(d) there exist b, ¢ > 0 and w > 0 such that

[(A* R k) (x5 ) < e(Volx (B(x; 1)) Volx (B(y; 1)) 71/ tet+Pid=din gor

_ g1y /(- 1)
X e b(dix;y)"1™h)

forallx,y e Xandt > 0.

The reduction formulas for the heat kernel and all its derivatives, in the first
and second variable, given by (25), are an essential part in the proof of the main
Theorem 2.8 given in Section 5.
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3. A local scaling property of the volume

We aim to show that condition (6) implies a local scaling property of the volume
of the balls B.x withx € X and ¢ € (0, 1]. More precisely, we deduce the following
proposition. See also [16, Chapter 3] and [14].

PROPOSITION 3.1. There exists a C > 1 such that
(27) Voly (Byx) < Ce~@= Voly(B,x)
forallx € X and ¢ € (0, 1].

PROOF. Consider the ‘spherical’ balls
(28) B, = exp(R.),

where R, = {ZLI ta, €g: Zil < 82} forall e > 0.
" The proof is subdivided in 10 steps. First we show that (27) holds if there are
C, N > 0 and & € (0, 1] such that

(29) Voly (Byx) < C &~ \Voly (B,x),

uniformly for all x € X and ¢ € (0, ]. Then we scale the basis ay, . . ., a4 suitably
for the sake of convenience, and we reduce the local scaling property of the volume
to a uniform estimate of Vol (M N g"ﬁeg) in terms of Vol (M N g“Ezog) for all
e € {0, g], with g € (0, 1], uniformly in g € G. Next, we give a description of the
connected components of M N g“l?e gforalle € (0,20] and g € G, and we derive a
convexity result from it. Then we introduce a metric dg on g} Ezog and a ‘metric’ dy
onMnNg! Emg, and it follows from the convexity result that dg and dy are equivalent
metrics on the connected components of M N g™ §p g, with p € (0, 1], uniformly with
respect to g. Finally, this equivalence implies a homothetic contraction result from
which the proposition follows.

Step 1. If there exist C, N > 0 and g € (0, 1] such that (29) is valid then the
proposition follows. This can be proved by the next covering argument. We may
assume that N < 1. There exist L € N and g,...,g. € B such that B, C
Uf;l giBy. So, Bix C UL] giByx forall x € X. Next, foralli € {l,..., L} and
x € X, one has

Voly (g:Byx) = / lBNx(gi_’y) dy = / lg,x(y) R(y, gi)dy < Cg Voly(Byx).
X X
Therefore, (29) implies that

Voly(Bix) < L Cg Voly(Byx) < L C Cre™"" Vol (B,x)
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forall £ € (0, &) and x € X. But then it is obvious that
Voly (B1x) < L C Creg ™™ Voly (B, x) < L C Creg“™™ Voly (B,x) =@,

uniformly for all x € X and £ € (g, 1], and (27) holds.
Step 2. In this step we scale the basis ay, . . ., a, for the sake of convenience.
Without loss of generality, we may assume the following.

e The Baker-Campbell-Hausdorff formula is valid (convergent) on Ry, the expo-
nential map is a real analytic diffeomorphism from R onto Bggo and

(30) Es §£ g §3£

for all £ € (0, 200].
e By the inverse function theorem, there exist £ > 1 and v > 1 such that for all
I,k €(l,...,d) there exists a function o : R? — R such that

d d
(€2))] exp (Z sia;) exp (Z tm:-)
i=1 i=
d l d d
= exp (Z(s,- + t)a; + Z (Z tkalk(S)) a + 0(|t|2))
i=1 =1 k=1

for all s, € R? such that |s|, |t] < 200, and, moreover, ||(I + A(s))7'|| < & and
I+ A(s)|| < & forall s € RY with |s| < 200, where A(s) € R**? is the matrix given
by (A(s))i = ay(s) foralll,k € {1,...,d},and forall U € SO, R)

(32) v <detd +Ay(s) <v, T +Au(s)'II<& and I +Ay(s)l <&

for all s € R? with |s| < 200, where Ay(s) € R9%>d is the matrix given by
(Ay(s)u = (UA(s) U—l)lk foralll, k € {1, e dM}
e Thereisa K > 1 such that

(33) By, € By C By

for all ¢ € (0, 200K ] (see also [S, Proposition 6.1]).
Next, fix g € G. Then g~' B, g = exp(P¥#), where

d d
Pf = Zt,.[z,-eg:Zt,.2<82 )
i=1 i=1

for all ¢ > 0, where a; = Ad(g ')a; forall i € {l,...,d}. Endow g with the inner
product (Y0, 2,4, Y0 5:a) = X0, 1,5 forall Y0 1.4, € gand Y°°_, 5,4, € g.
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Then there is an orthonormal transformation 7 € SO(g) such that a;, = T(a)),
i €{l,...,d}, establishes an orthonormal basis of g, and 4, ..., a,, is a basis of m.
Then P# = {Z?=1 wa, €g: Y0 k< g?}. So, P# is a ‘spherical’ ball in g with
center O and radius ¢ for all ¢ > 0. By (31) and (32) the following two statements are
valid.

e Foralll,k € {1, ...,d) there exists a function py : R — R such that

d d
(34) exp (Z s,»&,-) exp (Z tiai)
i=1

i=1

d d
=g lexp (Z S Ad(g)&i) exp (Z 8 Ad(g)[z,-) g

i=1 i=1

i=1

d
+ Z (Z tkplk(s)> Ad(g)a, + O(|¢] ))

d
=g 'exp (Z(Si + 1) Ad(g)a;

=1 \k=1
d [ d
= exp (Z(si +t)a; + Z (Z tkplk(s)) a + 0(1t|2))
i=1 =1 k=1

for all s, ¢ € R? such that |s|, || < 200, and, moreover, ||(I + R(s))™'|| < & and
I + R(s)|| < & forall s € RY with |s| < 200, where R(s) € R¥*“ denotes the matrix
given by (R(s))u = pu(s) forall , k € {1, ..., d}.

e Similarly, forall [,k € {1, ..., dy} there exists a function wy : R* — R such
that

du
(35) exp (Z S; a,) exp (Z L a,)
du [ dy
= exp (Z(s, + t)a; + Z (Z tkwlk(s)) ar+ O(t| ))

i=1 =1 \k=

for all s,¢ € R% such that'|s|, || < 200, and, moreover, [|(I + Q(s))7'|| < & and
I + Q(s)|| <& forall s € R™ with |s| < 200, and

(36) vl <det(I + Q(s)) <v

for all s € R with |s| < 200, where Q(s) € R% > denotes the matrix given by
(Q(S))[k = Cl)[k(S) forall l, k € {l, PN dM}
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Step 3. In this step we show that

-1
37)  Volx(B.2) = Ci'Ac(g) p(g) Volg(B.) ( / 1dm>
Mng-'By g
for all € € (0, 1], and

-1
(38)  Voly(B.g) < C?AG(g) plg) Volo(By,) ( / 1dm)
MNg~'Byg

foralle > 0.
First we deduce (37). Let ¢ € (0, 1]. Note first that h +> 15 (hg™"') p(h)~! belongs
to L,(G; pdg), because the support is compact. Then

Volg(B,) = / 15, (hg ) Ao(g™) dh
G

- f f 1s, (hmg™)Ag(g™") p(hm)~! dm dih
XJM

by Lemma 2.2 (II).
Next, if h € G, m € M and hmg™' € B, then there exists a b € B, such that
hm = bg. Hence,

p(hm)~ = p(bg)™"' = p(g) 'R(g,b)™" < Crp(g)™
by Lemma 2.2 (III). Therefore,

/ 15, (hmg YAg(g™") p(hm)~' dm < CRAG(g">p(g)—‘/ 15,(hmg™")dm
M M

forall h € G. Moreover, if h € G and there exists an m; € M such that hm,g™! € B,
then hm, € B.g, and thus m;'h~' € g 'B,. Hence, m;'h~'B,g € g~'By.g. If
m € M and hmymg=" € B, thenm € M Nm'h~'B,g € M N g~' B, g. Therefore,
since dm is left invariant, one has

39) / 13,(hmg_')dm=/ 1BE(hm,mg")dm 5/ 1dm.
M M Mng~'Ba, g

It follows that f, 15 (hmg™")dm < ang,lB” ldm forall h € G. So,

/ L, (hmg™")YAg(g™)p(hm)™ dm < CrAG(g™")p(g)™" ldm
M

Mng~'By g

forallh € G. If h € G is such that [, 15 (hmg™")Ag(g~")p(hm)™' dm # 0, then
there exists an m € M such that kmg~' € B,. Hence, h € B, g. Therefore,

Volg(B.) < CRAG(g"m(g)-‘f f Ldm di
B g JMNg B g
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= CrAc(g™)p(g) ™! Volx(B.£) ldm

MNg~18B: g

for all € € (0, 1], and (37) follows immediately.
Next, we derive (38). Lete > 0. If h € B, g, then

(40) p(hm)p(gm)™" = p(h)p(g)™" = R(g, hg™") < C5*!

forall m € M. If, in addition, m € g~'B,, g, then hm € Bs,g. Hence,
/ lg-18,(m)p(gm)~ dm < c;“f Lo-18,,¢(m)p(hm)™ dm
M M

< C;“/ 1g, ((hm)p(hm)™" dm
M
forall A € B,g. Then

154("1)/ lg-18,5(m)p(gm)~" dm < CZ“/ 1, ¢ (hm)p(hm)~' dm
M M

forall h € G,since h — f,, 13, ,(hm) p(hm)~"' dm is right M-invariant.
Finally, note that & > 15, ,(h) o (h)~! belongs to L,(G; p dg), because the support
is compact. So, integration over X yields

(41) Volx(B.g) p(gm)~tdm < c;“f (f lgkg(hm)p(hm)_ldm) dh
X M

MNg~1By g
= C;H/ lBssg(h) dh
G
= C;-H VOIG(B35)AG(g)a

by the Weyl formula. But, if m € M N g~'B,.g, then there is a b € B,, such that
gm = bg. Hence one obtains

(42) p(gm)~ = p(bg)™ 2 Cx*'p(g)7,

and (38) follows immediately from (41) and (42).
Step 4. Let N = 20K. It follows from (37) and (38) that

. Volg(Bsy)
Vol (Bng) < CE¥*2A5(g)p(g) e
Surg-18e 1M
8 WNE
Voly (B, ¢
< C®K Volg(Bsw) Volg(B,) ™" 1 dm ——Yolx(Bc&)
MNg=1By g anJl_leKL' ldm

forall e € (0, 1]. Thereis a C > 1 such that

Volg(Bsy) Volg(B,) ™' < Ce™
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for all ¢ € (0, 1]. Therefore, the proof of the proposition is complete if there exist
C > 1 and gy € (0, 1], independent of g, such that

(43) Voly (M N g™'B,g) < Ce™ Voly(M N g~ Byg)
for all € € (0, &]. Indeed, if (43) is valid then it follows from (33) that
Voly (M N g7 'By,8) < CK™e™ Voly (M N g7 By g)
forall ¢ € (0, K~'g). It follows that there is a C' > 1, independent of g, such that
Voly (Bng) < C ¢~ Voly (B, §)

for all ¢ € (0, K ~'g], and (29) holds.
Step 5. If ¢ > 01is small then it follows from [6, Lemma 2.2] that

du dy
MﬂEe = exp <[Zu,-a,~ €em: Zu,z < 82]).
i=1

i=1

Unfortunately, the sets M N g“Eeg are not uniformly bounded with respect to g.
Nevertheless, an exponential description of the above kind is still valid with respect to
the basis ay, .. ., a4, for m. On connected subsets the description is possible uniformly
in g and ¢ € (0, 20].

LEMMA 3.2. Ife € (0, 20), € is a connected component of the set M N g™ B, g and
mg € €, then for each m € € there is a u € R™ such that m = mqexp ( S u;a;)
and |u| < 3e. In particular, there is a non-empty open connected neighbourhood
O € mN P{ of 0 such that € = myexp(0).

PROOF. Let m € €. Since there is an absolutely continuous path from m, to
m in &, there are n € N and a sequence of points mg, my, ..., m, € € such that
m,=m,gmog™", ..., gmg' € B.,andforallk € {1, ..., n) thereexists a u € R™
such that m;!\m; = exp(Z;’:I u;a;) and |u| < 200. But then |u| < 3¢, because
m;!\m; € g7'Byg forallk € {1,...,n), by (30).

Next, mg = mgexp(0) € g“Egg. Let 0 < k < n, and suppose that there is a
v € R™ such that m;, = myq exp(Z;’:, v:@;) and |v| < 3e. Since my 'myy, € ¢ 'Byg
and the Baker-Campbell-Hausdorff formula is valid on Rj,, there is a v € R%™
such that my,, = mump'me, = moexp (™ vid;) and |v| < 9 by (30). As
mMes1. my' € g7 B, g, it follows that mg'my,, = exp(zg‘l V&) € g'Bs.g, by (30)
again. Hence, m,, = moexp ( 27:1 v,-&,), with |v] < 3e.

By induction, there is a u € R%™ such that m = m, = m, exp(ZfZl u;a;) and
|u] < 3¢, as was to be shown. O
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Step 6. In this step our goal is to derive the following convexity result.

LEMMA 3.3. If € is a connected component of M N g'lgmg, g € (0,1] and
my € € N g~ B, g, then there exists an open connected and convex neighbourhood
O CmnN Pf of O such that € N g~'B.g € moexp(0) € myexp(0) C F.

PROOF. There exists a countable index set I such that the €, with @ € I, are the
connected components of ¥ N g~'B.g. Since my € €N g~ B.g and ¥ is a connected
componentof MNg™! By g, it follows from Lemma 3.2 that there exist open connected
sets 0, € m N P, such that ¢, = myexp(0,) foralla € I. Leta € I and fix

% wa; € O,. Then there is an m € %, such that m = m, exp (™, w,a). Since
mg',m € M N g™'B,g, it follows that

dyy
exp (Z u,—&,») = mglm eEMNg 'Byg= exp(m N P§),

i=1

by (30). Therefore, 221 u;a; emNP.So, 0, CmN P foralla € 1.
Next,letN € N,ay, ..., ay € I andfixm; € €,, foralli € {1,..., N}. Thenthere

exist u® € R™ such that m; = mgexp ( ZZ‘;, u,((i)&k) and, moreover, |u®| < 3¢ for

alli € {1, ..., N}. Therefore, if Zf’:, t;, = 1 with n, ..., ty > 0, then the convexity

of the ball B, implies that exp ( s (vazl ful Yai) € g'Bs.g. Moreover,

du N
mo exp (Z (Z t,-u,((')) fzk> eMNg'Byg SMNg'Byg,

k=1 i=1

by (30). Let O € m N P be the convex hull of the sets {O, : @ € I}. Then
O is a convex open and connected neighbourhood of 0. There is a § > 0 such
that 0 = (1 + 68) O is a convex open and connected neighbourhood of 0, and,
mg exp(5) cMnN g“E,og. Since my exp(5) is connected and contains mg, the
lemma follows immediately. O

Step 7. Inthis step we introduce a metric (iG ong™! Ezo g, and we derive an equivalence
result.

Consider the map ® : RY — G defined by ®(u) = exp ( 37, u;a,), u € R?. Note
that @ is a diffeomorphism from N onto <I>(ﬁ), where N = {u € R?: ju| < 200).
Foralli € {1, ..., d}, introduce the right derivatives by

. d
(Rip)(h) = 7 @(hexp(ta;))
Lo

forall ¢ € C*(G).
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LEMMA 3.4. The following two statements are valid:
() Foralli,k e{l,...,d), there exists a function b : g"Ezog — R such that

]
(44) Zb,ah)dcb ( M)

k=1

and |B(h)|| < & forall h € g"gzog, where B(h) € R¥? denotes the matrix given
by (B(h))ik = bic(h). _
(1) Foralli,k €{l1,...,d}, there exists a function cy : g~'Bxg — R such that

(45) do (8u,) ZC.k(h)RkL,

and |C(h)|| < & forall h € g"gy_og, where C(h) € R4 is the matrix given by
(C(h)) ik = ci(h).

PROOF. It follows from (34), that there is a , > 0, independent of g, such that for
all i, k € {1, ..., d} there is a function p;; : R? — R such that

d d
hexp(1d;) = exp (Z wedy + 13 + 1Y pu(w)a; + 0(|t|2))

k=1 k=1
forall t € {(—1, ) and h = exp ( ZZ=1 uk&k) with |u| < 20 and, moreover,
11+ Rwl <& and |I(J+ K@) <&,

where R(u) € R9*? is the matrix defined by (R(u)) x = pa(w)foralli, ke {1,...,d}.
Leth € g~'Byg. Forall i,k € {1, ..., d} define the function ry : g~' Byg — R by
ri(h) = pix(u) for all h = (Zk=l ukak) with |u| < 20. Then

k=1 k=1

d d
hexp(ta;) = exp (Z wa, + ta; + IZ ri(h)a, + 0(|'|2)>

for all re(~1y, 1p) and h=exp ( ZZ=I ukc'ik) with |u| <20 and, moreover, || B(h)|| <&,
where B(h) € R is the matrix defined by (B(h))iy = by(h) = 84 + ru(h) for
all i, k € {1,...,d}. Hence, (44) holds forall h € g ‘Bzog andi € {1,...,d}, and
Statement (I) follows.

If C(h) = (B(h))™' for all h € g~ Bug then [C(R)|| = I(B(h)™"|| < & and,
moreover, (45) holds for all & € g"Ezog, where c;x(h) = (C(h))y for all i,k €
{1, ..., d}, and Statement (II) follows at once. The proof is complete. dJ
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Letdg : g~ Byg x g~'Byg — [0, 00) denote the metric defined by
dg(h, k) = inf{8 > 0 : T's(h, k) # @),

where I's (h, k) denotes the set of all absolutely continuous paths y : [0, 1] — g“§20 g
such that y(0) = h, y(1) = k, y(¢) = Zle y,~(t)R,—|y(') and ZL ly:(0)|* < 82 for
ae.re[0,1].

COROLLARY 3.5.  (I) The metrics |- | and dg satisfy the following equivalence:
(46) §7Mu — v < dg(@w), D)) < §lu— vl

forall u,v € R? such that |u], |v| < 20.
(1) Thereisa p € (0, K™'], independent of g, such that

do(®(u), @ (v)) = do(P(w)P(u), ®(W)P(v))
forall u, v, w € R? such that |u|, |v|, lw| < p.

PROOF. Let u, v € R? be such that |u|, [v] < 20. Moreover, let y : [0, 1] —
g! Ezog be the absolutely continuous path defined by y (f) = ®(rv+ (1 — f)u) for all
t € [0, 1]. Then y(0) = ®(u), y(1) = ®(v), and the path lies entirely in g“gzog,
because Py is a convex set. Moreover,

4 3
y(6) =Y nlt)d® (a—uk)

k=1

y(t)

and 3¢ |ve(t)* = |u—v|*for all # € [0, 1]. Hence, it follows from Lemma 3.4 (II)
that one can write y (¢) = ZZ=1 8k(t)1§k|ym, and ZLI 18:()|? < E%|lu — v|?* for a.e.
t € [0, 1]. Therefore, c?G(CD(u), ®(v)) < &|u — v|, and the upper bound in (46) is
proved.

Next, let § > 0 be such that there is an absolutely continuous path y : [0, 1] —
g™ Bug such that y(0) = ®(w), y(1) = &), v() = LTi, n®R , and

4 In@* < 8% for ae. t € [0,1]. Then, it follows from Lemma 3.4 (I), that
one can write

]

v

e 3
y() = ;akmdcb (a—uk)

and Zle 18c(2)|* < 8%2 fora.e. t € [0, 1]. Hence,
L/ d 12
&> E“/ (Z !&(t)lz) dt > &7 u—v|.
0 \k=t
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Therefore, £~'ju — v| < dg(P(u), (v)), and the lower bound in (46) follows.
Statement (I) is therefore proved.

Next, we prove Statement (II). Let p € (0,1] and u, v, w € R? be such that
lul, |v|, |lw| < p. Lety : [0, 1] —» g“‘§20g be an absolutely continuous path such
that y(0) = &), (1) = (), () = Ti_ n®R ,, and Tp, n®PF <
2dg(®(u), ®(v))? forae. t € [0, 1]. Then 211:1 [y ()? < 28 u — v)* < 8&2p? for
a.e.t € [0, 1]. Hence,

da(D(u), v (1)) = do(®(w), (@' (¥ (1)) < 3ép,

and |u — @~ (y ()| < 3&%p forae. t € [0, 1], by (46). Since Sy € P8, it
follows that |®~!(y(2))] < 4&%pand y (1) € g 1Bsgng forallt € [0,1]if p < 45 -2,
Therefore,

S(w)y (1) € g7'B,g8 " Bs2p8 € &' Boxoe2p8 < &' Buog

forall t € [0,1], if p < E2K~2. Let s : [0,1] — g~'Byg be the absolutely
continuous path defined by §(¢z) = ®(w)y(¢) for all + € [0,1]. Then §(0) =
D (w)d(x), (1) = S(w)P(v), and §(1) = Ti_, (DR, forae. t € [0,1]. It
follows that one can make p € (0, 1] smaller, if necessary, but independent of g, such
that o € {0, K~'} and

tel0,1

172
do(® (w) D (1), ®(W)P(v)) < ess sup (Z |Vk(t)|2)

and, therefore, dg(®(w)® (1), ®(w)P(v)) < dg(P(x), ®(v)). Similarly, making p
smaller again, if necessary, but still independent of g, one can show that

do(® (W) ® (), (W)P(v)) = do(®(u), P(v)),
and the proof of the cdrollary is complete. a

Step 8. Let 2 € (M N g~'Byg) x (M Ng~'Byg) be the setof all (h, k) € M x M
such that inf{§ > 0 : [;(h, k) # @) < oo, where ['s(k, k) denotes the set of all
absolutely continuous paths y : [0, 1] — Mﬂg“gmg suchthat y(0) = h, y(1) =k,
Y0 =™ y(R,)| > and ™ yi(0)]? < 8% forace. t € [0, 1]. Then the ‘metric’
dy : Q@ — [0, oo} is defined by du(h, k) = inf{6 > 0 : [Cs(h, k) £ @} for all
(h, k) € Q.

For my € M, define ®,,, : R™ — M by &, (s) = moexp (" 5a), s € R
Note that &, is a diffeomorphism from N onto @, (N), where

CY)) N = {s € R™ : |5| < 200).
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In this step we show that dg and dy are equivalent on g~! §,,,.g N%¥ foralle € (0, p]
and connected components € of M N g~! Byg, uniformly with respect to g, where
p € (0, K~']is the constant as in Corollary 3.5.

LEMMA 3.6. Let € be a connected component of M Ng~! §2og. Then the following
two statements hold:

(M Ife € (0, plandmg € g7 B.gN'E, then
(48) E7r — 5| < du( Py (1), Pr(s)) < Elr — 5]

forall r,s € R™ such that |r|, |s| < 3¢ and D, (r), Py (s) € g“EEg N¢E.
() Ife €(0,plandmy € g7 'B,gN'E, then

(49) do(h, k) < dy(h, k) < &%dg(h, k)
forallh,k € g7'B,gN¥.

PROOF. It follows from Lemma 3.3 that there exists an open connected and convex
neighbourhood O € m N P£ of 0 such that € N g"ggg C moexp(0) C¥.

We first prove the upper bound in (48). Let r, s € R% be such that |r|, |s| < 3¢
and &, (r), P, (s) € g"Esg NE. Lety : [0, 1] - ¥ be the absolutely continuous
path defined by y(t) = ®,,(ts + (1 — r)r) for all ¢ € [0, 1]. Then the path y
lies entirely inside ¥, because @, (r), Pn,(s) € moexp(0), and, by convexity,
D, (ts + (1 — 1)r) € moexp(0) € ¥ for all ¢t € [0, 1]. Then it follows from a
similar argument as used in the proof of Lemma 3.4, but using (35) instead of (34),
that c?M (P (r), Py (s)) < & |r — s and the upper bound in (48) follows immediately.

Now, we prove the lower bound in (48). Let r, s € R™ be such that |7, |s| < 3¢
and ®,,,(r), ®pm,(s) € g 'B.g N'¥. Then it is obvious that

A (P o (1), Py (5)) = dG(Prmy (), Py (5))-
Since my", ®py(r), Bm,(s) € g~'B.g, there exist u, v, w € R such that |ul, |v],
lw| < p, mg' = ®(w), &, (r) = ®(u) and &,,,(s) = P(v). It follows from
Corollary 3.5 (II) that

F6( @y (F), Do (5)) = d6(® (W), D(v)) = dg(® (W) (), P(w) D (v))
= dg(my' ®,, (1), my' ®,,(5)).

Since P C Py, it follows from the lower bound in (46) that

(50) do(my @, (r), my' &, (s)) > €7 r — 5],
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and the lower bound in (48) follows. So, Statement (I) is proved.
Moreover, together with the upper bound of (48), the lower bound in (50) implies
that

A6 (P (1), Dy (5)) = dg(mg' @ (r), m5' @, ()
> E7r — 5| 2 E 2 (Do (7), Prmo (5))-

Then the upper bound of (49) is a consequence of Lemma 3.3, and Statement (II)
follows immediately, because the lower bound of (49) is trivial. O

Step 9. In this step we derive a homothetic contraction result which is inspired by [7,
Section 2].

LEMMA 3.7. Let € be a connected component of M N g~! By g Ife € (0, p] and
mg € €Ng~'B.g then|r—s| > £ X(p—¢) forallr, s € R™ such that |r|, |s| < 200,
D, (r) € (& N g“‘E,;g) and ®,,(s) € (€ N g"ﬁ,,g), where 8, denotes the
boundary in M.

PROOF. First, we prove that 8 (¥ N g~'B,g) C 85(g~"' B, g), where 8 denotes the
boundary in G. Indeed, let m € 8,(¥ N g“§$g), and suppose that m ¢ cSG(g“I};g).
Then m ¢ 8, (M N g~ B,g), because, if m € 8, (M N g“ggg) and V is a G-open
neighbourhood of m then M N V is an M-open neighbourhood of m. Hence, there
existk € MNg-'B,gand l € M\(M N g'B,g) such that k,l € M N V. So,
keg'BgnV,leV,adl ¢ g'B,g. Hence, m € 85(g™" B.g), and this is a
contradiction. Therefore, m is an interior point of the connected component € of
M N g~'B,g, which contains m. Since m € 8,(¥ N g~ B, g), it follows that

€n (&N g‘lggg) # 0.

Therefore, € € € N g ! §£g, and hence m is an interior point of ¥ N g“gsg, which
is a contradiction. Therefore,

8u(€ Ng~'B.g) C 86(g”'B.g) = exp(8 PY).
Similarly,

(€ N g“lgpg) Cc 56(8—15;;8) = exp(8 P).

Next, let r, s € R™ be such that |r|, [s| < 200, ®,, (r) € 8,,(¥ N g 'B.g) and
@, (s) € 84(€ Ng'B,g). Then there are u, v € R? such that |u| = ¢, |v] = p,
& (u) = &,,(r)and ®(v) = ®,,,(s). Then a combination of (46), (48) and (49) gives
the estimates

r =512 67 dg(®m, (r), P (s)) =" dc(P(u), D)) = §*|u—v|= £ (p—¢),

and the lemma follows. O
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Now, fix ¢ € (0, (662)7'p] and a connected component € of M N g 'Bypg. Let
my € €¥Ng~'B.g. By Lemma 3.3 there is a convex open neighbourhood O € mN P§,
of 0 such that

(51) € Ng'B,g C myexp(0) C moexp(0) € ¥.

LetI'* : € - M N g"Ezog be the homothety with center m, and coefficient
q € (0, 1] (see also [7, Section 2]) defined by F;"°(d>m0(r)) = @, (qr) forall r ¢ R
such that |r| < 200 and ©,,,(r) € ¥.

Let r € R% be such that || < 200 and ®,,, (r) € 84 (moexp(0)). Set

ty =sup{t €[0,1]: &, (rr) e ¥ N g ' B.g).

Then &,,,(1,r) € (€ N ¢ 'B.g) € my exp(m N Pf), by Lemma 3.3, and hence
|tir| < 3¢. Moreover, set

f=sup{t € [0,1]: @, (tr) e €N g ' B,g).

Then ®,,(,r) € 84 (€ N g“E,,g) and |(t; — t;)r| > €7 %(p — &) by Lemma 3.7.
Therefore,

Irl = |tar] = (& = 0)rl + {nrl = Be) ' nr|E (0 — &) + ||
> Be) 'nlrlE 20 + nlr|(1 =377 = (3e) 'alrlE p.

So, if one sets g = 65%p~'¢, then 1 > g > 1. It follows that
(52) €N g™ B,g C I'*(moexp(0)) C I(¥).

Letd; ,,,m denote the image measure on ¢,,(N), under d,,,, of the Lebesgue measure
du, ---dug, on N, where N is as in (47). Let Voly 1, be the volume with respect
to the measure dj ,,m. Set 0= {u e R :’1:1 u;a; € O}, and let r : S™! —
(0, 00) be defined by r(x) = sup{r > 0 : rx € O} for x € S, If do(x) is the
Riemannian measure of S%~!, then

qrx) '
Vol 1 my (T (10 €Xp( 0))) = / 41 4t do(x)
0

Sdu -1

r(x) .
= g f / ™ dr do(x)
Sm-1 Jo

= (657" Y™™ Voly, 1 m, (mo exp(0)).
It follows from (51) and (52) that

(53) Volus. L.mg (€ N g7 Beg) < Ce.p&™ Volpy. 1, (€)

https://doi.org/10.1017/51446788700015597 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700015597

134 C.M. P. A. Smulders [26]

for all & € (0, &}, where C; , = (6£2p~")% and gy = (6§%)~'p € (0, 1].
Step 10. In this step we finish the proof of the proposition. First, it is obvious that
Volu, 1,m,(€) = VO]M,L,e(malcf),
and
Volys,.m, (€ N g™ B.g) = Volu,... (my' (€ N g~ B,g))

for all & € (0, g]. Hence, it follows from (53) that
(54) Voly .. (mg' (€ N g7 B.g)) < Cy.p6™ Voly1 o (my' %)

for all € € (0, &].

Next, let v € R% be such that 221 v,d; € Py and ®,(v) € m;'¥. Consider the
transformation 7, from N onto T,(N) given by T,(u) = &, (. (v)P. (1)), u € N.
Then it follows from (36) that the Jacobi determinant J, of the transformation 7, in
u = Osatisfies v=! < J, < v. There is a smooth density function f : my'€ — (0, 00)
suchthatdm = f d; .,m. Since dm is left invariant, it follows that v=!f (¢) < f (m) <
v f (e) for all m € m;'¥. Therefore,

(55) Voly (my" (€ N g™ B.g)) < v:Ci 6™ Voly(mg'€)

for all &€ € {0, g]. Hence, it follows from the left invariance of the Haar measure dm
that Voly (€ N g~ 'B.g) < vZCE_peJMYOlM(‘f) for all ¢ € (0, &]. Considering all
connected components € of M N g~ Byg together, one obtains

Voly (M N g™' B,g) < v>Cq 6™ Voly(M N g~ Byg)

forall ¢ € (0, g0] and g € G, and (43) holds.
The proof of Proposition 3.1 is complete. O

4. A Nash inequality

In order to derive kernel bounds for the Laplacian in Section 5 we first need to
establish a Nash inequality which we deduce in this section. The results of this
section are from [16, Chapter 4].

If o € Ly(X;dx) N Ly(X;dx) and ¥ € L,(G;dg) then the convolution product
¥ %y @ is defined by ¥ *y ¢ = [, ¥ (g) U(g)p dg. Next, by Lemma 2.5 (I)-(II), for
all ¢ > 0 one can define the measurable function ¥ : X x X — [0, c0) by

vl (g k) =/ Ls, (gm™'k™") SCh, gm™"'k™") (p(g) ptkm)) ™ Ag(m™"k ") dm,
M

where g, k € G. Moreover, it follows from Lemma 2.5 (III) that ¥} is uniformly
bounded on compacta in X x X, so fx [¥2(x; y)e(y)|dy < oo forallx € X and
¢ € Ly(X;dx) with compact support.
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LEMMA 4.1. Ife > 0 and ¢ € L,(X;dx) with compact support then

(1, ¥y @)(x) = f ¥, (x;y)e(y) dy
X
forallx € X.

PROOF. First, note that k > 15 (gk™")(pk)p(g))*Ag(k ") (k) belongs to
L\(G;pdg)forall g € G,e > 0and ¢ € L,(X;dx), since 15 has compact support.
So, if g € G, then

f YP(g: k) p(k) dk
X

Sk, gm='k"! o
AR (o) e ot m ) ot

oy SCk, gmTkY ) ) .
= 1 e hYy—= " A4k YotkmM)d dk
/x</u 5 8m) @p ey o) e thmM) dm

= / s, (k™) S(k, gk~)p(6) 20(8) ™2 A (k™Yo () dik
G

= f 15, (0S8, R, k=)o 8) dk = (1, *u ¢)(2)
G

by Lemma 2.1 and Lemma 2.2 (III). |

Now, we prove a Young type inequality involving y?. We first need a volume
estimate on ..

LEMMA 4.2. There exists a C > 0 such that wg(g; l;) < CVOlg(Bk)(Volx(Bel.c))_]
Jorallg, k€ Gande € (0, 1].

PROOF. Let C > 1 be such that Ag(b) < Cforall b € B;. Moreover, let e € (0, 1]
and g, k € G. We may assume, without loss of generality, that w;(g;lé) # 0. Then
there exists an m; € M such that b = gm;'k™! € B,. Let g = gm;'. Then, by
Lemma 2.2 (III),

Vg k) = Yl k)
B e Sk, gm™'k™")
= [, taom ) GoGm= k= k) p (k) 7
=/ 15, (Gm ™'k ) Sk, gm™'k YRk, gm ™ k~)~1/2
M

x ptkm) ' Ag(@m~'k'k b7y dm

Agm™ kY dm
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< C,‘{ZCSCZAG(k—‘)/ 15, @m 'k~ plkm)™" dm.
M

If m € M and gm~'k~! € B, thenm € k™'B.g = k~'B.bk C k~'B,.k, because
b € B,. Therefore,

(56) V(g k) < CFPCsC* AG(k™) plkm)™' dm.
& R

Mnk-1By,k
The lemma follows immediately from (56) and (41). O

Let v : X — [0, 0] be defined by v(x) = inf,en, 274" Voly(By--x), x € X.
Then, it follows from Proposition 3.1, [13, Annexe 0, Lemme B] and the covering
argument as used in Step 1 in Proposition 3.1 that there exists a C > 0 such that

(57) v(x) = CVoly (B(x; 1)),

uniformly for all x € X. Since x +> 2"“=%) Vol (B,-x) (x € X) is a continuous
function for all n € Ny, it follows that v is a measurable function on X.

LEMMA 4.3. There is a C > 0 such that

€ss sup
xeX

J

foralle € (0,1} and all ¢ € C.(X).

/ Wﬁ(x;y)fp(y)dy‘ < Ce™||@llL,xn-1ax)
X
and

dx < Cs"llel

/ Y )e() dy
X

PROOF. First, if ¢ € (0,1], y € X and n € Ng the smallest number such that
27" < ¢, then ¢ < 27"*', and hence £*~ (Volx (B,y)) 'v(y) < (2")%~% < 24~
Then, it follows from Lemma 4.2 and the volume estimates for small balls B, that
there is a C > 0 such that

Yo y)e(v(y)v (y) dy

ess sup /ws(x;y)w(y) dy’ = ess sup
X

xex xeX supp @

< esssupess sup ¥, (x; V)V @l v
xeX yESupp ¢

< Csd CSSSUP(V01x(Be)’))_lU()’)ll‘PNLI(x;wldx)
yEsuppe
< C2"Me™loll L, ox1do)

forall ¢ € C.(X) and ¢ € (0, 1}, and the first statement follows.
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Next, note that ¥ (g; k) #0 implies that there exists an m € M such that gmk™! ¢
B,, s0, g € B.k. Then, by Fubini’s theorem, Lemma 4.2 and the volume estimates for
small balls B,, there exist C, C, > 0 such that

/ dx 5/(/ w:u;y)dx) o)l dy
X X X

5/( w£<x;y)dx) 0 ()] dy
X B,y

< eSSSUP( wﬁ(x:y)dx> el
B.y

yex

/ Y (x;y)e(y) dy
X

< ess sup C; Voly (Bcy) Volg(Bs.) (Volx (B.y)) ™ ¢l
yex

= C, Volg(Bso) el < Coelllells
forall ¢ € {0, 1] and ¢ € C.(X), and the proof of the lemma is complete. O

By interpolation between L{(X;dx) and L (X;dx), and between L;(X;dx) and
L,(X;v'dx), we get the following Young type inequality for the function ).

LEMMA 4.4. There exists a C > 0 such that

(/

foralle € (0, 1) and ¢ € C(X).

) 172
dx) =< C8(d+dM)/2”(p"Ll(X;v“/de)

f P )eG) dy
X

PROOF. For 6 € (0, 1), let [Z", ¥}y denote the complex interpolation space be-
tween the Banach spaces £ and #/. It follows, as in [17, Theorem 1.15.3, Step 3],
that L,(X;v~"2dx) € [L,(X;dx), L1(X;v™'dx)]y/2, and the embedding is continu-
ous. So, there is a ¢ > 0 such that [|@lli,x:ax).L.0-1d0n,. < <@L, xw-112ax) for all
@ € L (X;v™"2dx). Then interpolation of the bounds of Lemma 4.3 gives

(/

forall ¢ € (0, 1] and ¢ € C.(X). O

/ (53 9)0() dy
X

5 12
dtdy)/2
dx) < Ce“2 0L, xsdxy, L (xv-tdoe

d+dy)/2
< cCgl@tm/ Noll e, ov-12dx)

Let Ly (X;dx) = (I, D(A;) € Ly(X;dx) with norm

4 = max |A%¢||,.
llell2 it IA%ll>

laj<l

Now we are able to derive the desired Nash inequality.
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PROPOSITION 4.5. There exists a C > 0 such that
—(d— 2
lolly < ell@llz + Ce~ 20|l L xv-12dn)

foralle > 0andall ¢ € Ly, (X;dx) N L(X;v™"%dx).

PROOF. Lety : [0, 1] — G bean absolutely continuous path from the identity eto g
with tangents in the space spanned by ay, .. ., a;. Thenthereexisty; € Lo ([0, 1]) such
that dy (y(1))/dt = ZL, i) (Ai)(y (1)) for all y € CX(G) and a.e. t € [0, 1].

Moreover, recall that
L/ d 12
gl = inf f @3] e,
A&

where the infimum is taken over all absolutely continuous paths from the identity e to
g € G. Therefore, if L denotes the left regular representation of G, then

(O U(g))fp)(X)—/ ZV:(I) (L(y (1)) Aip) (x) dt

forall ¢ € C(X) and all x € X. Consequently,

. d 12 4 4 1/2
I = U)ol < f (ny(t)z) (Zumw%) dt
0 \izi i=1

for all ¢ € Ly,(X;dx), by the Cauchy-Schwartz inequality. Then, optimalization
over all possible paths, gives

d 1/2
I — U@)ellz < gl (Z ||A.«<p||%>

i=1
forall ¢ € L, (X:dx). So,if ¢ € L (G;dg) is a positive function with ||¢{; = 1
then

1/2
llp — ¥ *u oll2 < fvf(g)lgl (annz) dg

i=1
forall ¢ € Ly, (X;dx). Since
Nellz < lig — (1, /l1s, ) *u @llz + 11, /11 111) *u @li2

for all ¢ € Ly(X;dx) N L;(X;dx), the proposition follows directly from the Lem-

mas 4.1 and 4.4, and the fact that there is a ¢ > 1 such that
c'e? < Volg(B,) = |11l < c&*

forall € € (0, 1]. O
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5. Kernel bounds

We apply the Nash inequality of Section 4 and the local scaling property of the
volume of Section 3 to derive heat kernel upper bounds for higher order strongly
elliptic operators. The results are from [16, Chapter 4].

Before we prove Theorem 2.8 we need some preparation. If 2™ and % are Banach
spaces then we denote the operator norm of a bounded linear operator 7' : 2~ — % by
Tl 2- 4. In particular, if 2" = L,(X;dx) and % = L,(X;dx), then we abbreviate
IT|2-a by IT|l,-, for a bounded linear operator 7 : & — %

LEMMA 5.1. Let K be a compact subset of G. Then there exists a Cx > 0 such
that g7'B.g C Bc,. forallg € K and ¢ € (0, 1].

PROOF. By [5, Proposition 6.1], there exist &6 > 0 and C > 0 such that for all
8 € {0, gg] and k € B; there exist #;,...,t; € R such that k = exp(Zf’=1 tia,-) and
It;|.< Céforalli € {1,...,d}. Suppose ¢ € (0, g]. Since K is compact there exists
a C’' > Osuch that forall g € K and k = exp ( ZLI tia,-) € B., one has

d d
g kg =exp <Z L Ad(g")a,«) = exp (Z s,-ai) ,

i=1 i=1

where 5, € R with |s;] < C'e forall i € {1, ..., d}, and the lemma follows for small
& > 0. Finally, there exists a @ > 0 such that g7'B,g € By forall g € K. Then
g 'B:g C By,, foralle € (g, 1]and g € K. a

PROPOSITION 5.2. The following two statements are valid:

(@) If S® denotes the semigroup generated by the Laplacian A, then the opera-
tor S® maps L(X;v™"*dx) continuously into L,(X;v~'dx) for all t > 0. Further-
more, there exist a,w > 0 such that ||S*@|| L, xw-12a0) < a €@l xw-12ax) for all
t>0and ¢ € Ly(X;v"2dx).

(I) There exist a, w > O such that

Iz, $20)] < ar™ Rl ng 1Ty xverna
forallt > 0and ¢, v € L, (X;v™"?dx).
PROOF. First we show that there exist C, n > 0 such that
(58) Cle™ < v(gx)v(x)™' < Ce™
forall x € X and g € G. Note that by Lemma 5.1 there is an ny € N such that

Voly (B.gx) = Voly(gg ' B.gx) < Volx(gBc.x)
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foralle € (0, 1], g € B; and x € X, where C = 2™. Then
Volx (gBcex) = / lgex(g7'2)dz = f 18.x(2)R(z, 8) dz < Cr Volx(Bc,x)
X X

foralle € (0,1), g € By and x € X. So,
Voly (Begx)e™ =) < CrC? ™ Voly (Bcex)(Ce) ™=
foralle € (0,1)], g € B; and x € X. Then

v(gx) < inf 2"~ Voly (B gx)

< ,}Ef Ckzno(d—du) Volx(ano-nx)Z‘""“’"““’M) < CRZ"O(d“dM)v(x)
forall g € By and x € X, and the Statement (58) follows from iteration. Hence, Uisa
continuous representation in the space L;(X;v™"/2dx). So, the Statement (I) follows
directly from general semigroup theory.

Next, let Hy = A+ 1, and let T be the semigroup generated by the closure of H,,
where u denotes the ellipticity constant. Since Hp generates a continuous holomorphic
semigroup on L (X;v~"/2dx), by [15, Theorem L.5.1], there exist a, @ > 0 such that
TN -2 doys L2 axy < ae® forall + > 0. Let C be the Nash constant as in
Proposition 4.5. Let ¢ € L(X;dx) N L, (X;v""*dx). Then

d 2u | Tl
—ITell; = —2Re(Top, HoT9) < =2ulITpll3, < —— ——mgr—
dt C Tl s,

2u (|| T3+ d=dw
T O A (d—dn) At [(d—dy) &/ (d~day)
Ca " eA‘” " ”(pllL;(X:v“/zdx)

for all t+ > 0. Therefore,

d s |
E(Ilwni) H=d) — (I T3y~ -2/ ’Inwn%

d—dy
> o ol et
- (d _ dM)Ca4/(d—dM)e4wr/(d—dM) Pl L1 dx)

and by integration,
Tl = (| Te3) Y )

4p
—deot/(d—du) | 1 ~4/(d—du)
= t(d —dy,) Ca®l@=du) € (177 ey A,

forall + > 0. Since Lo(X;dx) N L,(X;v""%dx) is dense in L,(X;v""2dx), there
exist @, w > O such that ||S2¢ll, < at™“@®/e“||p|l L (xp-1245) for all 1 > 0 and
@ € L (X;v " 2dx).
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Let My @ Li(X;dx) — L(X;v""%dx) denote the multiplication operator de-
fined by M,z = v'/2¢p for all ¢ € L,(X;dx). Then there exist a, w > 0 such that
1SAM,r 1oz < at=@=9/4e forall t > 0.

Next, the dual (M,12)* : Loo(X;v72dx) — Lo (X;dx) is given by (M,i2)*¢ = ¢
forall ¢ € Lo(X;v™"2dx). Moreover, the dual

(S 1 Ly(X;dx) = Loo(X; v 2dx)

is given by (§2)*¢ = v'/?S§%¢ for all ¢ € Ly(X;dx) and ¢t > 0. So, there exist
a', o > 0such that [v2820]l = |(My2)*(82)*@llee < a@'t™@/4e% | ], for all

¢ € Ly(X;dx) and t > 0. Therefore, there exist a, w > 0 such that
1025802 pll < @' @71y 5P 0! gl < a0
for all ¢ € C.(X) and t > 0. Hence,

(T, PO < Tl Lyoxivrzan 10728 01 207 20 o

—(d—duy)/2
< at™ W2 o)l L ocu-ran T Ly ey

for all ¢, T € Ly(X;v™"*dx) and ¢t > 0, and Statement (II) follows. The proof of
Proposition 5.2 is complete. O

Together with the bounds in Proposition 3.1 the bounds of Proposition 5.2 are the
main ingredients in the proof of the Gaussian bounds for strongly elliptic operators
stated in Theorem 2.8.

PROOF OF THEOREM 2.8. First, we assume that S = 1. Our first goal is to show
that for all o, 8 € J(d) and p € {1, o} there are T, a, ® > 0 such that

(59)

/ (A*RPi) (& k) VY OVD ok 1(8) dk dg
X JX

< at—(d—-du)/("l?)t—(la|+lﬁl)/new(l+ﬂ“)! -1/2

.
o™ 20l ¥ ¢,

uniformly forall r € (0, T, ¢, T € C.(X), p € R and real-valued ¢ € Cp.oo(X) with
Z:’:l |B;w|* < 1. Since v is positive it suffices to show (59) for all T > 0 only.

The proof is virtually similar to the proof of [6, Proposition 4.2], but differs
at essential points. For all ¢ : X — C define the function n*¢ : G — C by
(r*e)(g) = ¢(g). In [6] the group M was compact and it was sufficient to use the
lifting 7*. But now M is not necessarily compact anymore. In order to circumvent
convergence problems, we need an alternative lifting. By [10, Lemma 3.2], for all
t € C.(X) with T > 0, there exists a continuous function 7°t : G — [0, 00) with
compact support such that t(g) = f,,(7°t)(gm)dm forall g € G.
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Now, leta, B € J(d) and p € {1, oo}. First, the reduction formula of Proposi-
tion 2.7 gives

(AR K)(gm™'k™")
u  (p(g)p(km))'/?

(A RP)@ k)= Y ds Ag(m™'k™"ydm

(y.8)eLb(B)

forall g,k € Gand t > 0. Let 9,7 € C.(X), p € R, ¥y € Cpe(X) real-
valued, and suppose that ZL, |B;y|*> < 1and T > 0. By (7) there exist C > 0
and n > 0 such that C'e™"8 < p(g) < Ce"® for all g € G. Moreover, there
exist C',n’ > 0 such that (C') e ¥ < Ag(g) < Ce"'® forall g € G. Let
H(8) = X seLvip) ds(A*R” K,)(g). By the Gaussian estimates for A*RY K, the
function

ri= H(hr™") P CTIOEND (220) (r) (m°T) (h) 0 () T2 p (W) P AG(rTY)

belongs to L,(G; pdg) forall h € G and t > 0. Therefore, Lemma 2.2 (I) gives

(60) / Hi(hr=")eP T VOO (000N () (7Y (R) (0 () p (1)) LA (r~) dr
G

_/ fxf(hm—'k-')Aa<m-'k-‘)
“Ilu  (plem)p(h))'2

= / (A®RP k) (h; k) P @ VI ®~V®) o fy df () (h) p (k)
X

ep((ﬂ’\l/)(h)ﬂﬂ(i))(p(];) dm dlé(n"r)(h)p(h)

for all A € G. Next, the function
h> (n°t)(h) 79" f (A*RPk) (s k) p(Kye ¥ ® dik
X

belongs to L;(G; p dg), because the support is a bounded subset of G. Therefore,
Lemma 2.2 (II) and (60) yield

(61) f/‘%/,(hr“‘)eP(("'\l/)(h)—(n'W)(r))
GJG
x (e)(r) (T (R (r)p(h) * A (r~") dr dh

= [ [ Ry VO gy de ey p )
GVX

— // f(A"R"K,)(g;I%)e”‘w‘*"w“’)w(li)dl&(n"r)(gn)dndg
XJMIX

= f / (A" RPic,) (g k) er Y OV O (k) dk f (°t)(gn)dndg
xJXx M

- / / (A% RBk ) by Y OV Oy (3) dk d g
X JX
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forall ¢ > 0. N
Secondly, it is clear that (A;(w*y))(g) = (Biy)(g) forall g € G and i €
{1,...,d}. So, Y0, |A;(r*¥)[* < 1. It follows that

(¥ (g) — (w*¥)(h)| < |gh™|

for all g, h € G. From [15, Theorem II1.4.8] and an elementary transformation to
rewrite the right derivatives in terms of left derivatives and an exponential function,
one deduces that there exist a, b > 0 and @ > 0, depending on ¢, 8, such that

- - n =1y 1/(n=1)
IJK(g)I < at (d+lal+lﬂl)/new1e 2b(Ig1"t™Y)

forall g € G and ¢ > 0. Therefore, it follows from (61) that

/ /(AaRﬂK,)(g;l&)e”("'(g)“w"”(p(l'c)t(g) d/;dg
x Jx
< / / ap~@HaHB/ A gt ,=2b(lRr~! "= HVED p((r ) ()= (w*¥)(r))
GJG
x |(*@) (NI (°T) (M) (p(r)p(h)) *Ag(r~") dr dh
Sat—(d+|a|+|ﬂ|)/"ewt//e—Zb([hr"I"t")‘/(""’elpllhr‘ll
GJG
x (o)) ) (W) (p(r)p(h) *Ag(r~") drdh

for all t > 0. Using the estimate —b(|hr~"|"t=1)/"=D 4 |pl|hr~!| < w,p"t for all
t>0andh, r € G, where w, = b~""Y(n — 1)*'n=", one deduces that

f / (A?RPi,)(8: k) VOV O (ke () dik dg(
XJXx

< gt~ (@HalHB/n gwrtwupt
x /G /G e M G o) (DI D (W (o (1) p () P AG(rY) dr dh
for all t > 0. Therefore, it remains to estimate
e / / eI () ()] (27T (R) (p(r) p(h) P Ac(r™") dr dh.
GJe
Note that the repeated integral is finite by (7) and the fact that the support of 7“7 is

compact.
Thirdly, for all j € Ny, define the annuli €2; by

Q/ ——-{(r,h) € GX Gj < |hr—l|nt—l <] + l}
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Let dv; (r, h) denote the measure on §2; induced by dr dh. Then
/ () (r)|(°t)(h)
GVvG

/7 gb((hr=Tj7=1)}/in~1 (p(r)p(h))l/zAG(r-l) drdh

(o) * 0 h
-2 e (o) 8.6~y v r, )
j=0 V%

oo dj2 (G 2/ny=d * 0
52U e (e o) (r) (rOT) ()

1/2 -1 )
= 2 S [ g (0(r)p(r)) ' Ag(r™) dv; (r, h)

J

yosel [ [leeioierou

t"/"e”f 1n=1) s;l/zelh,—liz_‘.l-l

1A

(p(ph)'Ac(r~)drdh,

j=0 GJG

forall ¢+ > O, where s; > Oforall j € N,.

Fourthly, let K2 and 2 denote the Lie group kernel and reduced heat kernel of the
semigroup S* generated by the Laplacian A = — ZL, A?. By [15, Theorem I11.5.1],
there exist @, ¢ > 0 and @, > O such that s~#/2¢78™" < g K2(g) forall s > 0
and g € G. Then, it follows from a similar reduction procedure as used in (61) that

62) f |(T* @) (NI (T 1) (h)
GJG

2 -1
T e (PP A0 dr dh
J

Saew..\-,//I(Jr"fp)(r)I(ﬂ"r)(h)Kﬁ,(hr")(/o(r);O(h))”zAc(r“)drdh
GJG
=ae"’""’/fxﬁ,(x;y)W(y)ldyr(x)dx=ae“""’(r, Ses; 9D,

X JX

where s; > 0 for all j € Np. Note that the first equality is valid, since 7 is positive.
Then, by the bounds of Proposition 5.2, there exist a > 0 and w > 0 such that

/ (o) ()| °T)(h)
G

G td/”ebuh,-llnrl)u(n—l)

(63) (p(r N *Ac(r~"ydrdh

oc sl_f/Ze((j+l)l)3/"sj_'ew.\',
< a} : j _ -1/2
- dfn phj V= (d—du)/(2p)

o tne 5;

el ™ ',

v

uniformly for all s;,5,,... > 0,7 >0and ¢, t € C.(X) witht = 0.
If we now take the choice s; = (j + 1)!/"~Vr¥" > O forall j € Ny, then

Sld/le«j +hnes! e G + 1)~ (d=d)(P)/Qn=1) of HNIIIOD (g DY

t/n gbi m,,_ns@—d,w)/(zp) - el VY pld=du)/ (np)
J

. (= _ P 2n=Y/tn=1y _y~1p:1/in-1
(1 + l)(d (d—dy)/p)/(2n I))e(;+l) 271y
<

- t(d—dM)/("P)
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forallj > 1and ¢t > 0 with 2wt¥" < 2~'b. Moreover, if j = 0, then

sjd/zg((/ +D0¥s pws; ( + 1)d=d=d)/[p)/Qn=) g +1¥"V0D g +1) =02l

£/ ghj Vo-v g (d=du)/Qp) T el VY pd—dy)/ (np)
J

< el+4"bt—-(d—dM)/(np)

for all t > O with 2wt¥" < 2-'b.
Since2/n — 1/(n — 1) < 1/(n — 1), it follows that

o
M = 70 4 37 4 1) dlp QD) g N2

j=1

’

and

(p(Np ) PAg(r"drdh

/ (@) (NI °T) (k)
GJG

tdin gb(lhr=t{rs=1)}/ o=

—(d—d, -1/2 27t p-!
< aM @R |y 12| 10 P 1,

forall t € (0, ((4w)~'b)"?] and @, T € C.(X) with T > 0. Hence, (59) is valid.

Let U, be the multiplication operator with e™*V and let 8, = (i, ..., ;) € J(d),
whenever 8 = (iy, ..., it) € J(d). Then, it follows from (59) with p = 1 that, for all
a, B € J(d) there exist ¢y g, T, g, wy g > O such that

—1,.1/2 .
” Up v / AaSlAﬂ UpIIL;(X;U"”dx)—»Lm(X;dx)

— ” Up—lvl/ZAaStAﬂ.vl/Z Up”l—-»oo < Ca'ﬁt-(la'+lﬂ|+d_dM)/"ewu‘ﬂ(l-’—p")’,

uniformly for all + € (0, T, 4}, p € R, and real-valued ¥ € C;,(X) such that
Zle |B;y|* < 1. Moreover, it follows from (59) with p = oo that, foralla, 8 € J (d)

there exist ¢, 4, T, 4, @, 5 > O such that

—1 .
” Up AaSlAﬂ Up”L.(X;v“/de)—>L1(X:U'I/de)
S .., 1/2
= | U v PAYS, AP R U |1y

< C;'ﬂt—(lalﬂﬂl)/" eﬂ’L,p(Hp")l

forall t € (0, T, ;], p € R and real-valued y € Cp00(X) with Z;i:, |Br)? < 1. In
particular, there are a, T, w > 0 such that

-1 —1,,-1/2 1/2 1+p"
(64) I U,, S Up”Ll(X;v"”dx)—»Ll(X;v“/zdx) = || Up v~V Sv / Up”l—»l = ae” TP

forallt € (0, T], p € R and real-valued ¢ € Cp00(X) with ZL, |B;y|* < 1. Hence,
by iteration, and enlarging a, w if necessary, it follows that (64) is valid for all r > 0,
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p € R and real-valued ¢ € C,»(X) with Z}L] |B;iy|* < 1. Then the semigroup
property gives

Il U,,_lvl/zA“S:Aﬂ'vl/Z U lhsoo
1,12 -1
<hU v A%, Upll Ly X-1rdxy> Loy (X | U So UpllL, (xiv-17dx)— Ly (xiv-12dx)

-1 3
X ” Up SlgAﬂ Up”L.(X;v“/zdx)—>L,(X;v“/zdx)

forall ), 5,5 > Owith t; + 6, + & = ¢, p € R and real-valued ¥ € Cpo(X) with
Z;:_] |B;¥|? < 1. Then, for all @, B € J(d) there exist a, w > 0 such that

I Up_lvl/zA" S,AB‘UUZ U,, oo < at—(la|+lﬂ|+d—du)/new(1+p")r

forallz > 0, p € R and real-valued ¥ € Cp..o(X) with Z‘f:, |B;y1* < 1. Minimizing
first over ¥, and then over p, one observes that forall o, 8 € J(d) thereexistsab > 0
such that

“1)l/a-1)

(65)  [(A"RPk)(&: k)| < av(g)™ /2o (k)™ 2y (P duo/n gt gmbldiihr

forall g,k € Gand ¢ > O.

Finally, it follows from (57) that we may replace v(g) and v(lE) by Volx(B(g; 1))
and Voly (B(k; 1)), respectively, in the bounds (65), and the proof of Theorem 2.8 is
completed for § = 1. If § # 1 then the proof is almost the same. Note that we get an
extra term S(k, gm~'k~") in the reduced expression but this term does not cause any
convergence problems in the above argument, because, by (12),

|S(ic, gm"k“)l < C " Ugl+iml+1k))

forall g,k € G and m € M. Moreover we obtain similar estimates as (62), but
now with the Laplacian semigroup S, where A is the Laplacian associated to the
representation U defined by the cocycle |§| instead of § = 1. Fortunately, for
this semigroup the estimates in Proposition 5.2 still hold, and the theorem follows
immediately. a
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