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Abstract

Let a\,..., ad be a basis of the Lie algebra g of a connected Lie group G and let M be a Lie subgroup
of,G. If dx is a non-zero positive quasi-invariant regular Borel measure on the homogeneous space
X = G/M and S : X x G - > C i s a continuous cocycle, then under a rather weak condition on dx
and S there exists in a natural way a (weakly*) continuous representation U of G in Lp(X\dx) for all
P e [l,oo].

Let A, be the infinitesimal generator with respect to U and the direction a, for all i 6 { 1 , . . . , d). We
consider n-th order strongly elliptic operators W = 5Z C«-A" with complex coefficients ca. We show that
the semigroup S generated by the closure of H has a reduced heat kernel *: and we derive upper bounds
for K and all its derivatives.

2000 Mathematics subject classification: primary 43A85, 22D30, 22E25, 22E45, 35KO5.
Keywords and phrases: reduced heat kernel, homogeneous space, quasi-invariant measure, Gaussian
estimate, strongly elliptic operator, cocycle representation.

1. Introduction

We analyze Gaussian bounds for the heat kernel of the semigroup generated by a
strongly elliptic operator on a homogeneous space. Gaussian estimates for kernels
associated to various kinds of semigroup generators have been deduced, amongst
others, for second-order elliptic operators on domains in K", by Davies [3]; for the
Laplace-Beltrami operator on complete Riemannian manifolds by Li and Yau in [11];
for the Laplace-Beltrami operator on a complete Riemannian manifold with non-
negative Ricci curvature by Davies [3] and Grigor'yan [8]; on a non-compact manifold
with Ricci curvature bounded from below by Grigor'yan [8]; for subelliptic operators
which are sums of squares of Hormander vector fields on compact manifolds endowed
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with a Radon measure by Jerison and Sanchez-Calle [9]; for weighted subcoercive
operators on a Lie group [5] and for strongly elliptic operators on a homogeneous
space G/M, with G unimodular and M compact, endowed with the G-invariant
measure on G/M [6]; for elliptic operators on Lie groups using Harnack inequalities
by Varopoulos in [18]; for sublaplacians on nilmanifolds and homogeneous spaces
X = G/M with G and M unimodular by Maheux [14]; for elliptic operators on
amenable Lie groups and certain homogeneous spaces by Lohoue and Mustapha in
[12]; for elliptic operators on Euclidean spaces by Aronson [2]. Our aim is to deduce
Gaussian estimates for the heat kernel associated to a strongly elliptic operator on a
general homogeneous space G/M endowed with a non-zero positive quasi-invariant
regular Borel measure. The strongly elliptic operators are affiliated to the natural
representation corresponding to this quasi-invariant measure, a continuous cocycle
S : X x G -» C and translations. Note that the Lie groups G and M need not be
unimodular and M is allowed to be disconnected but still a-compact. Further note
that the class of operators and the class of representations considered in this paper are
quite large. The Radon measures considered in [9] are replaced by quasi-invariant
measures in this paper.

If K is the heat kernel of the semigroup generated by the Laplace-Beltrami operator
on a complete non-compact Riemannian manifold X with Ricci curvature bounded
from below then Grigor'yan proved that there exist a, b, u> > 0 such that

(1) K,(x;y) <arN/2ea"(Wo\x(B(x;l))Vo\x(B(y;l))ri/2e-bd(^)2r'

uniformly for all x, y e X and t > 0, where d denotes the Riemannian metric on X and
N is the dimension of X (see, for example, [8, page 445] and [11]). On the other hand,
in [6] we derived Gaussian bounds for the heat kernel K of the semigroup generated
by an n-th order strongly elliptic operator affiliated to the left regular representation
of a unimodular Lie group G in a homogeneous space X = G/M, with M compact,
endowed with the G-invariant measure on X. More precisely, there exist a, b, a> > 0
such that

(2) Mx;y)\ < a r"/«eMe-weo->"r-')"<~1>

uniformly for all x, y e X and t > 0, where d is the path distance on X associated
to the vector fields induced by the left regular representation of G on X and N is the
dimension of X. In this paper we drop the assumptions on G and M and (therefore
also) the G-invariance of the measure on X (see also [12]). For the sublaplacian on
homogeneous spaces X = G/M with G and M unimodular, similar Gaussian bounds
were derived in [14]. Let dx be a quasi-invariant measure on X. Under a rather weak
condition on the measure dx there is a continuous representation of G in L2(X;dx),
which can be extended to all the Lp -spaces. In the main theorem of this paper we
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prove that the semigroup generated by an rc-th order strongly elliptic operator has a
heat kernel K and there exist a,b,co > 0 such that

(3) \ic,(x\y)\ <arN"'e'0' (Volx(B(x; l))Volx(B(y; 1)))"1/2
 g-*WCx;,)"r')"<->

uniformly for all x, y e X and t > 0, where d denotes the path distance on X
associated to the vector fields induced by the left regular representation of G on X, N
is the dimension of X, B(x; 1) is the d-ball with center x and radius 1 and the volumes
are with respect to the quasi-invariant measure dx. Compare these upper bounds with
the kernel estimates deduced in [12, 14]. In general, the volume factor

in (3) is necessary and bounds of the form (2) are not valid in general. There already
exist examples of quasi-invariant measures dx on K for which (2) does not hold
whereas (3) is still valid. Alternatively, the bounds (3) are in general sharper than the
bounds in the situation of (2). Note that one has an exponent —1/2 in the volume
factor, even for n-th order operators, as in the upper bounds (1) of Grigor'yan and Li
and Yau.

The infinitesimal generators associated to the continuous representation are sums
of a vector field and a potential. The potential is caused by the quasi-invariance of the
measure dx on X and the cocycle 5.

The proof of (3) for the Laplacian is via a Nash inequality and for higher order
operators with the aid of a reduction formula. The Nash inequality, which we deduce
in Section 4 via a Young inequality, involves a quotient between rN and the volume of
balls of radius r, where N denotes the dimension of X again. In Section 3 we deduce
a scaling property which determines this quotient. The reduction procedure to obtain
the Gaussian bounds (3) for all (higher) order operators is established in Section 5.
Moreover, we deduce Gaussian bounds and reduction formulas for all derivatives of
the heat kernel K.

2. Preliminary notation and main results

In this section we introduce some preliminary notation and conditions which ensure
the existence of nice representations and reduced heat kernels. We also state the main
results of the paper. The results of this section are from [16, Chapter 2].

Throughout this paper let G be a d-dimensional connected (possibly non-unimod-
ular) Lie group with (left) Haar measure dg and modular function A c and M a
<iw-dimensional Lie subgroup with (left) Haar measure dm and modular function AM.
Note that G and M are both closed (possibly non-unimodular) a -compact topological
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groups, and that M is not necessarily connected. Consider the homogeneous space
X = G/M. For all g € G we denote by g the left coset gM. Let dx = dg be a
cr-finite quasi-invariant non-zero regular Borel measure on X, that is, dx has the same
null sets as all the left translates of dx. If X is compact then dx is a finite measure.

By the Radon-Nikodym theorem, there exists a function R : X x G -*• (0, oo) such
that for each g e G the function x i-> /?(*, g) is Borel measurable, for all cp e CC(X)
the function x y-+ <p(x)R(x, g) belongs to L\{X\dx), and,

f <p(g-1x)dx= I (p(x)R(x,g)dx.
Jx Jx

In the sequel we only consider quasi-invariant measures dx for which there exists a
continuous function /? : X x G -> (0, oo) such that

(4) f <p(g-]x)dx= f <p(x)R(x,g)dx
Jx Jx

for all g e G and (p e CC(X). For each g e G, the function x i->- /?(;c, g) is bounded
from above and bounded away from 0 on compacta in X, and hence the right-hand
side of (4) makes sense for all <p e CC(X). Then it follows that

(5) R(x,gh) = R(hx,g)R(x,h) and R(x, g)~x = R(gx, g"1)

for all x e X and g, h e G, and therefore R(x, e) = 1 for all x e X. The relations (5)
mean that R is a cocycle.

Let a\, . . . , aA be a fixed basis of the Lie algebra g of G such that a\,..., adu is a
basis for the Lie algebra m o f M . The modulus | • | on the Lie group G is defined by

where the infimum is taken over the set of all absolutely continuous paths

d

Y : [0, 1] -»• G such that y(0) = e, y ( l ) = g, and y(f) = Y^

for a.e. / 6 [0, 1], where A i, . . . , Ad denote the vector fields induced by the infinitesi-
mal generators in the directions a\,..., ad with respect to the left regular representation
of G in Loo(G; dg). The modulus on M, denoted by | • \M, is defined analogously. Let
Be = {g e G : \g\ < s} and BeM = [m e M : \m\M < e] be the corresponding balls
for all e > 0.

In order to construct continuous representations leaving all Lp-spaces invariant,
and to define reduced heat kernels, in the sequel we demand R to satisfy the following
condition.
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There exists a CR > 1 such that

(6) Cgl<R(x,g)<CR

for all x e X and g e Bu

Throughout this paper, let CR be the constant as in (6). Clearly, (6) is valid if X is
compact. It is easy to show that there exist C, r] > 0 such that

(7) (TV1*1 < R(x,g) < Ce"[gl

for all x e X and g e G.
The following lemma will be used frequently in this paper.

LEMMA 2.1. If g e G and <p : X -> C is a measurable function then the following
conditions are equivalent:

(I) <p e L,(X;dx).
(II) x i-> cp(g~{x) belongs to Lx(X\dx).

(Ill) x i-> <p(;c) /?(JC, ^) belongs to L^X^dx).

Moreover, if one of the three conditions is satisfied then (4) is valid.

PROOF. The lemma follows from (4), (7) and approximation. •

The following two lemmas play a key role in this paper. For proofs we refer to [10,
Lemma 3.3, Lemma 3.10, Theorem 3.11] and [10, remark on page 349].

LEMMA 2.2. Given the measure dx and the corresponding continuous function R,
one can construct a unique continuous function p : G —> (0, oo) with the following
four properties:

(I) If g 6 G andm € M, then

g P(gm) _ AM(m)

P(g) ~ AG{m)'

(II) If (p : G —> [0, oo) is measurable, then the function <£> : X H* [0, oo] given
by $(#) = fM <p(gm) dm(g € G) is well defined, and cp e L\(G; p dg) if and only if
<t> e Li(X;dx). Moreover, ify> e L\(G\pdg), then

(9)

(HI)

(10)

for all

The function

g,keG.

/ <P(g)P(g)dg
JG

p satisfies the identity

R(k, g) =

= / <&{x)dx.
Jx

P(gk)

P(k)
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LEMMA 2.3. Let M be a Lie subgroup of a connected Lie group G with modular
functions A^ and Ac, respectively. Then the following two statements hold.

(I) If p : G —*• (0, oo) is a continuous function, which satisfies (8), and R is
defined as in (10), then there exists a (up to constant) unique quasi-invariant regular
Borel measure dx on X satisfying (4).

(II) There exists a (in general not unique) C°°-function p : G -> (0, oo) which

satisfies (8).

Let S : X x G —> C be a continuous cocycle, that is, S(x, gh) — S(hx, g) S(x, h)
and S(x, e) = 1 for all g, h e G and x e X. Throughout this paper, we assume that
there is a Cs > 1 such that

(11) CJ1 <\S(x,g)\< Cs

for all JC € X and g e B\. Note the similarity between S and R. There exist C , n' > 0
such that

(12) (Cr1*"*1"1 < \S(x, g)\ < C e"'M

for all x e X and g e G. By (7), (12) and Lemma 2.1 we can introduce for all
p € [1, oo] the representation U of G in Lp(X;dx) by

(13)

for all »̂ 6 / , , ( )
Since the map g i-> (/(g) is locally bounded on each Lp(X;dx) with p € [1, oo],

and Cf(X) is dense in each Lp(X\dx), one deduces the following proposition for
p e [1, oo). The case p = oo is obtained by duality.

PROPOSITION 2.4. 77ie representation U is strongly continuous in Lp(X\dx) for
all p € [1, oo) and weakly* continuous in Loo(X;dx). Moreover, U is a unitary
representation in L2(X;dx) if\S\ = 1.

For / 6 { 1 , . . . ,d), let At = d(J(aj) denote the infinitesimal generator in the
direction a, affiliated to the representation U, that is, the infinitesimal generator of
the one parameter group t i-> (/(exp(-ra,)). We also need multi-indices notation.
For N e H, let J(N) = © ^ o U - • • • - W}* .denote the set of all multi-indices over the
index set {1, . . . , N}. If a = (iu ..., ik) € J (d) then we set A" = A,, o- • -oAik, and,
we denote by \a\ = k the length of the multi-index a.

Let n 6 N be even, and for all ce e J (d), with |a | < n, let ca e C. We consider the
operator H = ^.a€j(liyM<n caA

a, affiliated to the representation U in (13), and with
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domain D(H) = C\a€j(d).M<n D(Aa). The operator H is called an «-th order strongly
elliptic operator if there is a (A, > 0 such that Re(-1)" / 2 J2aejw-.\a\=n c<*%" - l£ I" for all
f € W, where %a = £,, •• •£,, for all a = ( i , , . . . , i4) € 7(d). By [15, Theorem 1.5.1],
the closure of H generates a continuous semigroup S = S,. Moreover, for all f > 0
there exists a smooth fast decaying Lie group kernel K, e L{(G;dg) such that
S,<p = fG K,(g) U(g)<p dg for all <p e U~=, Lp (X\dx). _

In order to show that the semigroup S = S, generated by H has a continuous heat
kernel K : X x X —> C we need some preparation. The following lemma will be
applied several times in this paper.

LEMMA 2.5. Let f : G —>• C be a measurable function and a, b > 0 such that

I/O?) I 5 ae""'1" " for all g e G. Then the following three statements are valid:

(I) 77ie integral

(14) / / (sm-1*-1) S(k, gm-lk-1) (p(g) p(km))-1/2Ac(m-lk-1) dm
JM

exists for all g,k 6 G.
(II) There exists a function F : X x X —> C 5«c/i

'""1*"1) (Pte)

forallg,k e G.
(Ill) If Y is a compact subset ofX then the function F is bounded on Y x Y.

PROOF. There exist C, r) > 0 such that

(15)

for all k € G and m e M. Moreover, since p(km)~l = p(e) '/?(<?, km) ', it follows
from (7) that there exist C, r\ > 0 such that

(16) p(km)~l < Ce"lkmi

for all k 6 G and m e M. Further, it follows from (12) that

(17) \S(k, gm^k~l)\ < C e*'Me"'ikml

for all g,k e G and m e M.
Now, let g € G. Since |itw| < |gm~'Ar'| + |g| for all m e M and k e G, and

(a + fc)x < 2x(ak + bx) for all A. > 0 and a, b > 0, it follows that

4-ir/(«-i) + |f|«/(-i)
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for all m e M and k e G. Therefore, it follows from (15), (16) and (17) that there
exist a', V > 0 such that

M

<

S(k, gm~lk-l)\ (p(g) p(*m))-1/2Ac(m-IJfe-1) dm

/2 ( e-vW^'dm
JM

for all k e G. Statement (I) is proved, if we can show that <J> (k) < oo for all k e G,
where

./M
(18)

for all k e G. Let /: € G. It is clear that

\m\"l{n-l) < (\km\ + IJtl)"^"-0 < 2"/("

<4|Jkmr/ ("-1 )+4|Jk|" / ( B-1 )

for all m 6 M. Therefore,

for all m 6 M. It follows that

(20) *(£) < e*''*'"""-

We next show that there is an r] > 0 such that Volw(M n Br) < «I|r for all r > 1. Let
/• > 1. Then there exist N € N and g i , . . . , gN e G such that g\B\n,..., g^fii/4 is
a maximal set of disjoint balls with radii 4"1 in B2r- Suppose that there is a g e Br

such that no g\,..., gN is contained in gBi/2- If i € { 1 , . . •, N} and h e j?,S1/4, then

I«-'A| > l«"'ftl - \87lh\ > 2-1 - 4"1 = 4 - \

and ^Si / 4 c Blr is disjoint from all g\B\n,..., gwBi/4- Therefore, g\B\/2,...,
gsB\ii cover Br. If a = Volc(B1/4), then it follows from the disjointness of the balls
g\ Bi/4, . . . , gNBi/4, and the left invariance of dg, that

yVa < Volc(B2r).

But, there exists a 0 > 0 such that Volc(S.,) < ^ s for all s > 1. Hence, JV < a" ' e M r .
Furthermore,

A/ N

M n Br c M n | J g,-B1/2 = (J(M n gl.flI/2).
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If i e [1, . . . , N},m0 e A/ r ig ,B, / 2 andm € A/n# ,5 i / 2 , then WQ 'm € M(lB^2Bi/2 c

Mn5i , and hence Afn^(5i/2 c mo(Mr\B\). Then it follows from the left invariance
of the Haar measure dm, that there is an r\ > 0, independent of r, such that

Volw(M D Br) < N VolM(M n 5,) < Volw(M n B\)a-Xe26r < en''.

Hence, it follows from (20) that

' dm

-e 2^ JMnB
 e

oo

and hence ct>(̂ ) < oo for all k e G, and Statement (I) follows immediately.
Next, one can define the function F : G x G —> C by

for all g,k e G. S i n c e F(gmu km2) = F(g, k) for all g,k e G a n d m\,m2 e M,

the function F : X x X —> C, given by F(g, £) = F(^, yt) for all g,k e G, is well
defined, and Statement (II) follows directly.

If Y is a compact subset of X then, by [10, Lemma 2.4], there exists a compact
subset K of G such that K is mapped onto Y by the natural projection map from G
onto X = G/M. Since F is bounded on K x K, it follows that F is bounded on
K x Y, and Statement (III) follows. This completes the proof of the lemma. •

By [15, Theorem III.4.8], there exist a, b > 0 and co > 0 such that

(21) \K,(g)\ <ard"lea"e-b^nr')""""

for all g e G and t > 0. So, by Lemma 2.5 (I)—(II), one can define, for all t > 0, the
function K, : X x X -> C by

(22) *,(£;£)=

for all j , t e G .
We call the function K, the reduced heat kernel of the semigroup S = S, because of

the following identity.
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PROPOSITION 2.6. Ifp e [1, oo], <p e Lp(X;dx) and t > 0, then

(S,<p){x)= [ K,{x;y)<p(y)dy
Jx

for a.e. x € X.

PROOF. Let xj/, <p e CC(X) and t > 0. Then

(Vr, S,<p) = / K,(g)W, U{g)<p)dg = 1 1 K,(g)W&JWg)<P)(x)dxdg.
JG JGJX

Since U is a continuous representation in L2(X;dx), it follows from the Cauchy-
Schwartz inequality that there are C > 1 and r) > 0 such that

dx <\K,{g)\W\i\\U(g)<ph

dxdg<cx>.

K,(gW(x)(U(g)<p)(x)

for all g e G. So, it follows from (21) that

I [ K,(
JG Jx

Then Fubini's theorem gives

(23) W,S,<p)

= I Tig) I K,(k)S(k-1 g,*)^,*-1)1/2^*""1 g)dkdg
Jx JG

jik) f K,(k-l)S(kg,k-l)R(g,k)i/2bcik-l)tp(kg)dkdg
JG

= f Tig) f Kl(gk-l)S(k,gk-i)(p(k)p(g)y^2Ac(k-lMk)p{k)dkdg.
Jx JG

By (7) there exist C, r) > 0 such that

(p(k) p(g))-1'2 = pie)'1 R(e,kyl/2R(e, gyl/2 < p(e)-]C enm+l*n,

and A G Ot~ ' ) < C enW for all g,k e G. Moreover, it follows from (12) that

\S(k,gk~l)\ < C
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for all g, k e G. Hence, it follows from (21) that the function

belongs to L, (G; p dg) for all g e G. Then (9) and (23) give

(24) (f, S,cp) = I J{g~) f ( f K,(gm-xk-x)S(k\ gin"1*"1)
Jx Jx \JM

x (p(g)p(km))-i/2AG(m-lk-')dm) <p(k)dkdg

= I ty{x) / K,(x;y)<p(y)dydx
Jx Jx

for all t > 0 and <p, f e CC(X).
Since CC(X) is dense in Lp(X;dx) for all p e [1, oo], it follows that (24) is valid

for all cp e Lp(X;dx) and \j/ 6 Lq{X\dx), where p~l + q~x = 1, and the proof of
the proposition is complete. •

The function t \-+ K,(X\ y), with x, y e X fixed, extends to a holomorphic function,
since 5 = 5, is holomorphic (see also [1, Theorem 3.1]).

Now, we discuss the regularity of the reduced heat kernel K,. We need some
notation. Consider the contragredient

representation of U in each Lp (X;dx) defined by

{U(g)<p)(x) = S(x, g-^ROc, g-x)x'Mg-Xx) (a.e. x e X)

for all <p e Lp(X\dx). For all / e {1, . . . , d}, let R,-denote the infinitesimal generator
in the direction a, affiliated to U. The left derivative in the direction a, on the Lie
group G is denoted by At and the right derivative by /?,-. If /6 6 J(d), then by Lb(/3)
we denote the set of all (y, S) e J(d)2 such that y is a multi-index obtained from yS
by omission of some indices and 8 is the multi-index formed by the omitted indices
(see, for example, [4, page 747]). Moreover, if S = (j\, ... ,ji) e J(d) then we
set ds = (Rj, AG)(e) • • • (RjlAG)(e). Next, we show that, for fixed t > 0, the heat
kernel K, is pointwise C°° in the second variable, with respect to / ? , , . . . , R,i, and,
moreover, if ft € J(d) and Rp denotes the pointwise (multi-)derivative, with respect
to the second variable, then R^K, is pointwise C°° in the first variable, with respect
to the infinitesimal generators A\, ..., Aj. Further, if a, ji e J(d), A" denotes the
pointwise (multi-)derivative, with respect to the first variable, and Rp denotes, again,
the pointwise (multi-)derivative, with respect to the second variable, then A"R^K, is
also given by a reduction formula. The proof is quite similar to the proof of Lemma 2.5
using induction and (22).
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PROPOSITION 2.7. If t > 0, then the kernel K, is pointwise C°° in the second
variable, with respect to Ru ..., Rd, and if ft e J(d), then R^K, is pointwise C°°
in the first variable, with respect to Ait..., Ad. Furthermore, ifa, p* e J(d) then
A" R^K, is given by the following reduction formula

(25) (A"Rl>K,)(g;k)= J2 ds f (^R'K.Xgm-'k-^Siicgm-'k-1)
(y,6)eLb(f» JM

x (p(g)p(km))-1/2Ac(m-lk-l)dm

for all g,k€ G.

Next, let V be the representation of G in LodX; dx) defined by

( V ( g ) < p ) ( x ) = < p ( g - l x ) ( a . e . x e X )

for all <p 6 Loo(X; dx) and g 6 G. Let B, = d V(a,) denote the infinitesimal generator
of the one parameter group t H-> V(exp(—ra,)) in LooiX^dx). Consider the metric
d : X x X ->• [0, oo) on X defined by

(26) d(x;y) = sup I \f(x) - x/,(y)\ : V 6 Cfc;0o(X) real and ] £ {B^l2 < 11

for all x,y e X, where Ci,;00(X) denotes the space of all infinitely differentiable
functions on X with uniformly bounded derivatives. Introduce the balls B(x; r) =
{y e X : d(x; y) < r) for all x e X and r > 0.

Now we are able to state the main result of this paper.

THEOREM 2.8. Let X = G/M be a homogeneous space with G a connected Lie
group and M a Lie subgroup. Suppose that R is continuous and satisfies (6). Further
suppose that S is continuous and satisfies (11). Let H be an n-th order strongly elliptic
operator associated to U, given by (13), and let K, be the corresponding reduced heat
kernel. Then for alia, fi € J (d) there exist b, c > 0 and u> > 0 such that

; 1)) Volx(B(y;

for all x, y e X and t > 0.

The reduction formulas for the heat kernel and all its derivatives, in the first
and second variable, given by (25), are an essential part in the proof of the main
Theorem 2.8 given in Section 5.
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3. A local scaling property of the volume

We aim to show that condition (6) implies a local scaling property of the volume
of the balls Bex with x e X and e e (0, 1]. More precisely, we deduce the following
proposition. See also [16, Chapter 3] and [14].

PROPOSITION 3 . 1 . There exists aC>\ such that

(27) Voljf(flix) < Ce-(d-du)Vo\x{Bex)

for all x e X ande <= (0, 1].

PROOF. Consider the 'spherical' balls

(28) BE =

where Rt = {£?=1 t.a, e g : £ t i if < s2} for all s > 0.
The proof is subdivided in 10 steps. First we show that (27) holds if there are

C, N > 0 and e0 6 (0, 1] such that

(29) Volx(BNx) < Ce-(d-dM) Vo\x(Bsx),

uniformly for all x e X and e e (0, e0]. Then we scale the basis a{, ..., ad suitably
for the sake of convenience, and we reduce the local scaling property of the volume
to a uniform estimate of VolM(M D g~1B£g) in terms of Wo\M(M D g~xB2og) for all
e e (0, £o], with e0 € (0, 1], uniformly in g e G. Next, we give a description of the
connected components of M D g~1Beg for all £ 6 (0, 20] and g e G, and we derive a
convexity result from it. Then we introduce a metric dG on g~lB2og and a 'metric' dM

on M fl g~l Bwg, and it follows from the convexity result that dG and dM are equivalent
metrics on the connected components of M D g~' Bpg, with p € (0, 1], uniformly with
respect to g. Finally, this equivalence implies a homothetic contraction result from
which the proposition follows.
Step 1. If there exist C, N > 0 and £0 e (0, 1] such that (29) is valid then the
proposition follows. This can be proved by the next covering argument. We may
assume that N < 1. There exist L e M and gi,...,gL € #i such that 5 , c
Uf=i 8i&N- So, Bxx c (Jjl, giBNx for all JC e A". Next, for all i e (1, . . . , L} and
x e X, one has

Voljrtefljv*) = I lBNAg-Xy)dy = I W(>0 R(y, gt)dy < CRVo\x(BNx).
Jx Jx

Therefore, (29) implies that

Volx(BlX) < L CRVo\x(BNx) < LCCRe-(d-du)Vo\x(BEx)
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for all e e (0, e0] and x e X. But then it is obvious that

Vo\x(Bix) < L C CRs0
 M'Vo\x(Beox) < L C CRs0

 M'\olx(Bex)e l *",

uniformly for all x e X and e e (£0, 1]> and (27) holds.
Step 2. In this step we scale the basis a\, ..., ad for the sake of convenience.

Without loss of generality, we may assume the following.

• The Baker-Campbell-Hausdorff formula is valid (convergent) on /?2oo> the expo-
nential map is a real analytic diffeomorphism from /?6oo onto B6oo and

(30) BeBe c Bi£

for all e 6 (0, 200].
• By the inverse function theorem, there exist £ > 1 and v > 1 such that for all

/, k e { 1 , . . . , d) there exists a function aik : W —> K such that

(31) exp I ] T Sjdj I exp
\ //=1 / \i=l

= exp (

for all s,t e W such that |s|, \t\ < 200, and, moreover, ||(/ + A^))"1!! < £ and
|| / + A (5) || < £ for all 5 € W with \s\ < 200, where A (s) e R''*'' is the matrix given
by (A(s))ik = alk(s) for all /, k e { 1 , . . . , d}, and for all C/ e

(32) v-1 <det(/ + At;(5))< v, ||(/ + Au(s))-l\\ < £ and ||/ + A 1,(5) || <

for all 5 e Rd with |s| < 200, where Av(s) € RdMXd" is the matrix given by
(Au(s)),k = (UA(s)U-l)lk for all /, k e { 1 , . . . , dM).

• There is a K > 1 such that

(33) BK-,e C fi^ c fij,,

for all e 6 (0, 200AT] (see also [5, Proposition 6.1]).

Next, fix g e G. Then g~lBeg = exp(P/), where

;=1 /=!

for all e > 0, where a, = Ad(g ')a, for all / e { 1 , . . . , d). Endow 9 with the inner
product (ZU t,an £ t . *&) = E t , '/* for all ^ t i ?-«, € g and ^U M e 0-
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Then there is an orthonormal transformation T € SO(g) such that a, = T(at),
i e { 1 , . . . , d], establishes an orthonormal basis of g, and a\,..., adu is a basis of m.
Then />/ = { £? = i «,-£,• <= 0 : £ ? = 1 u) < £2}. So, />/ is a 'spherical' ball in g with
center 0 and radius e for all e > 0. By (31) and (32) the following two statements are
valid.

• For all Z, k e {1, ... ,d) there exists a function pik : R
d -> K such that

(34) exp I ̂  j,a, 1 exp

= g~x exp I ̂  s, Ad(g)ai I exp I ̂  r, Ad(^)a, 1 g

/
= g'x exp (

(

= exp ( [ ) )

for all s, t e Rd such that | j | , \t\ < 200, and, moreover, | |(/ + /?(i))" ' | | < H and
||/ + R(s)\\ < $ for all s e tiid with |s | < 200, where R(s) e Rdxtl denotes the matrix
given by (R(s))lk = Pik(s) for all I, k 6 {1, . . . , d}.

• Similarly, for all /, it e { 1 , . . . , dM) there exists a function a);* : Krf<f -> !R such
that

(35) exp I Y^ si"i) exP )

( du du / du

^ ( i , + tt)a, + J2 (J2 ) )
for all s, t 6 WM such that'\s\, \t\ < 200, and, moreover, | |(/ + ^ ( i ) ) " ' | | < £ and
||/ + £2(i)|| < ^ for all s e Rdu with \s\ < 200, and

(36) v'1 <det(I + Q(s))<v

for all s e Rdu with |s| < 200, where £2(s) e Rrf"*rf« denotes the matrix given by
= colk(s) for all / , / : € { ! dM).
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Step 3. In this step we show that

(37) Vol*(£££) > Q 1 AGig)pig) VolG(fl£) ( / I dm)
KJiung-'B^g /

for all £ 6 (0, 1], and

(38) Vo\xiBcg) < CR
e+2AGig) pig) VolG(B3.) / I dm)

\J MDg-'Biig /

for all £ > 0.
First we deduce (37). Lete e (0, 1]. Note first that h H» lfl^/ig"1)/^)"1 belongs

to L] (G; p dg), because the support is compact. Then

VolG(B£) = / lBrihg~l)AGig~x)dh
Ja

= 11 lBiihmg-x)AGig-x) pihm)-1 dmdh
Jx JM

by Lemma 2.2 (II).
Next, if h e G, m e M and hmg~x e Be then there exists a b e Be such that

hm = bg. Hence,

= pig)-'Rig, by1 < CRpigyl

by Lemma 2.2 (III). Therefore,

I lBiihmg-l)Acig-]) pihm)-1 dm < C»Ac(j- ') p(g)~l f \B,ihmg-x)dm
JM JM

for all h € G. Moreover, if h € G and there exists an mi e M such that hmig~l 6 Be

then hmx € Beg, and thus mj"1^""1 e g"1 Bc. Hence, m^h~lBeg c g~lB2eg- If
m e M and hmxmg~x e Be then m e M C\m\xh~xBeg c M n g~lB2eg. Therefore,
since dm is left invariant, one has

(39) / \Biihmg~x)dm = / lBrihmlmg'l)dm < / ldm.
JM JM JM^-'B^K

It f o l l o w s t h a t / M 1B> ihmg~l) dm < f M n g - i B ! i g 1 ̂ ^ f o r a l l Z i e G . S o ,

/" lBiihmg-[)AGig-i)pihm)-x dm < CRAGig-l)pigy
] f I dm

JM JMr\g~'B:,g

for all h € G. If fc e G is such that /M lBi ihmg-x)AGig-[)pihm)-x dm ^ 0, then
there exists an m 6 M such that hmg~l € Be. Hence, h e Beg. Therefore,

Volc(#£) < CRAGig~])pigyx f f I dmdh
J J
f f

JB,X JM
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= CRAG{g-l)p(g)-lVolx{Beg) I ldm

for all e e (0, 1], and (37) follows immediately.
Next, we derive (38). Let £ > 0. If h <= Beg, then

(40) p(hm)p(gm)-1 = p{h)p{gy
x = R(g, hg~x) < CR

+X

for all m e M. If, in addition, m e g~xBleg, then hm e B3eg. Hence,

/ lg-
lih.g(m)p(gm)-ldm<CR

+1 I \g-*Blig(m)p{hm)-'i dm
JM JM

lB3rg(hm)p(hm)-1 dm
M

for all h e Beg. Then

\Btg{h) I \g->Bug{m)p{gm)-xdm < Q + 1 / \Bitg{hm)p(hmTx dm
JM JM

for all h e G, since h >-*• fM lB)ig(hm) p(hm)~l dm is right M-invariant.
Finally, note that h K> lBlcg(h) p(h)~x belongs to L\(G;pdg), because the support

is compact. So, integration over X yields

(41) Volx(BEg) f p(gmyl dm < Cf ' 1(1 lBiig(hm)p(hmyl dm] dh
JMng-'B^g Jx \JM /

= Ce
R

+l f Uicg(h)dh
JG

= CR
+i Vo\c{B,e)AG(g),

by the Weyl formula. But, if m e M D g~x B2eg, then there is a b e B2e such that
gm — bg. Hence one obtains

(42) pigmy' = pibgy1 > C-

and (38) follows immediately from (41) and (42).
Step 4. Let W = 20K. It follows from (37) and (38) that

L.,,,ldm-

for all e e (0, 1]. There is a C > 1 such that
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for all e 6 (0,1]. Therefore, the proof of the proposition is complete if there exist
C > 1 and e0 e (0, 1], independent of g, such that

(43) VolM(M n g-lBtg) < Ce"» Vo\M(M n g^Bjog)

for all e € (0, £0]. Indeed, if (43) is valid then it follows from (33) that

Vo\M(M n g-1 B^g) < CK^e^VoluiMng-'BuKg)

for all £ e (0, K'^EQ]. It follows that there is a C > 1, independent of g, such that

for all £ e (0, K-le0], and (29) holds.
Step 5. If £ > 0 is small then it follows from [6, Lemma 2.2] that

M n Be = exp I | V «.-*.• € m : Y «? < e2! I22 ui°i

Unfortunately, the sets M <~\ g xBEg are not uniformly bounded with respect to g.
Nevertheless, an exponential description of the above kind is still valid with respect to
the basis au ..., adu for m. On connected subsets the description is possible uniformly
in g and £ e (0, 20].

LEMMA 3.2. Ifs e (0, 20], <€ is a connected component of the set M C\ g"1 Beg and
mQ e ^ , then for each m e <€ there is a u € Rdu such that m = m0 exp (Ylili M<̂ <)
and \u\ < 3fi. In particular, there is a non-empty open connected neighbourhood
O c m n Pi ofO such that tf = m0 exp(O).

PROOF. Let m e c€. Since there is an absolutely continuous path from m0 to
m in '€, there are n e N and a sequence of points m0, m\,... ,mn € ^ such that
mn — m, gmog~\ . . . , gmng~{ e Be, and for all it 6 {1, . . . , n) there exists a u e W1"
such that m^\mk = exp (Jlf=i ui<*i) a nd |w| < 200. But then |«| < 3e, because
m j > ( e g - ' B ^ f o r a l U e {1 , ^ . . , n},by (30).

Next, w0 = m0exp(0) e g~^BEg. Let 0 < it < n, and suppose that there is a
u e Krf" such thatwii = w o e x p ( ^ . " 1 u,a,) and |v| < 3£. Since m^mk+\ e g'xBitg
and the Baker-Campbell-Hausdorff formula is valid on /?3£, there is a v e Krf"
such that mi+i = m/t/w^'mt+i = woexp (^^", u,a,) and |v| < 9E by (30). As
% i , m o ' e g~xBtg, it follows that mo"'mt+i = exp (£?=i u,a,) e g^B^g, by (30)
again. Hence, mA+i = wi o exp(^ ," , u,a,), with |v| < 3fi.

By induction, there is a u e R''" such that m = mn = w o e x p ( ^ ^ , M,5,) and
|w| < 3f, as was to be shown. D
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Step 6. In this step our goal is to derive the following convexity result.

LEMMA 3.3. If ^ is a connected component of M H g^B-^g, s e (0, 1] and
niQ € ff fl g~lBeg, then there exists an open connected and convex neighbourhood
O c m n Pi ofO such that & D g~xBeg c m0 exp(O) c w0exp(O) c "?f.

PROOF. There exists a countable index set / such that the %,, with a e I, are the
connected components of ^ C\g~xBeg. Since m0 e 'tf C\g~ xBEg and ^ is a connected
component of A/ Pig"12?2o£> it follows from Lemma 3.2 that there exist open connected
sets Oa c m n Pjx, such that ^ = m0exp(Oa) for all a e / . Let a e I and fix
5Zf=i M'̂ f e ^«- Then there is an m e ^ such that m = m0 exp (5Zf=i «i^<)" Since
mo', m e M n g~lBeg, it follows that

(dM \exp I ^ M,5, j = WQ 'm € M n g~xBieg = exp(m n P3*),

by (30). Therefore, ^f=i «.«. e m n P3*. So, Oa c tn n P/e for all a e / .
Next, let A' € N,a i , ...,aN G /andfixm, € ^a . foralh' 6 {1, . . . , N). Then there

exist «<0 6 M.du such that m, = / n o e x p ( ^ " 1 4°« t ) and, moreover, |M(' ' | < 3e for

all / € {1 N}. Therefore, if J2?=\ U = 1 with tu ..., tN > 0, then the convexity

of the ball Bic implies that exp (Ylfli ( Z X i '<M*))^*) € ^ " ' ^ 3 ^ - Moreover,

£Mng-
]B20g,

by (30). Let O c m n P3* be the convex hull of the sets {<9a : a e / } . Then
O is a convex open and connected neighbourhood of 0. There is a 8 > 0 such
that O = (1 + S) O is a convex open and connected neighbourhood of 0, and,
m0exp(O) c M D g~]BiOg. Since m0exp(O) is connected and contains w0, the
lemma follows immediately. D

Step 7. In this step we introduce a metric dc on g~xB2og, and we derive an equivalence
result.

Consider the map * : Krf ^ G defined by <!>(«) = exp ( £?=, M,a,), u e Krf. Note
that <t> is a diffeomorphism from Â  onto <&(N), where JV = (« g R ' : |u| < 200}.
For all i e { 1 , . . . , d], introduce the right derivatives by

(R,tp)(h)=4- <p(hexp(ta,))

for a l l ^ e C?(G).
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LEMMA 3.4. The following two statements are valid:

(I) For all i,k e { 1 , . . . , d), there exists a function bik : g~xB^ag —> R such that

(44) ^ L

and \\B{h)\\ < £ for all h 6 g~lB^g, where B(h) € Rdxd denotes the matrix given
by(B(h))ik = bik(h).

(II) For all i, k e { 1 , . . . , d], there exists a function cik : g~1BnOg -> K such that

(45) d<t> —
h

and || C(ft)II < £ /or a// h e g^'B^g, vvftere C(ft) e Rdxd is the matrix given by
(C(h))ik = crt

PROOF. It follows from (34), that there is a to > 0, independent of g, such that for
all i, k € (1, . . . , d) there is a function pik : Rd ->• R such that

/ rf d \

ft exp(fa;) = exp I ^ ukak + tai + t ^ pik(u)ak + O(\t\2) 1
/

for all t 6 (—f0, k) and /i = exp ( 5 ^ t = 1 «*«*) with |«| < 20 and, moreover,

H/ + ^(«)ll<? and | |( /+ £(«))-'|| <£,

where ^ ( « ) 6 Rdxrf is the matrix defined by {R(u))ik = p l t (u) for alW, *; 6 {1, . . . , J } .

Let /i e g~l Bung. For all j , /: e { 1 , . . . , d] define the function rik : g~* B2og -> R by

for all ft = ( ^ = i "t5*) w i t h l«l < 2 0- T h e n

id d \

ftexp(fa,) = exp I ^ u ta t + fa, + f ^ r,-t(A)at + O(|f|2) I
\k=\ k=\ )

for all te(~f0, fo) and ft=exp(^=1 M^at) with |«|<20 and, moreover, \\B(h)\\<i-,
where B(h) e R</>"' is the matrix defined by (B(h))ik = bik(h) = 8lk + rik(h) for
all i, k e { 1 , . . . , d). Hence, (44) holds for all ft e g^B-^g and i € (1 d), and
Statement (I) follows.

If C(ft) = (fl(ft))-1 for all h € g-^20* then ||C(ft)|| = ||(B(ft))-'|| < § and,
moreover, (45) holds for all ft e g~s B-^g, where c,*(ft) = (C(ft))lt for all i,k e
{ 1 , . . . , d), and Statement (II) follows at once. The proof is complete. •
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Let dc : g~xB^g x g'1 Bwg - • [0, oo> denote the metric defined by

dG(h, k) = inf{<5 > 0 : rs(h, k) ^ 0},

where Fs (h, k) denotes the set of all absolutely continuous paths y : [0, 1] —> g~iB2og
such that y(0) = h, y(l) = k, y(t) = £?= 1 Yi(t)R,\YW and £?= 1 \Yi(t)\

2 < S2 for
a.e. t e [0, 1].

COROLLARY 3.5. (I) The metrics I • I and da satisfy the following equivalence:

(46) r ' l " - w| < <?

for all u, v e Rd such that \u\, \v\ < 20.
(II) There is a p e (0, K~x\ independent of g, such that

for all u,v,w € R d such that \u\, \v\, \w\ < p .

PROOF. Let u, v e U.d be such that \u\, \v\ < 20. Moreover, let y : [0, 1] ->
g'^B-mg be the absolutely continuous path defined by y(t) = <S>(tv + (l — t)u) for all
t e [0, 1]. Then y(0) = * ( « ) , y ( l ) = O(u) , and the path lies entirely in g~lB20g,
because P^ is a convex set. Moreover,

and E t = i Itt (Ol2 = \u-v\2 for all t e [0, 1]. Hence, it follows from Lemma 3.4 (II)
that one can write y(t) = E*=i ^* (0^* | (rt> and E t = i l^tWI2 £ £2IM ~~ w|2 for a.e.
t e [0, 1]. Therefore, dG(^(u), O(u)) < ^|w — v\, and the upper bound in (46) is
proved.

Next, let 8 > 0 be such that there is an absolutely continuous path y : [0, 1] ->•
g^Bjog such that y(0) = <&(«), y ( l ) = <D(u), y( r ) = E * = i n ( 0 ^ L , , , and

Et=i ln(0l2 < 52 for a.e. t e [0, 1]. Then, it follows from Lemma 3.4 (I), that
one can write

arK* E t = i I^*WI < &% for a.e. t e [0, 1]. Hence,

a \"2

fe
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Therefore, £~'|" — v\ < dd^iu), ®(v)), and the lower bound in (46) follows.
Statement (I) is therefore proved.

Next, we prove Statement (II). Let p 6 (0, 1] and u,v,w e W be such that
\u\, \v\, \w\ < p. Let y : [0, 1] ->• g~1B2og be an absolutely continuous path such
that y(0) = *(«), y(l) = *(w), y(t) = E L , )*(')** |y((), and E t i IttWI2 <
2rfc(*(«), *(w))2 for a.e. t e [0, 1]. Then E*=i | n ( / ) | 2 < 2§2|M - v\2 < 8£2p2 for
a.e. t e [0, 1]. Hence,

dc(<&(«). 7(0) = rfc(*(«), *(*" ' (y(0))) < 3$p,

and |u - <t>-'(y(O)l < 3f2p for a.e. t e [0,1], by (46). Since £t=i Mjtat e P», it
follows that |*-l(y(r))l < 4^2p and y(r) e g^B&pg for all» e [0, 1] if p < 4^"2.
Therefore,

<t>(w)y(t) e g~lBpgg-lB5(2pg c g'lB6K2r.pg c g^B^g

for all r e [0, 1], if p < ^ / i T 2 . Let 5 : [0, 1] -* g-'Bzog be the absolutely
continuous path defined by S(t) = <P(w)y(t) for all t 6 [0, 1]. Then 5(0) =
4>(U>)*(II), <5(1) = <D(u;)<l>(w), and S(t) = ^U Yk(t)Rk\SU) for a.e. t 6 [0, 1]. It
follows that one can make p e (0, 1] smaller, if necessary, but independent of g, such
thatp 6 (0, A:"1] and

/
«), *(u0*(i;)) < ess sup Y \yk(t)\

2

and, therefore, dc(
<t>(^)<i>(w). <t>(iy)<I)(v)) < dG(<t>(u), <f>(v)). Similarly, making p

smaller again, if necessary, but still independent of g, one can show that

and the proof of the corollary is complete. •

Step 8. Let n c (M n g"1 B^g) x (M n g"1 B2og) be the set of all (h, k) e M x M
such that inf{(5 > 0 : Vs(h,k) ^ 0} < oo, where rs(h,k) denotes the set of all
absolutely continuous paths y : [0, 1] -*• Mr\g~]B2og such that y(0) = /i,y(l) = A:,
y(0 = Ef=i K(0^i|y{f). and E^=, I/.C0I2 < 52 for a.e. r e [0, 1]. Then the 'metric'
dM : Q -+ [0,oo> is defined by dM(h,k) = inf{<5 > 0 : Vs(h,k) £ 0} for all
(h, k) e Q.

For m0 6 M, define 4>mo : R
rf" - • M by *mo(5) = moexp (Ef=, J.-5,-), 5 e Krf"

Note that <tmo is a diffeomorphism from Â  onto <&mo(N), where

(47) Af = j j e RdM : \s\ < 200}.
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In this step we show that dG and dM are equivalent on g~x Beg PI if for all e e (0, p]
and connected components if of M (1 g~xB2og, uniformly with respect to g, where
p e (0, K~l] is the constant as in Corollary 3.5.

LEMMA 3.6. Let 'tfbe a connected component ofM D g~xB-mg. Then the following

two statements hold:

(I) If e e (0, p] and m0 6 g'1 Beg D if, then

(48) r'\r -s\< dM(4>mo(r), <t>mo(s)) < f |r - s\

for all r,se Krf" such that \r\, \s\ < 3e and <t>mo(r), <&mo(s) e g~lBtg D <€.
(II) Ifs 6 (0, p] andm0 e g'1 BEg^^, then

(49) dc(h, k) < JM(A, jfc) < $2dG(h, k)

PROOF. It follows from Lemma 3.3 that there exists an open connected and convex
neighbourhood O c m (1 P3* of 0 such that ^ fl ^ " ' S ^ c m0exp(O) c <Jf.

We first prove the upper bound in (48). Let r, s e Rdu be such that \r\, \s\ < 3e
and <t>mo(r), <t>mo(s) e g~xB£g fl <€. Let y : [0, 1] ->• ^ be the absolutely continuous
path defined by y{t) = <i>mo(ts + (1 - t)r) for all r e [0, 1]. Then the path y
lies entirely inside ^ , because <J>mo(r), <I>mo(j) e moexp(C>), and, by convexity,
<t>mo(ts + (1 - t)r) e m0exp(O) c if for all t e [0, 1]. Then it follows from a
similar argument as used in the proof of Lemma 3.4, but using (35) instead of (34),
thatJw(<I>mo(r), $mo(.s)) < £ |r — s| and the upper bound in (48) follows immediately.

Now, we prove the lower bound in (48). Let r, s e Krf" be such that |r|, \s\ < 3s
and <t>mo(r), <t>mo(j) e g~lBeg fl ^ . Then it is obvious that

dM(<t>mo(r), <t>mo(s)) > da($>m(r), *«*,(*))•

Since m^1, <t>mo(r), ^ ( J ) e g~lBeg, there exist u,v,w e Krf such that |u|, |v|,

|u)| < p, WQ1 = 4>(u;), ^ ^ ( r ) = O ( M ) and Om,,(i) = <t>(v). It follows from

Corollary 3.5 (II) that

= dc{<S>(u), <t>(v)) = dG(<P(w)<t>(u),

Since P3* c f̂ ,, it follows from the lower bound in (46) that

(50) rfc(mo'*«»('•). WO^-OCJ)) > r ' k -
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and the lower bound in (48) follows. So, Statement (I) is proved.
Moreover, together with the upper bound of (48), the lower bound in (50) implies

that

Then the upper bound of (49) is a consequence of Lemma 3.3, and Statement (II)
follows immediately, because the lower bound of (49) is trivial. •

Step 9. In this step we derive a homothetic contraction result which is inspired by [7,
Section 2].

LEMMA 3.7. Let ^ be a connected component of M n g~lB^g. Ife e (0, p] and
m0 e ^Hg^Beg, then \r-s\ > ^~2{p-e)forallr, s € Rdu suchthat\r\, \s\ < 200,
<t>ffl0(r) 6 &„(¥ n g~lBsg) and <i>mo(s) e 8M(V n g~xBpg), where 8M denotes the
boundary in M.

PROOF. First, we prove that 8M ( # n g ~' Bc g) c 8 G (g ~' Be g), where 8 G denotes the
boundary in G. Indeed, let m e 8M(^ D g~xBEg), and suppose that m & 5G(g~'BEg).
Then m £ 8M(M D g-{Beg), because, if m e 8M(M D g~*Beg) and V is a G-open
neighbourhood of m then M D V is an M-open neighbourhood of m. Hence, there
exist k e M n g"'B£g and / e M\(W (1 ^~'B£g) such that jfc, / € A/ D V. So,
A: e g"'B£« n V, / € V, and / ^ g~yBcg. Hence, m 6 ^ c ^ - ' f i ^ ) , and this is a
contradiction. Therefore, m is an interior point of the connected component ^ of
M D g~lBeg, which contains m. Since /n 6 8M{'€ D g~^Beg), it follows that

Therefore, ^ c ^ n g " 1 B£g, and hence m is an interior point of ^ n g~l Beg, which
is a contradiction. Therefore,

Similarly,

8M(tf n g-'B^) C 8G(g-%g)

Next, let r, 5 e Krf" be such that \r\, \s\ < 200, 4>mo(r) € 5 M (^ n g"'fi£g) and
*«„(•*) € S M ( ^ n g~]Bpg). Then there are M, V e Krf such that \u\ = e, |u| = p,
<!>(«) = <tmi)(r) and <t>(i>) = <t>m,,(s). Then a combination of (46), (48) and (49) gives
the estimates

I

and the lemma follows. •
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Now, fix £ 6 (0, (6£2)~'p] and a connected component ^ of M n g~xB2og- Let
m0 e ^ D g " 1 #Eg. By Lemma 3.3 there is a convex open neighbourhood O c mPl P3*
of 0 such that

(51) tfng-'flpsCmoexpfO) c m o e x p ( 0 ) c

Let F"10 : ^ —>• M D g'^B^og be the homothety with center m0 and coefficient
^ € (0, 1] (see also [7, Section 2]) defined by r™°(Omo(r)) = <Pmo(qr) for all r e Rd"
such that \r\ < 200 and Omo(r) e e€.

Let r e Kd" be such that | r | < 200 and Om o(r) e <5M(m0exp(O)). Set

/, = sup{r e [0, 1] : <I>mo(fr) e^ng-'B.g).

Then <S>mo{t\r) 6 5W(^ n g " 1 ^ ) c moexp(mn Z3^), by Lemma 3.3, and hence
|fir| < 3e. Moreover, set

h = sup{r e [0, 1] : <Dmo(fr) e ^ Dg-'Bpg}.

Then <Dmo(r2r) 6 hM{<€ n «-'flp«) and |(r2 - f,)r| > ^"2(p - e) by Lemma 3.7.
Therefore,

V\ > \hr\ = \(t2 - tx)r\ + |r,r| > (3sy1\tlr\r2(p - e) + \txr\

> (3sylt1\r\r2p + r, |r |(l - 3 ~ ' r 2 ) > (38)^t,\r\r2P•

So, if one sets q = 6£2p~'e, then 1 > q > tx. It follows that

(52) tf n g- ' f l^ c r;°(nioexp(0)) c T

Let dLmom denote the image measure on ^^(A^), under <t>mo, of the Lebesgue measure
du\ • • • dudu on N, where N is as in (47). Let VolM,L,mo be the volume with respect
to the measure dL<mom. Set O = {u e KrfM : £ ? " , M,a, e O], and let r : SdM^ ->
(0, oo) be defined by r(x) = sup{r > 0 : rx e 0} for x € Sdu~x. If da(x) is the
Riemannian measure of SdM~\ then

VoW,z.,mo(r^(m0exp(0))) = £ _ jf

Jo
r r i M '

= (6?2p-1)rf"e^ Volw,/..mo(m0exp(0)).

It follows from (51) and (52) that

(53) Volw,,.mu(^ n g-'flU) < C^e"" VolM,,,
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for all e e (0, e0], where Q,p = (6£2p-1)d« and e0 = (fi$2ylp 6 (0, 1].
Step 10. In this step we finish the proof of the proposition. First, it is obvious that

and

VolM,L,mo(If ng-]Beg) = Volw,L,e (mo1 (If n g~l B.g))

for all £ e (0, £0]. Hence, it follows from (53) that

(54) VOIA/ i e (m7.x(?€ D g~* Beg)) < Q e''" Vol^ Z. e(m^c&)

for all £ € (0, £0].

Next, let v € Rdu be such that £ ? " , v>^> e pwo a n d *« (u) e mo"V. Consider the
transformation Tv from N onto TV(N) given by TU(M) = $>~{(<t>e(v)$>e(u)), u € N.
Then it follows from (36) that the Jacobi determinant Jv of the transformation Tv in
u = 0 satisfies u"1 < Jv < v. There is a smooth density function/ : m^Xc€ —> (0, oo)
such that dm =f dLem. Since dm is left invariant, it follows that v"1 / (e) < / (m) <
v / (e) for all m € m$ Xc€. Therefore,

for all £ 6 (0, £0]. Hence, it follows from the left invariance of the Haar measure dm
that VolM(<*f n g~lBtg) < v2Ci<pe

du Volw(^) for all £ € (0, £0]. Considering all
connected components ^ of M D g~xB2og together, one obtains

Vo\M{M C\g~lBeg) < v2C^p£
du Wo\M(M n g~lB-iQg)

for all £ e (0, £0] and g e G, and (43) holds.
The proof of Proposition 3.1 is complete. •

4. A Nash inequality

In order to derive kernel bounds for the Laplacian in Section 5 we first need to
establish a Nash inequality which we deduce in this section. The results of this
section are from [16, Chapter 4].

If <p 6 L2(X\dx) n L\{X;dx) and i\r € L\(G;dg) then the convolution product
i/f *u <p is defined by i/r * u <P = fG &(g)U(g)<pdg. Next, by Lemma 2.5 (I)—(II), for
all £ > 0 one can define the measurable function i/r£

b : X x X -> [0, oo) by

i/^(g; k) = I lfl, (gm~lk~]) S(k, gw"'/:"1) (p(g) p(km))~i^2Ac(m~1k~x)dm,
JM

where g,k e G. Moreover, it follows from Lemma 2.5 (III) that \j/b
e is uniformly

bounded on compacta in X x X, so fx \\J/b
c(x;y)<p(y)\dy < oo for all x e X and

<p e L2{X;dx) with compact support.
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LEMMA 4.1. Ife > 0 and <p e L2(X;dx) with compact support then

(lBt*u<p)(x)= I
Jx

for all x eX.

PROOF. First, note that k K> lBc(gk-l)(p(k)p(g)yl/2AG(k-x)<p(k) belongs to
L\(G; p dg) for all g e G, £ > 0 and (p e L2(X;dx), since lB[ has compact support.
So, if g 6 G, then

Vr£
b(g;£)^)<tt

JG

by Lemma 2.1 and Lemma 2.2 (HI). •

Now, we prove a Young type inequality involving V̂  • We first need a volume
estimate on ^e.

LEMMA 4.2. There exists a C > 0 such that ̂ (g;k) < CVolcC^XVolyCB^))-1

forallg,ke Gande e (0, 1].

PROOF. Let C > 1 be such that Ac(b) < C for all b e Z?i. Moreover, let e e (0, 1]
and g,k e G. We may assume, without loss of generality, that ^(g;k) ^ 0. Then
there exists an m\ e M such that b = gm~^xk~x e BE. Let g = gm^1. Then, by
Lemma 2.2 (III),

JM (p(gm-i

= I \Bi(~gm-xk-l)S(k\gm-'k-')R{k,~gm-'k-'T1'2
JM
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< Cl
R

/2CsC
2AG(k-1) f lBi(gm-lk-')p(km)-ldm.

JM

If m € M and gm~lk~i e Be then m e k~lBeg = k~lBebk c k~xB2ek, because
b e Be. Therefore,

(56)
J MC\k

p(kmYldm.

The lemma follows immediately from (56) and (41). •
Let v : X - • [0, oo] be defined by v(x) = infn£No 2"(('-''") Volx(fl2-.*), * e X.

Then, it follows from Proposition 3.1, [13, Annexe 0, Lemme B] and the covering
argument as used in Step 1 in Proposition 3.1 that there exists a C > 0 such that

(57) v(x)>CVo\x(B(x-l)),

uniformly for all x e X. Since x i->- 2"id~du) Vo\x(B2-x) (x e X) is a continuous
function for all n e No, it follows that v is a measurable function on X.

LEMMA 4.3. There is a C > 0 such that

ess sup
/ .

<
and

L\L fb
e(x\y)(p(y) dy dx <Cs"\\<ph

for all s e (0, 1] and all <p 6 C,(X).

PROOF. First, if e e (0, 1], y e X and n e No the smallest number such that
2~n < e, then e < 2~"u, and hence £d-d»(Vo\x(Bey))-]v(y) < (2"e)d-rf" < 2rf-rf".
Then, it follows from Lemma 4.2 and the volume estimates for small balls Bt, that
there is a C > 0 such that

ess sup
xeX

f rt(x;
Jx

y)<p(y)dy = ess sup
J supp tp

y)<p(y)v(y)v (y)dy

<C2d"lMed"\\<p\\L{(X,^dx)

for all <p € C,{X) and £ e (0, 1], and the first statement follows.
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Next, note that xfrlig', k) ^ 0 implies that there exists an m € M such that gmk~l €
Be, so, g e Bek. Then, by Fubini's theorem, Lemma 4.2 and the volume estimates for
small balls Be, there exist C,, C2 > 0 such that

f I flix\y)<p{y)dy dx < f (ftf(x;y)dx\ \<p(y)\dy
Jx Jx Jx \Jx J

- f ( f irl(x\y)dx)\cp(y)\dy
JX \JB.y /y

<esssup(/ fl(x;y)dx)\\(p\\l
yeX \JBty /

< esssupC, Volx(Bey)Vo\G(B3c)(Vo\x(Bey)y] \\cph
yeX

for all £ 6 (0, 1] and <p € CC(X), and the proof of the lemma is complete. •

By interpolation between L\(X\dx) and Loo(X;dx), and between L\{X\dx) and
Lx (X; v~ldx), we get the following Young type inequality for the function \j/l.

LEMMA 4.4. There exists a C > 0 such that

2 \ ' / 2

L dx < Cs(d+du)/2\\<p\\LUX.,v->n-d:

for all s e (0, 1] andcp e CC(X).

2dx)

PROOF. For 9 e (0, 1), let [&, ^]e denote the complex interpolation space be-
tween the Banach spaces 3£ and fy'. It follows, as in [17, Theorem 1.15.3, Step 3],
that L\{X\ v~l/2dx) c [Lx{X\dx), LX(X; v^dx)]]^, and the embedding is continu-
ous. So, there is a c > 0 such that \\<p\\lLl<.x;dx),L,(X;v-<dx)u/2 < c\\(p\\Ll(X;v-'r-dx) for all
<p € L\{X; v~i/2dx). Then interpolation of the bounds of Lemma 4.3 gives

dx\ < Cs(d+dM)/2\\<p\\lLl(X,dx),LUX,v-idx)U/2:;y)<p(y)dy

for all £ 6 (0, 1] and <p € CC(X). D

Let Lu{X\dx) = f i t , D(Ai) c L2(X;dx) with norm

Ml*, = max \\Aa<p\\2.
aeJ(d)
|o|<l

Now we are able to derive the desired Nash inequality.

https://doi.org/10.1017/S1446788700015597 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700015597


138 C. M. P. A. Smulders [30]

PROPOSITION 4.5. There exists aC > 0 such that

\W\\l < £\Wh;\ + CE~(d~dM)n\\<p\\L,(X^r-dx)

for all e > 0andall<p e L2J(X\dx) n LX(X; v~x/2dx).

PROOF. Let y : [0, 1 ] —>• G be an absolutely continuous path from the identity e to g
with tangents in the space spanned by a]t..., ad. Then there exist y, e Loo([0, l])such
that df(y(t))/dt = £? = i y.(0(A,^)(y(f)) for all rfr e C™(G) and a.e. t e [0, 1].
Moreover, recall that

1/2

I *.
> i = l /

where the infimum is taken over all absolutely continuous paths from the identity e to
g e G. Therefore, if L denotes the left regular representation of G, then

((/ — U(g))(p)(x) = I > yi(t)(L(y(t))Aj<p)(x)dt

for all <p e C(°°(X) and all x € X. Consequently,

\\(1 - U(g))<p\\2 < [ [TyM2] lYjAitpWl) dt

for all <p e L2-t(X;dx), by the Cauchy-Schwartz inequality. Then, optimalization
over all possible paths, gives

/ d \ ' / 2

AriMJ
for all (p € L2i{X;dx). S o , if if/ e L\(G\dg) is a pos i t i ve func t ion w i t h H^ll i = 1

then

\ 1/2

r
< I

r / \
\\<P-**u<Ph< I f(g)\g\ i^UiVWlj dg

for all <p 6 L2j(X\dx). Since

for all <p € L2{X\dx) n Li(X;dA:), the proposition follows directly from the Lem-
mas 4.1 and 4.4, and the fact that there is a c > 1 such that

for all e e (0, 1]. •
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5. Kernel bounds

We apply the Nash inequality of Section 4 and the local scaling property of the
volume of Section 3 to derive heat kernel upper bounds for higher order strongly
elliptic operators. The results are from [16, Chapter 4].

Before we prove Theorem 2.8 we need some preparation. If 3£ and ty are Banach
spaces then we denote the operator norm of a bounded linear operator T : & —»• ty by
II711 •*""•»'• In particular, if X = Lr(X;dx) and *%/ = Lp(X;dx), then we abbreviate
II T\\x^.v by || T\\r^p for a bounded linear operator T : 5C -> <&.

LEMMA 5.1. Let K be a compact subset of G. Then there exists a CK > 0 such
ihatg'xBtg c BClceforall g e K and e e (0, 1].

PROOF. By [5, Proposition 6.1], there exist £0 > 0 and C > 0 such that for all
S 6 (0, e0] and k € Bs there exist t\,...,td e IR such that k = exp (Y?i=\ '<a<) a n d

|r,|.< C8 for all i e ( 1 , . . . , d}. Suppose e € (0, e0]- Since K is compact there exists
a C > 0 such that for all g 6 K and k = exp (Yl1=i t'ai) e «̂> o n e n a s

= exp I ̂  r,- Ad(g"')a,- I = exp

where 5, e K with |s,-| < Ce for all i e [I,..., rf}, and the lemma follows for small
£ > 0. Finally, there exists a 0 > 0 such that g~xB\g c /?„ for all g £ K. Then
g - ' ^ g c B9£b-lt for all e e (e0, 1] and g e K. •

£b

PROPOSITION 5.2. The following two statements are valid:

(I) If SA denotes the semigroup generated by the Laplacian A, then the opera-
tor Sf maps Ll(X;v~l/2dx) continuously into L\{X; v~l/2dx)forall t > 0. Further-
more, there exist a, a) > 0 such that \\S*<p\\Lx(X;v-'/idx) < a e°"\\q>\\Ll{X;x,^r-dx) for all

(II) There exist a, co > 0 such that

for all t > 0and(p, x e Li(X;v~l/2dx).

PROOF. First we show that there exist C, r\ > 0 such that

(58) C-le~n]l11 < vigx^ix)'1 < Cenigl

for all x e X and g e G. Note that by Lemma 5.1 there is an n0 e H such that

Volx(Bcgx) = Volx(gg-lBegx) < Vo\x(gBCcx)
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for all e 6 (0, 1], g e Bx and x e X, where C = 2"°. Then

Volx(gBCtx) = I lB(fx(g~iz)dz = I lBccx(z)R(z,g)dz < CRVo\x(BC£x)
Jx Jx

for all e e (0, 1], g e B, and x e X. So,

Volx(Begx)e~(d~dM) < CRCd~du\

for all e 6 (0, 1], g e B , a n d x e X. Then

v(gx) < inf 2n(d-dM) Vo\x(B2-.gx)

for all g € Z^and* e X, and the Statement (58) follows from iteration. Hence, f/isa
continuous representation in the space L\{X; v~l/2dx). So, the Statement (I) follows
directly from general semigroup theory.

Next, let Ho = A + fil, and let T be the semigroup generated by the closure of HQ,
where /u. denotes the ellipticity constant. Since Ho generates a continuous holomorphic
semigroup on LX{X\ v~l/2dx), by [15, Theorem 1.5.1], there exist a, a> > 0 such that
WTtWmx-.v-wdx)-+mx-,v^r-dx) < ae°" for all t > 0. Let C be the Nash constant as in
Proposition 4.5. Let <p e L2(X;dx) n Li(X; ir1 / 2dx). Then

for all r > 0. Therefore,

o i T ^ I l D !
d — dsi dt

and by integration,

> /-

for all / > 0. Since L2(X;dx) n L,(X;i;-1/2rfjc) is dense in L,(X;u-| /2Jx), there
exist a, co > 0 such that ||S;V||2 < ar(rf-rf")/V||^||/.|(x;u-i«^) for all t > 0 and
<? e L , ( X ; ' / 2
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Let Mvm : L\(X\dx) —> Li(X;v~l/2dx) denote the multiplication operator de-
fined by Mvir-<p = vx/2(p for all <p e Lx(X;dx). Then there exist a, co > 0 such that
|| S?Mvv21| ,^2 < a/- ("« ) / 4eB ' for all t > 0.

Next, the dual (Mvw)* : L^iX; v~l/2dx) -+ L^iX; dx) is given by (M^)*<p - cp
for all (p e LaoiX; v~x/2dx). Moreover, the dual

($*)• : L2(X;dx) -* L ^ X ; iTl/2J;t)

is given by (Sf)*<p = vl/2Sf<p for all cp e L2(X;dx) and t > 0. So, there exist
a',*/ > 0 such that Hv'^S/VlU = ||(M,,./2)*(5r

A)V||oo < a'r«-d»V4ea'''\\<p\\2 for all
ô e L2(X;dx) and r > 0. Therefore, there exist a, &> > 0 such that

||uI/2s,V'Vlloo < fl'(2-1r)-(

for all <p e CCA") and r > 0. Hence,

for all (p, x e Li(X; v~l/2dx) and r > 0, and Statement (II) follows. The proof of
Proposition 5.2 is complete. •

Together with the bounds in Proposition 3.1 the bounds of Proposition 5.2 are the
main ingredients in the proof of the Gaussian bounds for strongly elliptic operators
stated in Theorem 2.8.

PROOF OF THEOREM 2.8. First, we assume that 5 = 1. Our first goal is to show
that for all a, ft e J (d) and p e {1, oo} there are T, a, co > 0 such that

(59)
/ . / ;

g; k) e"
m^{k)) <p(k) r(g) die dg

uniformly for all / e (0, T], <p, r € CC(X), p e R and real-valued f e Cbw(X) with
]Ci=i Î VM2 £ 1- Since v is positive it suffices to show (59) for all r > 0 only.

The proof is virtually similar to the proof of [6, Proposition 4.2], but differs
at essential points. For all (p : X -> C define the function n*cp : G —> C by
(jT*(p)(g) = (p(g). In [6] the group M was compact and it was sufficient to use the
lifting n*. But now M is not necessarily compact anymore. In order to circumvent
convergence problems, we need an alternative lifting. By [10, Lemma 3.2], for all
r e CC(X) with r > 0, there exists a continuous function n"x : G -> [0, oo) with
compact support such that x(g) = fM(n"x)(gm) dm for all g e G.
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Now, let a, ft e J(d) and p e {1, oo}. First, the reduction formula of Proposi-
tion 2.7 gives

for all g,k e G and r > 0. Let #>, r <= CC(X), p e R, f e Cbvx>(X) real-
valued, and suppose that £? = ] |B,VI2 < 1 and T > 0. By (7) there exist C > 0
and 17 > 0 such that C~ie~''^ < p(g) < Ce"lgl for all g e G. Moreover, there
exist C, n' > 0 such that (CT 1 £""''*' < AG(g) < C'e'''1*1 for all g e G. Let
*^(«) = !H(Y.t)zLbW)d&(AaRy'K,)(g). By the Gaussian estimates for AaRyK, the
function

belongs to Li(G; p /̂g) for all h 6 G and r > 0. Therefore, Lemma 2.2 (II) gives

(60) [ X,(hr-l)epi{^Hh)~("'*)(r))(n*<p)(r)(noz)(hXp(r)p(h)y/2AG(r~l) dr

= f {Aa Rp Kl)(kk)ef>^'*m~'"^)(p{k) dk{n"x){h)p(h)
Jx

for all h e G. Next, the function

belongs to Li(G; pdg), because the support is a bounded subset of G. Therefore,
Lemma 2.2 (II) and (60) yield

(61) f I j£(/,r-V(Or'f )<*)~Or'*)<r)

f f • •
~ JGJX

= [[ I {AaRf>K,)(g;k)e<'m«)-'Hk))<p(k)dk(n"x)(gn)dndg
Jx JM Jx

= f ((AaRflK,){g\k)epi'H*)-xll{k))<p{k)dk I (n"r)(gn)dndg
Jx Jx JM

f C

Jx Jx
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for all t > 0.

Secondly, it is clear that (A,(7r*V))(£) = (Bjf)(g) for all g e G and / e

{1, . . . , d}. So, YlU \Ai(n*if)\2 < 1. It follows that

|(jr*i/0(g) — (n*ijf)(h)\ < \gh~x\

for all g,h € G. From [15, Theorem ffl.4.8] and an elementary transformation to
rewrite the right derivatives in terms of left derivatives and an exponential function,
one deduces that there exist a, b > 0 and <o > 0, depending on a, /6, such that

/
x Jx

; Qf-V+M+m/njote-2bi\g\"rl)"<"-»

for all g e G and t > 0. Therefore, it follows from (61) that

(AaR^Kl){g;k)e"^i)-i'^ip{k)T{g)dkdg
(

- JGIG"1 +P) 6 e ( U ' ' ' e"({

x\(jr*<pKr)\(noT)(h)(p(r)p(h)y/2AG(r-l)drdh

f f - i „ - i I / (»-D - i

JG JG

x\(7r*(p)(r)\(n°x)(hKp(r)p(h)y/1Ac(r
l)drdh

for all t > 0. Using the estimate -b(\hr'l\nriy^"-l) + \p\\hr'x\ < cobp"t for all
t > 0 and h, r e G, where cob = b~(n~X){n - l)n~xn~n, one deduces that

/ I (AaRfiK,)(g; i )^»-**V(ji)T(i) diedg
Jx Jx

x f f e-W'-'\"'-'^-'>\in*v){r)\{jr
JG JG

for all t > 0. Therefore, it remains to estimate

r"1" f f e^r-lr'-i)im-l!\(n*<p)(r)\(
JG JG

Note that the repeated integral is finite by (7) and the fact that the support of n"z is
compact.

Thirdly, for all j e No, define the annuli Qj by

j ={(r,h) e Gx G :j < \hr'\nrl <j + 1}.
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Let dvj (r, h) denote the measure on £2j induced by drdh. Then

\(nt<p)(r)\(jt°T)(.h),
( | fc,-|.,-)./.-, (p

|(7rV)(r)|(7r"T)(ft)

00

L^i td/nebj""-<

j=0
p ( > ) ) A c ( f

for all / > 0, where Sj > 0 for all j e No.
Fourthly, let K* and /fA denote the Lie group kernel and reduced heat kernel of the

semigroup 5A generated by the Laplacian A = — 5Zt=i &]• By [15, Theorem III.5.1],
there exist a, c > 0 and w, > 0 such that s-^2eH*|VI < ae""s K^(g) for all s > 0
and g e G. Then, it follows from a similar reduction procedure as used in (61) that

( } Lie j ^ ^ - ' V lPir)p{h))l/1*G(r X)drdh

<ae»<s' [ [ \(n*<p)(r)\(n"T
Jc Jc

= ae*"s' f [ K*. (x; y)\<p(y)\dyr(x) dx = ae°"s' (r, S*. \<p\),
Jx Jx

where Sj > 0 for all 7 e No. Note that the first equality is valid, since r is positive.
Then, by the bounds of Proposition 5.2, there exist a > 0 and a> > 0 such that

\(7T*<p)(r)\(7l"T)(h)
r , / v W r-,r,- l )v,-, ,

uniformly for all J), s2, . . . > 0, f > 0 and ^, r e C,(X) with x > 0.
If we now take the choice .*, = 0' + l)1/<"-1)/2/'1 > 0 for all; e No, then

' / 2 / ' <»s, / • _j_ j

-» tid-du)/(np)
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for a l l ; > 1 and t > 0 with 2cot2'" < 2~[b. Moreover, if; = 0, then

for all t > 0 with 2cot2/n < 2~xb.
Since 2/n - l/(n - 1) < l/(n - 1), it follows that

e
l+4~'b

and

for all r € (0, ((Aco)-1 b)n/2] and j ) , r e CC(X) with r > 0. Hence, (59) is valid.
Let Up be the multiplication operator with e"p* and let /3, = ( 4 , . . . , /() e J(d),

whenever fi = ( i , , . . . , 4) e J(d). Then, it follows from (59) with p = 1 that, for all
a, p e J(d) there exist caf), Ta^, coa^ > 0 such that

uniformly for all t e (0, Ta^\, p e R, and real-valued \js e CbiOO(X) such that
E t i \Bit\2 < 1- Moreover, it follows from (59) with p = oo that, for alia, p e J(d)
there exist c'ap, T^fi, co'a p > 0 such that

for all t € (0, T^fi], p e K and real-valued f e Cfc;00(X) with Yl1=i IB^l2 < I. In
particular, there are a, T, co > 0 such that

(64) \\u;lslup\\Lllx..v-wdx^Lllx.,v-wtlx) = i i ^ ' i r ' / ' s y ' 2 ^ ! ! , - , < a^(1+"""

for all t e (0, T], p e R and real-valued V e Ci;Oo(X) with ^f=1 |fi,iAI2 < 1- Hence,
by iteration, and enlarging a, co if necessary, it follows that (64) is valid for all / > 0,
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p e R and real-valued \j/ e C(,;0o(X) with £? = , \Bj\fr\2 < 1. Then the semigroup
property gives

1-kOO

5 II Up V A O,]Up\\Ll(X;v-"2dx)->L0o<,XMx)\\Up •Jt2<-lp\\Ll{X;v-<1dx)->L,(X;v->Vdx)

x || U~lS Ap' U || -1/2 -1/2

for all tut2,h > 0 with tx + t2 + h = t, p e IR and real-valued f e Ci,;00(X) with
5Zf=i Ifii1/'!2 5 1- Then, for all a, ^ e J(d) there exist a, w > 0 such that

for all f > 0, p e R and real-valued f e Ct;00(X) with X)f=i l^i^l2 < 1- Minimizing
first over iff, and then over p, one observes that for all a, ft e 7 (d) there exists a fe > 0
such that

(65) \(AaRpK,)(g;h\ < au(g)-1/2v(Jt)-1/2r(|o|+l^l+''-'''')/'1eu"c-''(<'(^)"r')1/<""')

for all g, k e G and t > 0.
Finally, it follows from (57) that we may replace v(g) and v(k) by Volx(B(g; 1))

and Wo\x(B(k; 1)), respectively, in the bounds (65), and the proof of Theorem 2.8 is
completed for 5 = 1. If S ^ 1 then the proof is almost the same. Note that we get an
extra term S(k, gm~xk~*) in the reduced expression but this term does not cause any
convergence problems in the above argument, because, by (12),

|5(Jt, gm-lk-x)\ < cy ' ( l* l + w + W )

for all g,k € G and m e M. Moreover we obtain similar estimates as (62), but
now with the Laplacian semigroup SA, where A is the Laplacian associated to the
representation U defined by the cocycle |S| instead of 5 = 1. Fortunately, for
this semigroup the estimates in Proposition 5.2 still hold, and the theorem follows
immediately. D
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