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THE CARDINALITIES OF A+A AND A-A 

BY 

SHERMAN K. STEIN 

H. T. Croft's Research Problems, 1967, contains the following problem due to 
J. H. Conway. "Let A = {a±, a2,. . . , aN} be a finite set of integers, and define 

A+A = {ai+a^ 1 < 1,7 < N} 
and 

A—A = {cii—a^ 1 < î,7 < N}. 

Prove that A—A always has more members than A+A, unless A is symmetric 
about 0."Marica in [1] showed that the conjecture is false for the set A = {1, 2, 3, 5, 
8, 9, 13, 15, 16}. In this case A+A has 30 elements and A—A has 29 elements. 

In Marica's example the ratio between the cardinality of A —A and the cardinality 
of A+A is 29/30 or 0.966 . . . It is the purpose of this note to show that there are 
sets A for which this ratio is as close to 0 as we please (and also as large as we 
please). 

A few definitions will be given first. The cardinality of a finite set X will be 
denoted \x\. If A is a finite set of integers, the ratio 

\A-A\ 

\A+A\ 

will be denoted r(A). 
Also, if A is a set and n is an integer, A+nA will stand for the set {a+naf \ae A, 

a' e A}. The result will follow easily from these three lemmas. 

LEMMA 1. Let X be a finite set of integers. Then there exists an integer n such that 
the equality x1+nx'1=x2+nxr

zfor xl9 xx, x2, x'2 in X implies that x1=x2t andxx=x2. 
Thus \X+nX\ = \X\\ 

Proof. Let n be any integer distinct from all of the fractions. 

X2 ^ i 

that can be formed with xl9 x2, x[, x2e X and x'2^xv Such an n satisfies the 
demand of the lemma. 

Received by the editors September 23, 1971. 

343 

https://doi.org/10.4153/CMB-1973-055-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1973-055-6


344 SHERMAN K. STEIN [September 

LEMMA 2. Let Xl9 X2,. . . , Xk be finite sets of integers. Then there is an integer n 
such that IXt+nX^lXil2 for /, z = l, 2 , . . . , k. 

The proof follows easily from the proof of Lemma 1. 

LEMMA 3. Let A be a finite set of integers. Then there is an integer n such that 
r(A+nA)=(r(A)f. 

Proof. Let n be an integer whose existence is assured by Lemma 2 for the three 
sets X1=A9 X2=A+A9 and X^=A—A. Let B=A+nA. Then 

B+B = {(a1+na[)+(a2+na2) \ al9 a'l9 a29 a2 e A} 

= {(a1+a2)+n(ai+a2) | al9 a'l9 a29 a2 e A] 

= A+A + n(A+A). 

Thus 

\B+B\ = \A+A\\ 

Also, 

B—B = {{a1+na'^)—{a2+na'2) \ al9 a[, a2i a2 e 4̂} 

= {a1—a2+n(a[—a,
2) \ al9 a'l9 a29 a2 e A} 

= A-A+n(A-A). 

Thus 
IB-El = | ,4- ,4 |2 . 

Consequently 

K \B+B\ \A+A\* K K " 

THEOREM. There exist finite sets of integers A for which r(A) is arbitrarily small 
or arbitrarily large. 

Proof. Marica's example shows that there is a set A for which r(A) is less than 1. 
Repeated application of Lemma 3, starting with Marica's example, provides sets 
A of arbitrarily small r(A). Repeated application of Lemma 3, starting with any set 
for which r(A) is larger than 1, the simplest of which is {0, 1,3}, provides sets A 
of arbitrarily large r(A). 

The proof of the theorem raises another question. For convenience assume that 
A contains only nonnegative integers and that 0 is an element of A. The sets A 
constructed in the proof of the theorem, when r(A) is very small or very large, 
have many elements spread sparsely over a large interval. Is there some general 
inequality relating r(A), \A\9 and the largest element in A*! 
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POSTSCRIPT 

H. Croft has called to my attention Sophie Piccard's Sur des ensembles parfaits, 
Mémoires de l'université de Neuchatel, 16 (1942), (Zentralblatt fur Mathematik, 
27 (1943), 204-205), which examines the sets A+A and A—A where A is a set 
of real numbers. On p. 176 these two propositions are to be found: 

PROPOSITION 1. There is a set A of real numbers such that A+A consists of all 
nonnegative real numbers and A—A has measure zero. 

PROPOSITION 2. There is a set A of real numbers such that A+A has measure 
zero and A—A consists of all real numbers. 

A negligible modification of her arguments easily establishes that there are 
finite sets of integers A for which r(A) is as small or as large as we please. We 
sketch the argument, based on that for Proposition 1, that shows that r(A) can be 
made arbitrarily small. 

Let K={0, 1, 3,4, 5, 7, 10, 14} and let n be a positive integer (later to be 
chosen large). Observe that K+K^. {0, 1,2, . . . , 15} while K—K does not 
contain the elements 8 and 15. 

Let A=K+16K+162K+ • • • + 163n-1£, that is, the nonnegative integers less 
than 163n whose representation in base 16 uses only the eight digits in K. 

Then A+A^. {0, 1 , . . . , 163n—1} while A—A contains no integer that has 
the three successive digits 080 in base 16 (because neither 8 nor 15 is in K—K). 
Thus A—A contains no integer whose representation in base 163 has the digit 
8 • 16=128. Consequently A-A has at most 2((163-l)/163)n163w integers. Thus 
r(A)<2((\6B— l)/163)w, which approaches 0 as n increases. 

A similar argument, starting with K={0, 2, 3, 7} and using base 10, produces 
sets of integers for which r(A) is as large as we please. 
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