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ASYMPTOTIC PERFORMANCE OF A MULTISTATE COHERENT
SYSTEM

SRINIVAS IYER, *Indian Statistical Institute, New Delhi

Abstract

An expression for the asymptotic or steady-state performance function is
derived for a multistate coherent system when each component changes
states in time according to a semi-Markov process, the stochastic processes
being mutually independent. This generalizes the expression for system
availability of a binary coherent system when the components are governed
by mutually independent alternating renewal processes.
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1. Introduction

EI-Neweihi et al. [3] consider a multistate coherent system which is a natural generalization
of a binary coherent system. Here a dynamic version of the system is considered and an
expression for the asymptotic performance function is derived when each component changes
states in time according to a semi-Markov process, the stochastic processes being mutually
independent. The result generalizes that for system availability in [1] where the states of the
components are governed by mutually independent alternating renewal processes.

In Section 2 the notation and description of a multistate coherent system is given, along
with a definition of the performance function of the system. In Section 3 the dynamic
semi-Markov model is defined and an expression for the asymptotic performance function
derived, while in Section 4 the steady-state expression is derived for a special case of a
multistate coherent system due to Barlow and Wu [2].

2. Notation and description of a multistate coherent system

The notation and description of the system is as in [3]. For each component and for the
system itself we can distinguish among M + 1 states representing successive levels of
performance ranging from perfect functioning (level M) down to complete failure (level 0).
For component i, Xi denotes the corresponding state or performance level, i = 1, ... , n; the
vector x = (Xl' ... , xn ) denotes the vector of states of components 1, ... , n. We assume that
the state <I> of the system is a deterministic function of the states X I, ... ,Xn of the
components. Thus <I> = <j>(x), where x takes values in S", S = {O, 1, ... ,M} and <I> takes
value in S.

The multistate coherent system (MCS) considered in [3] is a natural generalization of a
binary coherent system and is defined there as follows. Let

(ji' x) = (Xl' , Xi-I, j, Xi+ l' ,xn ) where j = 0, 1, , M

(., x) = (Xl' , Xi-I, ... , Xi+ l' ,xn ) and j = (j, j, ,j).
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A system of components is said to be an MCS if its structure function <I> satisfies:
(i) <I> is increasing (in each argument),
(ii) For level j of component i, there exists a vector (.i' x) such that <I>(ji' x) = j while

cb(li'x) =1= j for 1=1= j, i = 1, , nand j = 0, 1, ... , M.
(iii) cbU)= j for j = 0, 1, , M.

Condition (ii) may be replaced by either of the two weaker coherency conditions mentioned
in Griffith [4] without affecting any of the results to follow.

In [3] the performance function of the system is defined which is a generalization of the
concept of reliability for a binary system.

Let Xi denote the random state of component i = 1, ... , n, with

P[Xi = j] = r; P[Xi ~j] = Pi(j), P[Xi ~j] = Qi(j)'

where j = 0, 1, ... ,M. P; represents the performance distribution of component i. Let
X = (Xl' ,Xn ) be the random vector representing the states of components 1, ... , n
where Xl' .X; are assumed to be statistically mutually independent. Then <I>(X) is the
random variable representing the system state of the MCS having structure function <1>, with

P[<I>(X) = j] =~, P[<I>(X) ~j] = P(j), j = 0, 1, ... , M.

P represents the performance distribution of the system.

In [3] the performance function h of the system is defined as

h = hp(Pl' ... ,Pn) = E[<I>(x)]

where Pi = (PiO' ... ,PiM) and P = (Pv ... ,Pn), i = 1, ... , n.

3. A dynamic semi-Markov model

We consider a dynamic version of the system and study the asymptotic performance
function h.

Each component changes states in time according to a semi-Markov process (SMP) , the
stochastic processes being mutually independent. The SMP for component i has parameters
{IT;, Jl;, Jl;j, j = 0, 1, ... , M} (see [6]), where n; is the steady-state probability of state j for
the embedded Markov chain of SMpi, Jl; is the mean time in state j of SMpi, and Jl;j is the
mean-cycle time for state j of SMpi.

Let ~ denote the state of component i at time t with P~j = Pr [X~ = j], i = 1, ... , n;
j = 0, 1, ... , M. Then [6], P~j~pij, as t~ 00, where pij is the steady-state probability of being
in state j for component i and is given by

For a continuous-time Markov chain these could be calculated from the rate or balance
equations.

Then since [3], h(p) is continuous (in fact, differentiable) with respect to P, see [3],
h(pt)~h(p*), as t~oo, where p* = (pi, ... ,P:) is the vector of steady-state probabilities

pt = (pto, ... ,ptM), k = 1, ... , n.

Thus the asymptotic system performance function, h*(p) is given by

(2) * * _ (Jl~ Jl~ Jllt Jl~ Jl~ Jl'lt )h (p)=h(p )-h -1 '-1 '···'-l-'···'-n-'--';'···'-n-
Jloo /-l11 /-lMM /-loo Jlll /-lMM

where each Jl;j= Ek n~/-l~/nJ, i = 1, .. ~ , n, j = 0, 1, ... ,M. This is a generalization of the
result mentioned in [1] for the system availability for a coherent binary system of n
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components with structure function <I> and reliability htj> governed by n mutually independent
ARPs, namely, system availability

(3) h'=h(~ ~)
IJI+Vl' ••• , IJn+v

n

where IJi is the mean time in state 0 ('on state') for component i and Vi is the mean time in
state 1 ('off state') for component i, i = 1, ... , n.

4. The Barlow-Wu model

As a special case we consider the MCS studied in [2]. Here we have p min-path sets
{PI' ... , Pp } defined as for a coherent binary system. The system state function <I>(x) for the
MCS is defined by

(4) <I>(x) = max min Xi.
l:ar:ap iePr

Let \II represent the coherent structure function (as in the binary case) corresponding to the
min-path sets {PI' ... , Pp } , and let hlJl represent the reliability polynomial (as in the binary
case) corresponding to \II. Then, as shown in [2],

(5) P[<I>(x) ~j] = h~(Qj), Qj = (QI(j), ... , Qn(j».

Hence the performance function htj>, or simply h for the MCS as defined in [2] is in this case
given by

(6)
M M

h(p) = 2: P[<I>(X) ~j] = 2: hlJl(Qj).
j=l j=l

For the dynamic version of the model in [2], since, as t~ 00,

Qj= (~/~k> ... ,~/~k)~ (~/rk' ·.. ,~/:k)
the asymptotic system performance function, h(p) is in this case given by

M (M M)
h*(p) = ~ h'l' t:/tk, ...,"t:/:k

or
M (M M)
~ h'l'j t:/ik> ... ,t:/:k

if 1JJ varies with j in the more general model of Natvig [5].
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