ASYMPTOTIC PERFORMANCE OF A MULTISTATE COHERENT SYSTEM

SRINIVAS IYER, *Indian Statistical Institute, New Delhi

Abstract

An expression for the asymptotic or steady-state performance function is derived for a multistate coherent system when each component changes states in time according to a semi-Markov process, the stochastic processes being mutually independent. This generalizes the expression for system availability of a binary coherent system when the components are governed by mutually independent alternating renewal processes.

SEMI-MARKOV PROCESS; ASYMPTOTIC PERFORMANCE

1. Introduction

El-Neweihi et al. [3] consider a multistate coherent system which is a natural generalization of a binary coherent system. Here a dynamic version of the system is considered and an expression for the asymptotic performance function is derived when each component changes states in time according to a semi-Markov process, the stochastic processes being mutually independent. The result generalizes that for system availability in [1] where the states of the components are governed by mutually independent alternating renewal processes.

In Section 2 the notation and description of a multistate coherent system is given, along with a definition of the performance function of the system. In Section 3 the dynamic semi-Markov model is defined and an expression for the asymptotic performance function derived, while in Section 4 the steady-state expression is derived for a special case of a multistate coherent system due to Barlow and Wu [2].

2. Notation and description of a multistate coherent system

The notation and description of the system is as in [3]. For each component and for the system itself we can distinguish among M+1 states representing successive levels of performance ranging from perfect functioning (level M) down to complete failure (level 0). For component i, x_i denotes the corresponding state or performance level, $i = 1, \ldots, n$; the vector $\mathbf{x} = (x_1, \ldots, x_n)$ denotes the vector of states of components $1, \ldots, n$. We assume that the state Φ of the system is a deterministic function of the states x_1, \ldots, x_n of the components. Thus $\Phi = \phi(\mathbf{x})$, where \mathbf{x} takes values in S^n , $S = \{0, 1, \ldots, M\}$ and Φ takes value in S.

The multistate coherent system (MCS) considered in [3] is a natural generalization of a binary coherent system and is defined there as follows. Let

$$(j_i, \mathbf{x}) = (x_1, \dots, x_{i-1}, j, x_{i+1}, \dots, x_n)$$
 where $j = 0, 1, \dots, M$
 $(x_i) = (x_1, \dots, x_{i-1}, \dots, x_{i+1}, \dots, x_n)$ and $\mathbf{j} = (j, j, \dots, j)$.

Received 21 May 1987; revision received 28 September 1987.

^{*} Postal address: Indian Statistical Institute, Statistical Quality Control and Operations Research Unit, 7 S.J.S. Sansanwal Marg, New Delhi 110016, India.

A system of components is said to be an MCS if its structure function Φ satisfies:

(i) Φ is increasing (in each argument),

(ii) For level j of component i, there exists a vector (.i, x) such that $\Phi(j_i, x) = j$ while $\Phi(l_i, x) \neq j$ for $l \neq j$, i = 1, ..., n and j = 0, 1, ..., M.

(iii) $\Phi(j) = j$ for j = 0, 1, ..., M.

Condition (ii) may be replaced by either of the two weaker coherency conditions mentioned in Griffith [4] without affecting any of the results to follow.

In [3] the performance function of the system is defined which is a generalization of the concept of reliability for a binary system.

Let X_i denote the random state of component i = 1, ..., n, with

$$P[X_i = j] = P_{ij}, \quad P[X_i \le j] = P_{i(j)}, \quad P[X_i \ge j] = Q_{i(j)},$$

where $j=0, 1, \ldots, M$. P_i represents the performance distribution of component i. Let $X=(X_1,\ldots,X_n)$ be the random vector representing the states of components $1,\ldots,n$ where X_1,\ldots,X_n are assumed to be statistically mutually independent. Then $\Phi(X)$ is the random variable representing the system state of the MCS having structure function Φ , with

$$P[\Phi(X) = j] = P_j, \qquad P[\Phi(X) \le j] = P(j), \qquad j = 0, 1, ..., M.$$

P represents the performance distribution of the system.

In [3] the performance function h of the system is defined as

$$h = h_n(p_1, \ldots, p_n) = E[\Phi(x)]$$

where
$$p_i = (p_{i0}, ..., p_{iM})$$
 and $p = (p_1, ..., p_n)$, $i = 1, ..., n$.

3. A dynamic semi-Markov model

We consider a dynamic version of the system and study the asymptotic performance function h.

Each component changes states in time according to a semi-Markov process (SMP), the stochastic processes being mutually independent. The SMP for component i has parameters $\{\Pi_j^i, \mu_{j_i}^i, \mu_{j_i}^i, \mu_{j_i}^i, j=0, 1, \ldots, M\}$ (see [6]), where Π_j^i is the steady-state probability of state j for the embedded Markov chain of SMPⁱ, μ_j^i is the mean time in state j of SMPⁱ, and μ_{jj}^i is the mean-cycle time for state j of SMPⁱ.

Let X_i^i denote the state of component i at time t with $p_{ij}^i = \Pr[X_i^i = j], i = 1, \ldots, n;$ $j = 0, 1, \ldots, M$. Then [6], $p_{ij}^i \rightarrow p_{ij}^*$, as $t \rightarrow \infty$, where p_{ij}^* is the steady-state probability of being in state j for component i and is given by

(1)
$$p_{ij}^* = \frac{\mu_j^i}{\mu_{jj}^i} = \frac{\prod_{j=1}^i \mu_j^i}{\sum_{k=0}^M \prod_{k}^i \mu_k^i}.$$

For a continuous-time Markov chain these could be calculated from the rate or balance equations.

Then since [3], h(p) is continuous (in fact, differentiable) with respect to p, see [3], $h(p') \rightarrow h(p^*)$, as $t \rightarrow \infty$, where $p^* = (p_1^*, \dots, p_n^*)$ is the vector of steady-state probabilities

$$p_k^* = (p_{k0}^*, \ldots, p_{kM}^*), \qquad k = 1, \ldots, n.$$

Thus the asymptotic system performance function, $h^*(p)$ is given by

(2)
$$h^*(\boldsymbol{p}) = h(\boldsymbol{p}^*) = h\left(\frac{\mu_0^1}{\mu_{10}^1}, \frac{\mu_1^1}{\mu_{11}^1}, \dots, \frac{\mu_M^1}{\mu_{MM}^1}, \dots, \frac{\mu_0^n}{\mu_{00}^n}, \frac{\mu_1^n}{\mu_{11}^n}, \dots, \frac{\mu_M^n}{\mu_{MM}^n}\right)$$

where each $\mu_{ij}^i = \sum_k \prod_{k}^i \mu_k^i / \prod_{j}^i$, $i = 1, \ldots, n$, $j = 0, 1, \ldots, M$. This is a generalization of the result mentioned in [1] for the system availability for a coherent binary system of n

components with structure function Φ and reliability h_{ϕ} governed by n mutually independent ARPs, namely, system availability

(3)
$$h' = h\left(\frac{\mu_1}{\mu_{1+\nu_1}}, \dots, \frac{\mu_n}{\mu_{n+\nu_n}}\right)$$

where μ_i is the mean time in state 0 ('on state') for component i and v_i is the mean time in state 1 ('off state') for component i, $i = 1, \ldots, n$.

4. The Barlow-Wu model

As a special case we consider the MCS studied in [2]. Here we have p min-path sets $\{P_1, \ldots, P_p\}$ defined as for a coherent binary system. The system state function $\Phi(x)$ for the MCS is defined by

$$\Phi(\mathbf{x}) = \max_{1 \le r \le p} \min_{i \in P_r} x_i.$$

Let Ψ represent the coherent structure function (as in the binary case) corresponding to the min-path sets $\{P_1, \ldots, P_p\}$, and let h_{Ψ} represent the reliability polynomial (as in the binary case) corresponding to Ψ . Then, as shown in [2],

(5)
$$P[\Phi(x) \ge j] = h_{\Psi}(Q_j), \qquad Q_j = (Q_{1(j)}, \ldots, Q_{n(j)}).$$

Hence the performance function h_{ϕ} , or simply h for the MCS as defined in [2] is in this case given by

(6)
$$h(p) = \sum_{j=1}^{M} P[\Phi(X) \ge j] = \sum_{j=1}^{M} h_{\Psi}(Q_j).$$

For the dynamic version of the model in [2], since, as $t \rightarrow \infty$,

$$\mathbf{Q}_{i}^{t} = \left(\sum_{k=j}^{M} p_{1k}^{t}, \ldots, \sum_{k=j}^{M} p_{nk}^{t}\right) \rightarrow \left(\sum_{k=j}^{M} p_{1k}^{*}, \ldots, \sum_{k=j}^{M} p_{nk}^{*}\right)$$

the asymptotic system performance function, h(p) is in this case given by

$$h^*(p) = \sum_{j=1}^M h_{\Psi} \left(\sum_{k=j}^M p_{1k}^*, \ldots, \sum_{k=j}^M p_{nk}^* \right)$$

or

$$\sum_{j=1}^{M} h_{\Psi_{j}} \left(\sum_{k=j}^{M} p_{1k}^{*}, \ldots, \sum_{k=j}^{M} p_{nk}^{*} \right)$$

if ψ varies with j in the more general model of Natvig [5].

References

- [1] BARLOW, R. E. AND PROSCHAN, F. (1981) Statistical Theory of Reliability and Life Testing. To Begin With, Silver Spring, Md.
- [2] BARLOW, R. E. AND WU, A. S. (1978) Coherent systems with multistate components. *Math. Operat. Res.* 3, 275–281.
- [3] EL-Neweihi, E., Proschan, F. and Sethuraman, J. (1978) Multistate Coherent Systems. J. Appl. Prob. 15, 675-688.
 - [4] Griffith, W. S. (1980) Multistate reliability models. J. Appl. Prob. 17, 735-744.
- [5] NATVIG, B. (1982) Two suggestions of how to define a multistate coherent system. Adv. Appl. Prob. 14, 434-455.
 - [6] Ross, S. M. (1982) Stochastic Processes. Wiley, New York.