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G is a graph on n nodes with ¢ edges, without loops or multiple edges. We write
o = g/n and B for the maximum degree of any node of G. We write

B(h,0)=1, B(h,k)=h{k\(h—k)!}, M=(n—1)!]2

and H for the number of Hamiltonian circuits (H.c.) in G, the complement of G, or, what is
the same thing, the number of those H.c. in the complete graph K|, which have no edge in
common with G. Our object here is to prove the following theorem.

THEOREM 1. If e = a < o0 as n — oo and f§ = o(n), then
H/M - e~ gs n — o0. )

Wright [4] proved this result for the particular case when G is a Hamiltonian circuit (when
o = a = 1) and Singmaster [3] when G is a I-factor (when « = a = 4). Rousseau [2] found
Wright’s result by an improved method; our own method owes something to Rousseau’s.
The authors of {1] find an exact, but complicated, formula for H when G takes one of several
special forms.

To prove Theorem I, we write J(e,, ..., e,) for the number of different H.c. in K, which
pass through the edges ¢, ..., e, belonging to G. We write

L,. = ZJ(eh, ceay e,-’_ s
where the sum is over all sets of r different edges belonging to G, and L, for the numder
of H.c. in K|, so that L, = M. Then, by the Exclusion-Inclusion Theorem,

H = xf (=1L, +(~1)*6L,, @
r=0

where x is at our choice and 0 £ 6 £1. We shall take x < n, so that we need only consider
r<n.
An arc (or more precisely, an s-arc) is a sequence of edges

P1P2’~P2P3’P3P4>‘-',PsPs+la

where the nodes P,, P,, ..., P,,, are all different. A set of arcs (or, as a particular case, a
set of edges) is independent if no two of the arcs have a node in common. If the set of edges
ey, ..., e consists of an independent set of arcs, R in number, we have

Jey,...,e)=2R"Y n—r—1) (3)
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by the simple argument of [4] or of [2]. If the set of edges is of any other form, so that it
contains a cycle or a star of 3 or more edges, then J = 0.
It follows that

L, = g{(n-2)1}. @
Hence, if a =0, i.e. ¢ = o(n), we have
Li/M=2/(n—1)-»0asn->w
and, if we choose x = 1 in (2), then (1) follows. Henceforth, then, we may take a > 0 so that
q>Cin (n>C,), ®)

where C,, C, are fixed positive numbers.
We can choose B(g, r) sets of r edges from G, of which Q, (say) are dependent. From (3)
for each of the independent sets

J(ey, ....e)=2""Yn—r—-11,
while, for each of the dependent sets,
Jey,...,e) <2 Y (n—r-1L
Hence
L, =2"Yn-r-1)1{B(q, r)+0(Q,)}.

Every set of dependent edges must contain at least one 2-arc. But the number of 2-arcs in G
is at most gf (since one edge can be chosen in g ways and the second in at most 2(f—1)
ways and we have then counted each 2-arc twice). The remaining r—2 edges in a dependent
set can be chosen in at most B(g—2,r—2) ways. Hence

Q, = gpB(g—-2,r-2)

and so
L, = 2" Y(n—r—1)1B(q, {1 +0(Br*/q)}.
Now
27 1B(g, )(n~r =1t = (2uyMQJr!,
where

logQ = s; {log<1 —s—;—l-)—log (1 —;SI)}

If r = o(n), we have by (5)

logQ = ) O(s/n) = O(r*/n).
s=1
Hence, if r? = o(n), we have

L,/M = {(2aY/r1}{1+0(6r*/n)}. ©)
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Using this in (2), we have
HIM = e™ 2+ 0(2)%/x ")+ O(B e**[n)
= e+ 0(1),

if we choose x so that x — oo as n— 0. This is Theorem 1.

Clearly the condition 8 = o(n) in Theorem 1 cannot be replaced by f = O(n), since
B =n—1 implies that at least one node of G is isolated and H =0. Nor can we replace
B = o(n) by B < bn for some fixed b such that 0 < b < 1. For, take G to consist of a star
and a number of isolated nodes, with

B =[bn] =q =an, so that « » b as n — 0.
Then

Ly =q{(n-2)%, L,=g(g—-D{(n-3)1}/2
and L, =0 for r 2 3. Hence
HIM =(Ly—L,+L)/M->(1 —b)?

as n— 0o. But (1—5)% <e”?" since b > 0. Hence (1) is false for this G.
We can however prove the following theorem for larger & and more restricted f, but
the proof is so much more complicated that we shall present it elsewhere.

THEOREM 2. If A, A,,& are any fixed positive numbers, A, <a < A,logn and
B=0(n'"%), then H~ Me™%* as n — o0.
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