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Introduction

Let £ be a real Hausdorff locally convex space with topological dual £', topologised
by the strong topology. Let (x, x') denote the bilinear mapping defining the duality
between £ and £' (x e £, x' e £'). By a unitary representation of £' we mean an operator-
valued function U{x')=Ux. defined on £', whose values are unitary operators in a
separable Hilbert space H such that

tf,i+xi = l V t f , i . x'1;x'2e£'.

U is called cyclic if there exists a vector heH such that {U ̂  h:x'e E'} is total. Without
loss of generality we may suppose that ||/I|| = (/I, h)\j2 = 1 (by (huh2)H we denote the inner
product on H, hl,h2eH). The vector h is called a cyclic vector for the representation U.
Let JS?(tf) denote the space of operators on H with the norm topology. We call U
strongly continuous if the mapping x'e£'>-»[/,,.. veH is continuous for each veH. Let IR
be the field of real numbers and let n be a positive integer. Then, if £'sR", the following
result is obtained from Bochner's theorem.

Theorem. Let [/:x'eR"i—*UX. e5£{H) be a strongly continuous cyclic unitary
representation with cyclic vector h. Then,

(i) There exists a Radon probability n on W such that

(Uv. h, h)H = f exp(i(x, x')) di4x\ x' e W.
r

(ii) There exists an isometry between H and L2(jx) which transforms U^ into the
operator of multiplication by exp (i(x, x')), x' e £'.

It is natural to ask if this theorem is true in general for infinite dimensional E. The
answer is positive if, for instance, £ is quasicomplete and £' is nuclear, as is well known
(see [5], p. 365, Th. 5; [10], p. 236, Cor. 2 and p. 233, examples). When £ is a separable
Hilbert space the theorem is not true, since the unitary representation that may be
associated to the Gaussian probability is strongly continuous, for instance. There exists
actually a bijection between the strongly continuous cyclic unitary representations and
the cylindrical probabilities on £ which are scalarly concentrated on the balls of £ (see
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[10], p. 187, Prop. 2; p. 192, Def. 1; p. 193, Th. 1). In this paper we characterise the
representations corresponding to Radon probabilities with bounded support. We use a
theorem of Bochner type for the Fourier transforms of such measures. Finally, similar
results are proved for semi-reflexive dual nuclear spaces.

By a Radon measure with bounded support on a locally convex space £ we mean a
Radon measure on £, concentrated on some bounded subset of E ([4], p. 116). Such
measures on Hilbert spaces have been considered in [7] in relation to the Navier-Stokes
equation. In [2], the authors study some special problems for measures with compact
support on the real line.

1. Hilbert space case

In this section we suppose that £ is a real separable Hilbert space. Let j i b e a Radon
probability on E for the weak topology, concentrated on a closed ball centered at origin
Q c E. We consider the Hilbert space I?(n), topologised by the usual norm. If x' e E', the
operator of multiplication by exp(i(.,x')) is a unitary operator on L2(/i) whose adjoint is
the multiplication by exp( — i(., x')). We denote it by Mx.. We consider the representation
x'eE's->MX. eJ?(l}(n)). If x' converges to x'o in £', exp(j(.,x')) converges to exp(i(., x'o))
uniformly on the ball Q; therefore this representation is continuous (not only strongly
continuous!). Moreover, the set of linear combinations of the functions exp (;'(., x')),
x e £', is dense for the topology of uniform convergence on Q in the space of complex
weakly continuous functions on Q ([4], p. 45; p. 105). In turn, the last space is dense in
L2(p). It follows that the vector / 0 = 1 is cyclic for the representation M. Let C be the
field of complex numbers. Let E'c denote the complexified space from £' with the
product topology. We may extend that representation to E'c by

M,.(/) = exp (»(.,/))/(•), feL2(n),

where

(x,z') = (x,x') + i(x,)/), xeE,

if z' = x' + iy' e E'c.

The fact that n is concentrated on Q implies Mz. e S£(L2(/z)) (not unitary!). The mapping
z'e£',,H->M.. ei?(L2(ji)) is continuous for the same reason as above. It is also a
G-holomorphic function. Indeed, if z\,z'2eE'c and g{fy = Mz-i+X2-2, XeC, then
/ = Jy g{X) dX € Se{l3{n)) for each closed path y <= C, If / t ,/2 e L2(fi),

-II , z\)) exp (i(x, z'2))A)/,(x)/2(x) dn(x) dX

= f \ exp (j(x, z'1))/1(x)/2(x) exp (i(x, z'2)X) dl d^x) = 0,
liy

whence g is an entire function (vectorial Morera's theorem). Finally, | |M.
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= sup{| |Mz.(/) | |2: | | / | | 2^l}=exp(r| | lmz' | |) , where r is the radius of Q, Imz' = y', if z' = x'
+ iy', x',y'eE'. In short, we have verified that the representation x'e£'h-»Mx. ei?(L2(^))
admits an entire extension to E'c such that ||Mz.||^exp(r||lmz'||), z'eE'c, for certain r^O.
Now, we proceed to prove the reciprocal assertion.

The following lemma is a consequence of Prokhorov's theorem and the arguments of
[10], p. 189, Prop. 3, for cylindrical probabilities in Hilbert spaces. Let {Pn}"=i be the
sequence of projections associated to a fixed orthonormal basis in E.

Lemma. Let (/On°= I = (PE/P (E)j-)n°= I oe a cylindrical probability on E such that there
exists a ball Q c £ , centered at origin, with fin(Pn(E)\Pn(Q)) = 0, neN. Then, there exists a
er(£, E')-Radon probability fi on E, concentrated on fi, with /i = (/zn)"=1.

Theorem 1.1. Let n be a Radon probability on E, concentrated on the closed ball Qr

= {xe£:||x||^r}, r>0. Let

jl{x') = J exp (i(x, x')) dn(x), x' e E',
«,

be the Fourier transform of fi. Then,

(i) p. is a continuous function of positive type on E' such that /2(0)= 1.

(ii) (i may be extended to an entire function 9 on E'c such that |0(z')|^exp(r||lmz'||),
z'eE'c.

Conversely, if 9 is an entire function satisfying (ii) and whose restriction to E' satisfies (i)
there exists a Radon probability \i on E, concentrated on Qr and such that fi = 0 on E'.

Proof. Bochner's theorem for Hilbert spaces ([10], p. 239, Th. 3) proves part (i). Part
(ii) is proved as for the representations. Conversely, part (i) implies that there is a
cylindrical probability (/O£°= I o n E such that if

9n:x'n^9(x'noPn), x'neE'n = Pn(E)',

then nn(x'n) = en(x'n).
([10], p. 187, Prop. 2). Moreover the function

is entire for each n and it verifies

|0n(z;)|^exp(r||lmz;||) for every z'neE'n(.

(we still denote by Pn the obvious extension of Pn on £c). Because of the Paley-Wiener
theorem there is a distribution Tn with support contained in the ball of radius r in £„
= />„(£)SIR" such that

fn(x'n) = Tn(exp (/(., x'n))) = 6n(x'n) = fin(x'n), x'n e W.
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Let Sfn be the space of all functions rapidly decreasing at infinity in W. Let a
so that fi is the Fourier transform of a, /? = a. Then,

W)=Tn(d)=$fn(x'Wx')dx
R"

= J J a(x') exp (i(x, x')) dfin(x) dx'
R"R"

j
R"

Therefore, the distributions nn,Tn coincide on £fn and thus nn=Tn (neN). It follows
that jxn has support contained in Qr and, according to the preceding lemma, there exists
a Radon probability \i on £, concentrated on Qr, such that \i = (/*„)"= ^.

Theorem 1.2. Let U:x' eE'\-^Ux.eJ?(H) be a continuous cyclic unitary representation
with cyclic vector h. If U admits an entire extension U:E'C^-*£C(H) verifying
||{7z.||^exp(r||lmz'||), z'eE'c,for a certain r>0, then

(i) There exists a Radon probability \i on E, concentrated on Qr, such that

(ii) The equality of part (i) defines an isometric correspondence between H and L2(n), so
that the operator corresponding by this isometry to Ux, is the operator of multiplication by

Proof. It is standard. The function x'eE'\->9(x') = (Uxh, h)H is continuous and of
positive type such that 0(0)= 1. Moreover z'eE'c\->(Uz.h,h)H is an entire function and
|0(z')|^||t7Z'||^exp(r||lmz'||), z'eE'c. Theorem (1.1) implies part (i). The isometry of part
(ii) is proved by associating to each vector Yj=i ^kUxiheH the function
Z* = i ^*exP(i(->x*))e£204 a n d applying obvious arguments about density in H and

2. Nuclear space case

Henceforth we suppose that £ is a semi-reflexive (i.e. E = E" algebraically) dual
nuclear locally convex space (see [9]). Let & be the family of all subsets of E which are
closed, bounded, balanced and convex. If Be@, let B° denote the polar set of B in £'.
We suppose £ ' endowed its strong topology or topology of uniform convergence on the
elements of 3&. This is defined by the seminorms qB0(x') = supxeB\(x,x')| = ||x'||B, x'eE',
where qB0 is the gauge of B°cE', Be£8. Let EB denote the linear subspace of E spanned
by B and normed by the gauge of B. Let E'B0 denote the quotient space E'/q^iO)
topologised by the norm defined by qB0- If x' e £', let [x'] denote the image through the
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canonical surjection £'-»£'B0- Obviously, this surjection induces a surjection
nB:E'c-4(E'Bo)c- If O:E'C-*C is an entire function (G-entire and continuous) we say that 6
is factorisable if there is BeSS and n:(E'B0)c^C, where n is entire, such that 6= r\°nB. By
Radon probabilities we mean the ones relative to weak topology er(£, £').

Theorem 2.1. Let n be a Radon probability on E, concentrated on Be3$. Let fi{x')
= jB exp (i(x, x')) dfi(x), x' e £', be its Fourier transform. Then,

(i) fi is a continuous function of positive type on E' and fi(0)= 1.

(ii) n may be extended to a factorisable entire function 0 on E'c such that
\6(z')\^xp(\\lmz'\\B),z'eE'c.

Conversely, if 6 is an entire function on E'c satisfying (ii), whose restriction to £' satisfies
(i) there exists a Radon probability n on E, concentrated on some element of 88 and such
that fi = 6 on E'.

Proof. Let n be a Radon probability. Part (i) is a consequence of [10], p. 193, Th. 1.
It makes sense to define /I(z')=JBexp(i(x, z'))dn(x), for every z'eE'c, and it is easy to
prove that fi is a G-holomorphic and continuous function on E'c.

Now, without loss of generality, we may suppose that E'B0 is a separable pre-Hilbert
space since £' is nuclear. The topological dual of E'B0 coincides with E'BOo = EB (E is
semireflexive) and the strong topology on EB is the one defined by the gauge of B. Thus
EB is a separable Hilbert space whose topological dual is the completion of E'B0. The
continuity of the injection EB->-E implies the identity of topologies a(EB, (EB)'), a(E, E')
on B. Let v be the measure n considered as Radon measure on the Hilbert space EB.
According to previous arguments, the function v:(EBo)c->C- in entire and, for [x'],

v(l>'] + <[/]) = 1 exp (i(x, [x'] + ( [ / ] ) dn(x)
B

= J exp (i(x, [x'])) exp ( - (x, [/])) d^(x)
B

= J exp (i(x, x')) exp ( - (x, / ) ) dn(x) = fi(x' + iy'),
B

i.e., voKB = fi.
Conversely, we may suppose that EB is a Hilbert space and 9 is factorisable through

E'Bo, i.e., there is n:(E'B0)c-*C an entire function, such that 6 = rjonB. Evidently, the
restriction of t\ to E'B is a continuous function of positive type. Moreover, for every
z'eE'c,

\>i(nBz')\= \6(z')\ = exp(||lm z'\\B) = exp ||lm %Bz'\\B.

Therefore, the natural extension if of n to the completion of (E'BO)C verifies (i) and (ii) of
Theorem 1.1. Thus, there exists a Radon probability fi on EB concentrated on B, such
that /i([x']) = /?([x']) = 6{x') for every x' e £'. If we consider fx as a Radon measure on £,
then ft(x') = /2([x']) = 9(x'), for every x ' e£ ' , and the proof is finished.

https://doi.org/10.1017/S0013091500028078 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028078


72 JOSE E. GALE

Remark. Theorem 2.1 is also true if the word "factorisable" is dropped in condition
(ii), because every entire function 6 on E'c satisfying

||B), z'eE'c

is factorisable. It is enough to prove that 6(z'l) = 0(z'2) for z\,z'2eE'£ with z\=z'2 on B.
Using Cauchy's inequalities the last identity is verified by each n-linear mapping of the
Taylor series of G at the origin. Therefore, it is also verified by 9.

By means of arguments similar to those of Sections 1 and 2 and some simple
additions, we obtain a bijective correspondence similar to that of Theorem 1.2.

Remark. We may state analogous results in the setting of bornological linear spaces,
under suitable restrictions.

Acknowledgments. I am grateful to Prof. M. Paramio and J. L. Rubio de Francia for
helpful talks about this paper.
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