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Abstract

This paper examines the control of an interface between a suspension of sediment-
ing particles in liquid and a bed of dense-packed particles at the bottom of the
suspension. The problem arises in the operation of continuous thickeners (e.g. in
mineral processing) and is here mathematically described by a first order inhomo-
geneous partial differential equation for the concentration C(x, t) of particles.
The controlled variable is the height H* of the bed, and the control variables are
the volume fluxes injected at the feed level and removed at the bed. A strategy to
control the interface is devised, and control is confirmed and demonstrated by a
series of numerical experiments.

1. Introduction

Sedimentation is a very old process for separating small particles from a liq-
uid. Examples from antiquity include clarification of wine and beer (in which
clear liquid is the goal) and primitive mineral processing (in which extraction
of heavy sediments is the goal). In modern mineral processing, flotation—
in some senses the opposite process to sedimentation—is also exceedingly
important.

Mathematically, sedimentation can be modelled by first-order partial dif-
ferential equations which sometimes possess discontinuous solutions. These
discontinuities are analogous to free boundaries in more common problems,
involving change of phase or change of material properties, in which govern-
ing second-order partial differential equations are typical.

Our goal is to examine, in terms of a simple model, the existence and
control of the most important discontinuity in sedimentation processes—that
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270 N. G. Barton et al. [2]

between a suspension of particles and a high concentration zone at the bottom
of the liquid. In many cases, this zone contains material at the maximum
permissible concentration, and we therefore often used the term packed bed
for it. The continuous thickener shown in Figure 1 is employed in our study.
The thickener can be operated in two ways:

• Batch mode. Here, the inflow and outflow are both zero, and the
initial suspension of particles is allowed to settle. A bed always forms
in this case; at large times, the thickener has a packed bed at the
bottom with clear fluid above it. Batch thickeners have been widely
studied [1, 2, 3, 7, 8, 9, 11, 12, 15, 16, 19].

• Continuous mode. Here, the inflow and outflow (and generally the
overflow) are nonzero. This case is substantially more complicated
than the batch case, and packed beds might or might not form de-
pending on the manner in which the thickener is operated. Continu-
ous thickeners have also been widely studied [9, 10, 13, 16].

There are many possibilities for modelling thickeners. We choose to use
ideas due to Kynch [12] in which the principal assumption is that the sed-
imentation speed vs(C) of particles relative to the bulk velocity of fluid
depends on the local concentration C(x, t) of particles. Based on exper-
imental results (see e.g. [15]) and the work of Kynch, we use the plausible
functional representation (2) for vs(C). Emphasis on vs(C) as a given func-
tion is a considerable simplification that enables effects such as momentum
associated with the sediment particles [7] and the precise nature of the bed
[13] to be neglected. Our approach is both relatively simple and reasonably
realistic for the applications envisaged.

As mentioned above, certain operating conditions of continuous thick-
eners lead to the formation of interfaces (discontinuities in concentration)
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FIGURE 1. Schematic of a thickener.
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which rise or drop through the thickener. In particular, a high concentra-
tion zone sometimes forms and then either builds up or is pumped out of
the thickener. In many cases, this zone has economic significance, and our
goals are to determine operating conditions which control its depth, and to
predict the concentration of material pumped off at the bottom. These op-
erating conditions are deduced analytically (Section 3) and then confirmed
and demonstrated numerically (Section 4, 5).

The conclusions of the work are presented in Section 6. To highlight them:
• Control is possible through judicious choice of inflow and outflow

pumping rates.
• Numerical schemes used to simulate thickener performance can be

used as a basis of methods for control.
• The nature of the control depends sensitively on the vs(C) repre-

sentation and on conditions at the boundary of the computational
domain in x - t space.

2. Mathematical preliminaries

The height of the thickener is x = X and its cross-sectional area (as-
signed constant) is A . At height x/X = hf < I, liquid containing identical
particles is injected with volume flux (2,(0 = Vt{t)A . The local fraction of
the volume occupied by particles is denoted C{x, t) (generally called the
particle concentration or concentration). The concentration of the injected
material is C((t). At the bottom of the thickener, x = 0, material is drawn
off with volume flux Qb(t) = Vb(t)A and concentration Cb(t). At height
x = X, overflow of liquid takes place if Vi] > Vb ; if so, the overflow flux is
Qt(t) = Vt{t)A with concentration Ct{t).

The basic equation used in this work is one-dimensional conservation of
particles

where <I> is the (downward) volume flux of particles, C the volume con-
centration, t is time and x is a coordinate measured vertically upwards.
In practice, the injection nozzle is designed to minimise vertical fluid mo-
tions. Thus the one-dimensional model (1) should be a good approximation,
particularly near the bottom of the thickener.

The sedimentation speed of particles (in a frame of reference moving at
the bulk velocity of the mixture of particles arid fluid) is denoted by vs(C).
For this paper, we use the representation

vs(C) = vo(l- CICj + vxC(CM - C) (2)
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in which vQ is the sedimentation speed of an individual particle, CM is
the maximum possible concentration of particles, q is a positive constant
and vx is the superficial velocity of a Darcy type flow of liquid. The first
term in vs models free settling of particles as modified by the presence of
other particles, and the second term is the dominant term for settling of
a packed bed. This form for vs allows for a wide variety of behaviour
which is compatible with sedimentation results in laboratory experiments
and previous theoretical analyses (Auzerais et al. [1], Fryer & Uhlherr [10],
Kynch[12], Park et al. [15]).

The (downward) volume flux of particles is given by

VbC - VtCH(x - htX), (3)

in which H{x - h^) is the Heaviside step function, the (downward) bulk
velocity is

V = Vb-ViH{x-hiX),

and
4>(C) = vs(C)C (4)

denotes (downward) sediment flux in a reference frame in which the bulk
velocity is zero. Equations (1, 3, 4) yield the basic equation

d~Wt ~ W^[C(Vs + v » ~ ViH{x - h'x))] = ViCiS(x - hiX)' {x >t] e Q

or equivalently

^-ly+Vb-
viH(x-hiX))jJz = V^Ct-CMx-hiX), (x,t)€Q (5)

in which Q is the domain 0 < x < X, t > 0,

is the speed of propagation of density disturbances (with respect to stationary
fluid), and the outflow and injection pumping speeds Vb(t) and V((t) can be
assigned. The injected concentration C((t) is also a suitable control variable,
but is not used here for this purpose.

The solution of (5, 6) can be analysed using the method of characteristics
(see e.g. [6]) and conditions need to be specified at those parts of the boundary
dQ at which characteristics enter Q . We assume initial data of the form
C ( X , 0 ) = /0(JC) where

C,, S < x/X

CM + (C{- CM)x/(dX), 0 < x/X < 8

CM, x = 0.
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This initial condition causes packed beds to form in the batch case Vb —
0. Further, when characteristics enter Q. from the bottom of the thickener
x — 0, t > 0, we assume boundary data of the form

C(0,t) = CM. (8)

This circumstance might arise, for instance, when the outflow pumping speed
Vb is decreased as part of the control strategy. Similarly, when characteristics
enter fi from the top of the thickener x = X, t > 0, we assume boundary
data of the form

C ( l , 0 = 0. (9)

The solution C(x, t) of (5) can possess discontinuities whose properties
depend on the precise nature of Vb(t), V^t) and Ct{i). In particular, a
discontinuity sometimes propagates upwards from x = 0, whilst other dis-
continuities propagate upwards and downwards from the injection zone near
x — htX. Figure 3 illustrates a typical case. Under certain circumstances,
the introduction of boundary condition (8) (necessitated by decreasing Vb)
causes a discontinuity to form at the boundary x = 0.

We are now able to state our fundamental goal:

Given constants H*, e > 0 and the initial concentration distri-
bution fo(x), determine the control variables Vb(t) and V^t) so
that an interface exists between free settling particles and a high
concentration zone. This interface is to be confined within an
e-neighbourhood of the height x/X = H*.

If the above goal can be achieved, a second goal is

Characterise the concentration C(0, t) of material removed at the
bottom of the thickener.

3. Analytical considerations as to the feasibility of control

This paper considers a simple analytical model for a continuous thick-
ener—the principal assumptions include monodisperse particle distribution,
the empirical law (2) for vs(C), assumption of one-dimensional behaviour,
the form chosen for the initial concentration C(x, 0), neglect of particle
momentum effects, and a simple treatment of the packed bed by virtue of
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the second term in (2). Despite these assumptions, the control problem is
technically complicated and many cases need to be considered. An effective
control strategy is deduced later in this section. First, however, we investigate
the nature of the flux curve (3) for <J>(C) and discuss the general nature of
the solution C(x, t).

3.1 Nature of the flux curves
Consider O(C) below the feed at x/X - ht:

= C[Vb +vQ(l - C/CM)q + VlC(CM - C)]

Here [v0, vx, CM, q\ are parameters determined by the nature of the sedi-
menting system of particles and liquid, whilst Vb is an adjustable parameter.
For values of [v0, v{, CM, q] typical of those for common systems such as
mud settling in water the curve O(C) has two inflection points Cl, C1 with

0 < Cp < Cp . These points are independent of the value of Vb .
As Vb increases, O(C) passes through four configurations as shown in

Figure 2. To anticipate later developments, control is possible only if the
flux curve is of type I, II or III. To achieve control, flux curves which are
initially in type IV are converted to one of the other types by changing Vb .

3.2 Nature of solutions of (5, 6)
Again, consider the zone below the feed. The method of characteristics (see

e.g. [6, 16]) can be used to solve (5, 6) subject to initial data C(x, 0) = fo(x).
One case out of the four shown in Figure 2 is now analysed.

Suppose «I>(C) has type III behaviour and the injected concentration C(

is such that there is an imbalance between the injected flux VjCl and the
flux below the feed <^(C{) as shown in Figure 3 (see p. 276) in which
Vfi > <D(C,). Suppose also that C, < Cm!a(Vb) where <t>'(CmJVb)) = 0.
At the bottom of the thickener, a high concentration zone starts to build up
because of the form chosen for the initial data fo{x). The top of this zone is
the interface we eventually seek to control. In mathematical terms, the high
concentration zone is formed by the intersection of characteristics emanating
from the boundary segment 0 < x/X <ht, t = 0 thereby causing a primary
discontinuity (or "shock") to form and move upwards through the thickener.
The upward speed of this discontinuity is (Carrier & Pearson [5, p. 232])

(10)

where + ( - ) denote values immediately above (below) the discontinuity.
That is, the negative slope of the line AC gives the initial upward speed
of the top of the high concentration zone.
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In cases where Vi<vs + Vb, conservation of sedimenting particles shows

that the flux just below the feed is O(C/) = ViCi (the point labelled B in
Figure 3). Characteristics emanating from 8 < x/X < hl., t — 0 intersect
with those passing through x/X = hj} t > 0 and a secondary discontinuity
moves downward through the thickener at speed given by the slope of AB.
When the primary and secondary discontinuities indicated by AB and AC
in Figure 3a meet, a tertiary discontinuity forms and moves upwards at speed
given by the negative slope BC'. In the absence of control adjustments, this
discontinuity will move upwards through the whole thickener thus giving
overload. The motion of the discontinuities is illustrated in Figure 3. We
seek to control the location of the tertiary discontinuity.

Other cases can be similarly analysed using the method of characteristics.
It is clear that a wide variety of cases can occur, particularly overload cases
as described above and underload cases in which the high concentration zone
at the bottom of the thickener is pumped away. Discontinuities can also rise

o.o 0.4 o.e

CONCENTRATION

0.0 0.4 0.8

CONCENTRATION

X

fa

X

0.0 0.4 0.8

CONCENTRATION
0.0 0.4 0.8

CONCENTRATION

FIGURE 2. Illustrating typical behaviour of <J>(C) for fixed [v0, vx, CM, q\ and increasing
Vb : bottom right-type I, bottom left-type II, top right-type III, top left-type IV.
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0.2 0.4 0.6

CONCENTRATION

TIME(SECONDS)

FIGURE 3. An overload case in the absence of control. The dotted lines are the equations
<P = ViCi and <J> = VbCb . A primary discontinuity AC builds up at the base of the thickener
and eventually collides with the secondary discontinuity AB dropping from the feed level x =
hi. The resulting tertiary discontinuity BC1 rises through the thickener. The right-hand figure
shows a numerical simulation of the motion of discontinuities (see Section 4).
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from the top of the feed zone x = ht, although this topic is not pursued
here.

3.3 Strategy for control
The speed (10) of the tertiary discontinuity can be controlled by adjusting

O~ (by adjusting Vb) whilst maintaining O+ constant (by a simultaneous
adjustment of V(). The essence of the control strategy is therefore to adjust
the original value of Vb (say Vb) by an amount AVb so as to make the
discontinuity stationary (W = 0) . We have

W° =
o vs(C

+)C+ - Vb°C+ - vs(C~)C- - Vb
0C~

c~ -c+

_vs(C
+)C+-vs(C-)C- ^

c~-c+ b'
where the superscript 0 denotes the initial value of a parameter such as Vb .

We now replace Vb by Vb + AVb and set W to zero so that

that is
AVb = W°. (11)

If C+ and C~ are such that the case W° < -Vb occurs, we halve Vb and
impose the Dirichlet condition (8) at JC = 0. In practice, (8) is applied in all
cases when Vb is reduced: this can either lead to the growth of a new discon-
tinuity at the bottom (if characteristics enter ft at x = 0) or, alternatively,
the value C = CM simply propagates out the bottom if characteristics leave
ft at x = 0 .

Adjustments to Vb produce a change in the particle flux below the feed
and will lead to additional discontinuities propagating downward from the
feed unless commensurate adjustments are made to the injection flux. It is
simple to show the required adjustment to Vt is

AV. = C+AVb/q (12)

for cases in which the injected concentration is held constant at C,. For
numerical implementation of the control strategy, we use a modification of
(11); namely apply the adjustment AVb = W° • (1 + d), d « 1 at x/X =
H* • (1 ± e) after the discontinuity has passed through x/X — H*. This
has the effect of sending the discontinuity at reduced speed in the reverse
direction towards the desired level x/X = H*.

This control strategy is immediately applicable for rising discontinuities
(W° > 0) below the desired height x/X = H*. If the rising discontinuity is
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above the desired height x/X — H*, we could have made the discontinuity
fall at the same speed by setting AVb = 2W°. We would then have a falling
discontinuity above the desired height x/X = H*, and the discontinuity may
be controlled by applying (11) at the appropriate time. In fact, however, the
numerical implementation mentioned after (12) automatically controlled this
case as well.

The case of a falling discontinuity below the desired height x/X = H*
needs special attention. If the discontinuity's direction of motion is reversed
by setting AVb = 2W° , then characteristics might enter the region Q through
the bottom x — 0, t > 0 and boundary condition (8) is required. In this
case, the concentration C = CM is carried into Q by characteristics, and a
close packed bed of particles will build up and can be controlled by applying
strategy (11, 12) at x/X = H*.

When the location of the tertiary discontinuity has eventually been con-
trolled by the strategy above, the concentration produced at the bottom will
have two possible values: the close packed value CM or the value Cm(Vb)
which locally minimises O(C). Which of these two cases is actually obtained
depends on the initial concentration value C, , the injected flux ViCi (and
hence the value cf) and the nature of the vs(C) curve. An enumeration
of all possible cases is not worthwhile; rather we point out the possibility
of analysing any particular case using the method of characteristics (Section
3.2) or by direct numerical simulation (next section).

For economic operation of the thickener, all particles injected at the feed
x/X = h( should drop down through the thickener eventually to be removed
at the bottom. This condition holds provided

J (13)
where <J>'(Cmax) = 0, O " ( C m J < 0 .

4. Numerical methods

The sedimentation process is mathematically described in this model by
(5)—a first order, quasi-linear pde. The solution of (5) was obtained using
finite-difference schemes sensitive to transport errors. These schemes are
easy to implement, and allow the tracking of multiple discontinuities and
the possibility of generalisation to multi-dimensional and multi-component
modelling. Full details of the numerical methods are given by Spencer [17].

A simple numerical scheme for (5) is the following explicit method which
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is first order accurate in space and time:

^ ^ - 1 / 2 + y^fr.. h, , w)At ( 1 4 )

where ^>j+ln *s the flux sediment from the upwind direction past the j+1/2
grid position in time interval At such that

*J+i/2 = uPwind[C>, + Vb - ViL{xj; ht, w)]"j+l/2At (15)

with a corresponding definition for ^ _ i / 2 •
The term K{Xj; phi, w) is the finite-difference representation of the Dirac

delta function d(x - hf) denoting the feed level, over several grid blocks of
total width w . The discretised form of the Heaviside function H{x - h^X)
is the term L(x.; hi, w).

Upwind differencing guarantees monotonicity around shocks but intro-
duces numerical diffusion that might degrade the accuracy of the solution.
This problem can be alleviated by introducing a less diffusive higher-order
scheme such as the Lax-Wendroff two-step method:

• Lax method diffusive half time step:

C/22 = VCU + C") - ^ ( O " *? +
where the flux O" acting over time interval At/2 is

d>; = [(vSj + Vb- ViL{xj; ht; w)CjfAt/2 (17)

and the flux ^"±[0 acting over the entire time interval At is

Forward in time, centered in space (FTCS) full time step solution:

Unfortunately, higher-order schemes such as the Lax-Wendroff two-step
method introduce dispersion errors that are dominant near discontinuities.
These are manifested as 'ripples' that grow over time and destroy the solution.
It is desirable to couple the improved accuracy of higher-order schemes with
the guaranteed monotonicity of lower-order schemes near discontinuities.
One technique that achieves this synthesis is flux corrected transport (FCT)
introduced by Boris and Book [4] and Zalesak [20].

FCT determines the flux <J> at any time step as a weighted average of
the flux produced by a low-order and a higher-order scheme. The potentially
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more accurate higher-order flux is used as much as possible without introduc-
ing the 'ripple' effect (flux correction). Basic steps of the general procedure
as given by Zalesak are outlined below.

1. Determine O^±1,2 , the low-order scheme flux for a locally monotonic
but diffused solution (across any particular discontinuity).

2. Determine Q>f±in > the higher-order scheme flux.
3. Determine the new time step low-order solution.
4. Find the "anti-diffusive flux"

< < (20)

5. Correct the anti-diffusive flux so that nonphysical extrema are not
introduced into the solution (extrema not found in the lower-order
solution)

such that
0 < l i + 1 / 2 < l . (22)

6. Use the corrected anti-diffusive fluxes to compute the final updated
solution

2 4 / 2 (23)
7. Determine flux correction factors ^.+1,2 .

Algorithms for determination of the corrected anti-diffusive flux (21) are
given [4, 20]. The Zalesak formalism was used in our work.

First-order upwind differencing was chosen as the lower-order scheme for
the FCT method. The quasi-linear nature of (5) means that the speed of
characteristics denned by

T = y+Vb-V.H(x-hiX) (24)

is concentration and bulk velocity dependent. Therefore Y might take op-
posing signs in adjacent grid blocks—a situation most likely to occur across
discontinuities. Hence the sign of the characteristic velocity in any given grid
block is not always an accurate indicator of the upwind direction. This pos-
sibility has been taken into account in the current formulation—see Spencer
[17] for details. Another consequence of the quasi-linear nature of (5) is the
possibility of tighter restrictions on time step/grid block size than suggested
by the usual Courant-Friedrichs-Levy condition for an explicitly upwind dis-
cretised linear hyperbolic equation. A further restriction on time step/grid
block size to maintain numerical stability might occur due to the flux of
injected material entering grid blocks at the feed level.
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The two-step Lax-Wendroff scheme was used as the higher-order method
for Stage 2 of the FCT approach. Results by FCT using this method are
considerably more accurate than by first-order upwind differencing alone—
particularly in producing sharp discontinuities. The explicit nature of the
Lax-Wendroff scheme makes it computationally inexpensive, easy to imple-
ment and sufficiently accurate for our purposes. Our results were confirmed
by tests using more accurate schemes such as those described by Morrow and
Steinle [14, 18], Spencer [17].

5. Results

This section contains some cases to illustrate the control procedures de-
scribed in the previous section. The following values were taken for param-
eters in expressions (2) for vs(C) and (7) for fQ{x):

uo=1.18x 1Q~4ms~l, v, = l (T 5 m. r 1 , q = 5, CM = 0.9, C,=0.1.

Figures 3-9 display the concentration C(x, t) so that the zero of the con-
centration occurs at increasing values of the abscissa as time increases. This
device enables the motion of the discontinuities to be clearly seen.

Straightforward control
Figure 4 (see p. 282) shows a simple case in which a rising tertiary discon-

tinuity is controlled at a level x/X = H* which is above the level of intersec-
tion of the primary and secondary discontinuities. The output concentration
C(0, t) in this case is Cm where O'(Cm) = 0, 3>"(Cm) > 0. This case, in
which the output concentration Cm is less than the close-packed value CM ,
might be less than optimal for practical operation of the thickener.

Tertiary discontinuity descending above x/X = H*
Figure 5 (see p. 283) shows a simple case in which the tertiary disconti-

nuity initially descends after it has been formed by the intersection of the
primary and secondary discontinuities. The falling tertiary discontinuity is
then controlled using (11) at x/X = H*. The output concentration asymp-
totes to Cm.

Tertiary discontinuity descending and below x/X = H*
Figure 6 (see p. 284) shows a case in which the tertiary discontinuity ini-

tially descends after it has been formed and the discontinuity is initially
dropping faster than Vb . The output speed Vb is then halved at each time
step until the tertiary discontinuity starts to rise. Control at the desired height
x/X = H* is achieved by increasing Vb as in (11). The output concentration
is the close-packed value CM .
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—i 1
5000 10000

— i 1 1 r
15000 20000 25000 30000

TIME(SECONDS)

FIGURE 4. Illustration of control of a rising tertiary discontinuity initially below the desired
control height H'=0.315X. The feed is between 0.65^ and

Two primary discontinuities; control of descending tertiary discontinuity
Figure 7 (see p. 285) shows a more complicated case in which the flux curve

is initially of type II and there are two primary discontinuities. The tertiary
discontinuity, which would otherwise rise after its formation, is made to fall
by a single increase in Vb . This causes the primary discontinuity rising from
x — 0 to reverse direction and eventually disappear. Control at x/X = H* is
then achieved by decreasing Vb as in (11). The output concentration is Cm .

Two primary discontinuities—a further case
Figure 8 (see p. 286) shows a case which is a variation on the previous

case. Now the parameters are such that the primary discontinuity rising
from x = 0 does not reverse its direction of motion as Vb is increased. As the
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I I I

5000 10000 15000 20000 25000 30000

TIME(SECONDS)
FIGURE 5. Illustration of control of a descending tertiary discontinuity initially above the

desired control height H* =0.30X .

tertiary discontinuity drops towards x/X — H*, C increases and continued
reductions in Vb are required. Eventually, the primary discontinuity rising
from x — 0 collides with the tertiary discontinuity and a final correction is
made to achieve the steady state solution. The final output concentration is

Two primary discontinuities—another case
Figure 9 (see p. 287) shows a case in which the tertiary discontinuity would

initially fall after its formation except for the fact that control has been
applied immediately, causing the tertiary discontinuity to rise. During the
application of control, boundary condition (8) was applied at x = 0 causing
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another primary discontinuity to build up. The tertiary discontinuity is con-
trolled at x/X = H*; further adjustment (i.e. dynamic control) is required
until the second primary discontinuity collides with the controlled-tertiary
discontinuity. At this point, one last adjustment is made and the steady state
is achieved. The final output concentration is CM .

o
d

I

5000 10000 15000 20000 25000 30000

TIME(SECONDS)

FIGURE 6. Illustration of control of a falling tertiary discontinuity initially below the desired
control height H'=0A25X .
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"i 1 1 1 r
5000 10000 15000 20000 25000 30000

TIME(SECONDS)

FIGURE 7. A situation like that of Figure 5 except that the parameter settings also lead to a
close-packed bed rising from x = 0 . This bed disappears when control is applied.
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I I
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5000 10000 15000 20000 25000 30000

TIME(SECONDS)

FIGURE 8. A situation like that of Figure 7 except that the initial parameter settings are such
that the close-packed bed continues to rise after control is applied. Subsequent control of the
close-packed bed is required (see description in text).
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FIGURE 9. A situation like that of Figure 6 except that a separate primary discontinuity forms
and must be controlled (see description in text).
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6. Conclusions

A control strategy based on a judicious use of the pumping speeds Vb

and Vi has been suggested in this paper; the feasibility of this strategy has
been confirmed numerically. The basis for the numerical work was code
which had previously been written to simulate the performance of continuous
thickeners. More accurate algorithms were used during the development stage
to confirm the accuracy of the results.

The model problem considered in this paper was based on stringent sim-
plifications mentioned in Sections 1 to 3. It is clear that the fine details of the
control process depend sensitively on the initial boundary conditions and the
nature of the flux curve O(C) in which is incorporated the empirical vs(C)
relationship. It was found that there are many possible cases that can be
considered, and we have given illustrative examples for some of these cases.

Events taking place above the feed level have not been considered in detail
here. In fact, we have used parameter settings which ensure the discontinu-
ities do not rise up from the feed level. Such cases might be of economic
significance, in which case they deserve further investigation.

Another aspect which might be of economic significance is control of the
output concentration C(0, t). We believe that it is possible to control both
C(0, t) and the discontinuity height x/X = H*, although this might require
assumption of variability in the injection concentration Cf(t) as well as the
input and output pumping speeds Vi and Vb.
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