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Abstract

The intersection of physics and machine learning has given rise to the physics-enhanced machine learning (PEML)
paradigm, aiming to improve the capabilities and reduce the individual shortcomings of data- or physics-only
methods. In this paper, the spectrum of PEML methods, expressed across the defining axes of physics and data, is
discussed by engaging in a comprehensive exploration of its characteristics, usage, and motivations. In doing so, we
present a survey of recent applications and developments of PEML techniques, revealing the potency of PEML in
addressing complex challenges. We further demonstrate the application of select such schemes on the simple working
example of a single degree-of-freedom Duffing oscillator, which allows to highlight the individual characteristics and
motivations of different “genres” of PEML approaches. To promote collaboration and transparency, and to provide
practical examples for the reader, the code generating these working examples is provided alongside this paper. As a
foundational contribution, this paper underscores the significance of PEML in pushing the boundaries of scientific
and engineering research, underpinned by the synergy of physical insights and machine learning capabilities.

Impact Statement

This paper discusses methods born from the fusion of physics and machine learning, known as physics-enhanced
machine learning (PEML) schemes. By considering their characteristics, this work clarifies and categorizes
PEML techniques, aiding researchers and users to targetedly select methods on the basis of specific problem
characteristics and requirements. The discussion of PEML techniques is framed around a survey of recent
applications/developments of PEML in the field of structural mechanics. A running example of a Duffing
oscillator is used to highlight the traits and potential of diverse PEML approaches. Additionally, code is provided
to foster transparency and collaboration. The work advocates the pivotal role of PEML in advancing computing
for engineering through the merger of physics-based knowledge and machine learning capabilities.
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1. Introduction

With the increase in both computing power and data availability, machine learning (ML) and deep
learning (DL) are in scientific and engineering applications (Reich, 1997; Hey et al., 2020; Zhong
etal., 2021; Cuomo et al., 2022). Such methods have shown enormous potential in yielding efficient
and accurate estimates over highly complex domains, such as those with high-dimensionality, or ill-
posed problem definitions. The use of data-driven methods is wide reaching in science, from fields
such as fluid dynamics (Zhang and Duraisamy, 2015), geoscience (Bergen etal., 2019), bioinformatics
(Olson et al., 2018), and more (Brunton and Kutz, 2022). Data-driven schemes are particularly suited
for the case of monitored systems, where the availability of data is ensured via the measurement of
engineering quantities through the use of appropriate sensors (Sohn et al., 2003; Farrar and Worden,
2007; Lynch, 2007).

However, such data-driven models are known to be restricted to the domain of the instance in which
the data was collected; that is, they lack generalisability (O’Driscoll et al., 2019; Karniadakis et al.,
2021), as a result of a lack of physical connotation. This challenge is often met when dealing with data-
driven approaches for environmental and operational normalization (Cross et al., 2011; Avendafio-
Valencia et al., 2017); it is impossible, or impractical, to collect data over the full environmental/
operational (E/O) envelope (Figueiredo et al., 2011). Particularly to what concerns data gathered from
large-scale engineered systems, it is common to meet a scarcity of training samples across a system’s
comprehensive operational envelope (Sohn, 2007). These variables frequently exhibit intricate and
non-stationary patterns changing over time. Consequently, the limited pool of labeled samples available
for training or cross-validation can fall short of accurately capturing the intrinsic relationships for
scientific discovery tasks, potentially resulting in misleading extrapolations (D’Amico et al., 2019).
This scarcity of representative samples sets scientific problems apart from more mainstream concerns
like language translation or object recognition, where copious amounts of labeled or unlabeled data
have underpinned recent advancements in deep learning (Jordan and Mitchell, 2015; Sharifani and
Amini, 2023). Discussions on and examples of the challenge posed by comparatively small datasets in
scientific machine learning can be found in Shaikhina et al. (2015), Zhang and Ling (2018), and Dou
et al. (2023).

While black box data-driven schemes are often sufficient for delivering an actionable system model,
able to act as an estimator or classifier, a common pursuit within the context of mechanics lies in
knowledge discovery (Geyer etal., 2021; Naser, 2021; Cuomo et al., 2022). In this case, it is imperative to
deliver models that are explainable/interpretable and generalizable (Linardatos et al., 2020). This entails
revealing and comprehending the cause-and-effect mechanisms underpinning the workings of a particular
engineered system. Consequently, even if a black-box model attains marginally superior accuracy, its
inability to unravel the fundamental underlying processes renders it inadequate for furthering downstream
scientific applications (Langley et al., 1994). Conversely, an interpretable model rooted in explainable
theories is better poised to guard against the learning of spurious data-driven patterns that lack interpret-
ability (Molnar, 2020). This becomes particularly crucial for practices where predictive models are of the
essence for risk-based assessment and decision support, such as the domains of structural health
monitoring (Farrar and Worden, 2012) and resilience (Shadabfar et al., 2022).

In modeling complex systems, there is a need for a balanced approach that combines physics-based and
data-driven models (Pawar et al., 2021). Modern engineering systems, involve complex materials,
geometries, and often intricate energy harvesting and vibration mitigation mechanisms, which may be
associated with complex mechanics and failure patterns (Duenas-Osorio and Vemuru, 2009; Van der Meer
etal.,2012; Kimetal., 2017). This results in behavior that cannot be trivially described purely on the basis
of data observations or via common, and often simplified, modeling assumptions. In efficiently modeling
such systems, a viable approach is to integrate the aspect of physics, which is linked to forward modeling
with the aspect of learning from data (via machine learning tools), which can account for modeling
uncertainties and imprecision. This fusion has been referred to via the term “physics-enhanced machine
learning (PEML)” (Faroughi et al., 2022), which we also adopt herein. This term is used to denote that, in

https://doi.org/10.1017/dce.2024.33 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.33

Data-Centric Engineering e31-3

some form, prior physics knowledge is embedded to the learner (O’ Driscoll et al., 2019; Choudhary et al.,
2020; Xiaowei et al., 2021). which typically results in more interpretable models.

In this work, we focus on applications of PEML in the domain of structural mechanics; a field that
impacts the design, building, monitoring, maintenance, and disuse of critical structures and infrastruc-
tures. Some of the greatest impact comes from large-scale infrastructure, such as bridges, wind turbines,
and transport systems. However, accurate and robust numerical models of complex structures are non-
trivial to establish for tasks such as Digital Twinning (DT) and Structural Health Monitoring (SHM),
where both precision and computational efficiency are of the essence (Farrar and Worden, 2012; Yuan
etal., 2020). This has motivated the increased adoption of ML or DL approaches for generating models of
such structures, overcoming the challenges presented by the complexity. Further to the extended use in the
DT and SHM contexts, data-driven approaches have further been adopted for optimizing the design of
materials and structures (Guo et al., 2021; Sun et al., 2021). Multi-scale modeling of structures has also
benefited from the use of ML approaches, typically via the replacement of computationally costly
representative volume element simulations with ML models, such as neural networks (Huang et al.,
2020) or support vector regression and random forest regression (Reimann et al., 2019).

In order to contextualize PEML for use within the realm of structural mechanics applications, we here
employ a characterization that adopts the idea of a spectrum, as opposed to a categorization in purely
white, black, and gray box models. This is inspired by the categorization put forth in the recent works of
Cross et al. (2022), which discusses the placement of PEML methods on a two-dimensional spectrum of
physics and data, and Faroughi et al. (2022) which categorizes these schemes based on the implemen-
tation of physics within the ML architecture. In the context of the previously used one-dimensional
spectrum, the “darker” end of the said spectrum relies more heavily on data, whilst the “lighter” end relies
more heavily on the portion of physics that is considered known (Figure 1). One can envision this one-
dimensional spectrum lying equivalently along the diagonal from the red (top left), to the blue (bottom
right) corners of the two-dimensional spectrum. Under this definition, “off-the-shelf” ML approaches
more customarily fit the black end of the spectrum, while purely analytical solutions would sit on white
end of the spectrum (Rebillat et al., 2023). Generally, the position along this spectrum is driven by both the
amount of data available, and the level of physics constraints that are applied. However, it is important to
note, that the inclusion of data is not a requirement for PEML. An example of the latter is found in methods
such as physics-informed neural networks (PINNs) (Raissi et al., 2019), which exploit the capabilities of
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Figure 1. The spectrum of physics-enhanced machine learning (PEML) schemes is surveyed in this paper.
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ML methods to act as forward modelers, where no observations or measured data are necessarily used for
the formulation of the loss function. In these cases, prescribed boundary/initial conditions, physics
equations, and system inputs are provided and the ML algorithm is used to “learn” the solutions; one
such method is the observation-absent PINN (Rezaei et al., 2022).

The reliance on physics can be quantified in terms of the level of strictness of the physics model
prescription. The level of strictness refers to the degree to which the prescribed model form incorp-
orates and adheres to the underlying physical principles, and concurrently defines the set of systems
which the prescribed model can emulate. For example, when system parameters are assumed known,
the physics is more strictly prescribed. Using a solid mechanics example, a strictly prescribed model
would correspond to the use of a specified a Finite Element model as the underlying physics structure.
This strictness is somewhat relaxed when it is assumed that the model parameters are uncertain and
subject to updating (Papadimitriou and Katafygiotis, 2004). An example of a low degree of strictness
corresponds to prescribing the system output as a function of the derivative of system inputs with
respect to time; such a more loose prescription would be capable of emulating structural dynamics
system (Bacsa et al., 2023), as well as further system and problem types, such as heat transfer
(Dhadphale et al., 2022), or virus spreading (Nuiiez et al., 2023). In this work, the vertical axis of
the PEML spectrum is defined in terms of the reliance on the imposed physics-based model form,
which is earlier referred to as the level of strictness. A separate notion to consider, which is not
reflected in the included axes, pertains to the level of constraint of the employed PEML architecture,
which describes the degree to which the learner must adhere to a prescribed model. As an example,
residual modeling techniques (Christodoulou and Papadimitriou, 2007) have a relatively low level of
constraint, as the solution space is not limited to that which is posited by the physics model. The
combination of the strictness in the prescription of a model form and the learner constraints defines the
overall flexibility of the PEML scheme; this refers to its capability to emulate systems of varying types
and complexities (Karniadakis et al., 2021).

When selecting the type, or “genre” of PEML model, the confidence in the physics that is known a
priori guides the selection of the appropriate reliance on physics in the form of the level of strictness of
the prescribed model and/or constraints of the learner. Different prior knowledge can be in the form of
an appropriate model structure, that is an equivalent MDOF system, or an appropriate finite element
model, or it could be that appropriate material/property values are prescribed. The term appropriate
here refers to the availability of adequate information on models and parameters, which approximate
well the behavior and traits of the true system. If one wishes to delve deeper into such a categorization,
the level of knowledge can be appraised in further sub-types, that is, the discrete number of, or
confidence in, known material parameters, or the complexity of the model in relation to the real
structure.

The remainder of the paper is organized into methods corresponding to different collective areas over
the PEML spectrum, as indicated in Figure 1. We initiate with a discussion and corresponding examples
that are closer to a white-box approach in Section 3, where physics-based models of specified form are
fused with data via a Bayesian Filtering (BF) approach. This is followed by Section 4, which shows a brief
survey of solely data-driven methods, which embed no prior knowledge on the underlying physics. After
introducing instances of methods that are situated near the extreme corners of the spectrum (black- and
white-box), the main motivation of the paper, namely the overview of PEML schemes initiates. The
breakdown into the subsections of PEML techniques is driven by a combination of the reliance on the
prescription of the physics model form and the method of physics embedding, these are broken down
below and their naming conventions are explained.

Firstly, Section 5 surveys and discusses physics-guided machine learning (PGML) techniques, in
which the physics model prescriptions are embedded as proposed solutions, and act in parallel to the
data-driven learner in the full PEML model architecture. PGML schemes steer the learner toward a
desired solution by prescribing models with a relatively large degree of strictness, therefore neighboring
the similarly strict construct of BF methods. Physics-guided methods often benefit from a reduced data
requirement since the physics embedding allows for estimation in the absence of dense observations
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from the system. However, depending on the formulation, or the type of method used, such schemes can
still suffer from data-sparsity. In Section 6, physics-informed methods are presented, which correspond
to a heavier reliance on data, while still retaining a moderate reliance on the prescribed physics. These
schemes are so named as physics is embedded as prior information, from which an objective or loss
function is constructed, which the learner is prompted to follow. Compared to physics-guided methods,
in physics-informed schemes, the physics is embedded in a less constrained manner, that is it is weakly
imposed. In this sense, such schemes are often formed by way of minimizing a loss or objective
function, which vanishes when all the imposed physics are satisfied. The survey portion of the paper
concludes with a discussion on physics-encoded learners in Section 7. Physics-encoded methods embed
the imposed physics directly within the architecture of the learner, via selection of operators, kernels, or
transforms. As a result, these methods are often less reliant on the model form (e.g., they may simply
impose derivatives), but they are highly constrained in the fact that this imposed model is always
adhered to. The position of PgNNs and PINNs compared to constrained Gaussian Processes (CGPs) is
less indicative of the higher requirement of CGPs for data, but more indicative of the lower requirement
of PgNNs and PINNs for data, as these methods are capable of proposing viable solutions with fewer
data. However, this is dependent on the physics and ML model form, thus arrows are included to
indicate their mobility on the spectrum.

Throughout the paper, a working example of a single-degree-of-freedom Duffing oscillator, the details
of which are offered in Section 2, is used to demonstrate the methods surveyed. As previously mentioned,
the code used to generate the fundamental versions of these methods is provided alongside this paper in a
GitHub repository.' This code is written in Python and primarily built with the freely available Pytorch
package (Paszke et al., 2019).

2. A working example

Aiding the survey and discussion in each aspect of PEML, an example of a dynamic system will be used
throughout the paper to provide a tangible example for the reader. A variety of PEML methods will be
applied to the presented model, the aim of which is not to showcase any particularly novel applications of
the methods, but to help illustrate and discuss the characteristics of the PEML variants for a simple
example, while highlighting emerging schemes and their placement across the spectrum of Figure 1. To
this end, we employ a single-degree-of-freedom (SDOF) Duffing oscillator, shown in Figure 2a, as a
running example. The equation of motion of this oscillator is defined as,

mii(t) + cit(t) + ku(t) + kau® (1) =f (), 1)

where the values for the physical parameters m, c, k, and k3 are 10 kg, INs/m, 15 N/m, and 100N/m> s
respectively. To be consistent with problem formulations in this paper, this is defined in state-space form
as follows:

z=Az+A,u’+Bf, 2

where z = {u,u}T is the system state, and the state matrices are,

R e ]
A= , A, = , B= .
—m 'k —m~ ¢ —m ks m~!

For this example, the forcing signal of the system consists of a random-phase multi-sine signal containing
frequencies of 0.7, 0.85, 1.6, and 1.8 rad/s. The Duffing oscillator is simulated using a 4th-order Runge—
Kutta integration. The forcing and resulting displacement for 1024 samples at an equivalent sample rate of
8.525 Hz is shown in Figure 2b. These data are then used as the ground truth for the examples shown
throughout the paper.

! Python code and data are available at https://github.com/ETH-IBK-SMECH/PIDyNN.
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Figure 2. (a) Diagram of the working example used throughout this paper, corresponding to a Duffing
Oscillator; instances of the (b) displacement (top) and forcing signal (bottom) produced during
simulation.

2.1. A note on data and domains

The interdisciplinary nature of PEML can lead to confusion regarding the terms defining the data and
domain for the model. To enhance clarity for readers with diverse backgrounds, we provide clarifications
on the nomenclature in this paper. Firstly, data refers to all measured or known values that are used in the
overall architecture/methodology, not exclusively that which is used as inputs to the ML model, or as
target observations. This may include, but is not limited to, measured data, system parameters, and scaling
information. In the context of the example above, the data encompasses measured values of the state, z*,
and force, /™, along with system parameters m, ¢, k, k3 (Where the asterisk denotes observations of a value).
Importantly, the use of the term observation data is akin to the classic ML definition of training data,
which is the scope of data used in traditional learning paradigms which minimize the discrepancy between
the model output and some observed target values. This change is employed here as the training stages in
many instances of PEML demonstrate the learner’s ability to make predictions beyond the scope of these
observations of target values.

This goal of extending the scope of prediction also prompts a clarification of the term domain. The
domain here is similar to the definition of the domain of a function, representing the set of values passed as
input to the model—in this case, the set of time values, 7. The domain where measured values of the model
output are available, is termed the observation domain, Q,,. The overall domain in which the model is
trained, and predictions can be made, is the collocation domain, Q.. For example, if one provides
measurements of the state for the first third of the signal in Figure 2b but proposes the model to learn (and
therefore predict) over the full signal range, the observation domain would be Q, €0 <7 <40s and the
collocation domain Q. € 0 <t < 120s. It is crucial to note that these domains are not restricted to a range
(scope), and the discrete nature of the observation domain influences the motivation for interpolation
schemes. For example, in sparse data recovery schemes, the observation domain can be defined in a
discrete manner. Figure 3 provides a visualization of commonly used domain types for a selection of
schemes which can employ PEML methods.

3. White box case: physics-based Bayesian filtering

Prior to overviewing the mentioned PEML classes and their adoption within the SHM and twinning
context, we briefly recall a class of methods, which is situated near the white-box end of the spectrum in
Figure 1, that is, Bayesian Filtering (BF). Perhaps one of the most typical examples of a hybrid approach
to monitoring of dynamical systems is delivered in such BF estimators, which couple a system model
(typically in state-space form), with sparse and noisy monitoring data. The employed state-space model
can be either derived via a data-driven approach, for example, via the use of a system identification
approach such as a Stochastic Subspace Identification (Peeters and De Roeck, 2001), or alternatively, it
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Figure 3. Visualization of domain definitions for schemes and motivations that can employ PEML. The
blue areas represent the continuous collocation domain, and the red dots represent the coverage and
sparsity of the discrete observation domain. The dashed and solid lines represent the scope of the
collocation and observation domains, respectively.

may be inferred on the basis of a priori assumed numerical (e.g., finite element) model. We here refer to
the former case, which we refer to as physics-based Bayesian Filtering. Such Bayesian filters can be
used for estimation tasks of different complexity, including pure response (state) estimation, joint or
dual state-parameter estimation (Chatzi and Smyth, 2009), input-state estimation (Eftekhar Azam et al.,
2015; Maes et al., 2018; Sedehi et al., 2019; Vettori et al., 2023b), joint state-parameter-input
identification (Dertimanis et al., 2019), or damage detection (Erazo et al., 2019). Bayesian filters draw
their potency from their capacity to deal with uncertainties stemming from modeling errors, disturb-
ances, lacking information on the structural system’s configuration, and noise corruption. However,
they are limited by the requirement for a model structure, which should be representative of the system’s
dynamics.

In the general case, the equation of motion of a multi-degree of freedom linear time-invariant (LTI)
dynamic system can be formulated as:

Mii(r) + Du(r) + K (1) = S (1), 3)

where u(z) € R™ is the vector of displacements, often linked to the Degrees of Freedom (DOFs) of a
numerical system model, M € R"« ™" ) &€ R"e *"ef and K € R"« *"™e denote the mass, damping,
and stiffness matrices respectively; f(z) € R" (with n; representing the number of loads) is the input
vector and S; € R™ *" is a Boolean input shape matrix for load assignment. As an optional step, a
Reduced Order Model (ROM) can be adopted, often derived via superposition of modal contributions
u(t) = ¥p(r), where ¥ € R" " is the reduction basis and p € R™ is the vector of the generalized
coordinates of the system, with n, denoting the reduced system dimension. This allows to rewrite
equation (3) as:

M, p (1) +D,p(1) + K,p(1) =S£(1), C))

where the mass, damping, stiffness, and input shape matrices of the reduced system are obtained as
M, =¢"MY?,D,=?"D¥Y,K,=¥"K¥,and S, = ¢’S..

Assuming the availability of response measurements, x; € R™, at a finite set of m DOFs, such an LTI
system can be eventually brought into a combined deterministic-stochastic state-space model, which
forms the basis of application of Bayesian filtering schemes (Vettori et al., 2023a):

{ Zr =Agzi_ + Byt +wiy

x; = Cz, + Gf +vy.

, ®
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where the state vectorz; = [p,” ka]T € R reflects a random variable following a Gaussian distribution
with mean 7, € R*" and covariance matrix P; € R?" 2" Stationary zero-mean uncorrelated white noise
sources w; and vy of respective covariance Qy : w, ~ N (0,Qy) and Ry : v, ~ A (0,R;) are introduced to
account for model uncertainties and measurement noise. A common issue in BF schemes lies in
calibrating the defining noise covariance parameters, which is often tackled via offline schemes
(Odelson et al., 2006), or online variants, as those proposed recently for more involved inference tasks
(Kontoroupi and Smyth, 2016; Yang et al., 2020; Vettori et al., 2023a).

Bayesian filters exploit this hybrid formulation to extract an improved posterior estimate of the
complete response of the system z;, that is even in unmeasured DOFs, on the basis of a “predict” and
“update” procedure. Variants of these filters are formed to operate on linear (Kalman Filter—KF) or
nonlinear systems (Extended KF—EKF, Unscented KF—UKEF, Particle Filter—PF, etc.) for diverse
estimation tasks. Moreover, depending on the level of reduction achieved, BF estimators can feasibly
operate in real, or near real-time. It becomes, however, obvious that these estimators are restricted by the
rather strictly imposed model form.

In order to exemplify the functionality of such Bayesian filters for the purpose of system identification
and state (response) prediction, we present the application of two nonlinear variants of the Kalman Filter
on our Duffing oscillator working example. The system is simulated using the model parameters and
inputs defined in Section 2. We further assume that the system is monitored via the use of a typical
vibration sensor, namely an accelerometer, which delivers a noisy measurement of u. We further
contaminate the simulated acceleration with zero mean Gaussian noise corresponding to 8.5% Root
Mean Square (RMS) noise to signal ratio. For the purpose of this simulation, we assume accurate
knowledge of the model form describing the dynamics, on the basis of engineering intuition. However,
we assume that the model parameters are unknown, or rather uncertain. The UKF and PF are adopted in
order to identify the unknown system parameters, namely the linear stiffness k, mass, m, and nonlinear
stiffness k3. The parameter identification is achieved via augmenting the state vector to include the time-
invariant parameters. A random walk assumption is made on the evolution of the parameters. The UKF
employs a further augmentation of the state to include two dimensions for the process and measurement
noise sources, resulting in this case in 2x9+1=19 Sigma points to simulate the system. It further
initiates from an initial guess on the unknown parameters, set as: ko =1 N/m, ¢o = 0.5 Ns/m, k3p =40
N/m?, which is significantly off with respect to the true parameters. The PF typically employs a larger
number of sample points in an effort to more appropriately approximate the posterior distribution of the
state. We here employ 2000 sample points and initiate the parameter space in the interval k € {520} N/m,
c€{0.52} Ns/m, k3 € {50160} N/m”. In all cases, a zero mean Gaussian process noise of covariance
le — 18 (added to the velocity states) and a zero mean Gaussian measurement noise of covariance le — 18
is assumed. Figure 4 demonstrates the results of the filter for the purpose of state estimation (left subplot)
and parameter estimation (right subplot). The plotted result reveals a closer matching of the states for the
UKF, while both filters sufficiently approximate the unknown parameters. More details on the imple-
mentation of these filters are found in Chatzi and Smyth (2009), Chatzi et al. (2010), and Kamariotis et al.
(2023), while a Python library is made available in association with the following tutorial on Nonlinear
Bayesian filtering (Tatsis et al., 2023).

Recent advances/applications of Bayesian filtering in structural mechanics include the following
works. The problem of virtual sensing has been further explored in Tatsis et al. (2021, 2022) adopting a
sub-structuring formulation, which allows to tackle problems, where only a portion of the domain is
monitored. For clarity, sub-structuring involves dividing a complex domain into smaller, more manage-
able components, which are solved independently before integrated back into the full structure. Employ-
ing a lower level of reliance on the physics model form, by embedding physical concepts in the form of
physics-domain knowledge, Tchemodanova et al. (2021) proposed a novel approach, where they
combined a modal expansion with an augmented Kalman filter for output-only virtual sensing of vibration
measurements. Gre$ et al. (2021) proposed a Kalman filter-based approach to perform subspace
identification on output-only data, where in the input force is unmeasured. In this case, only the periodic
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Figure 4. (a) State (response) estimation results for the nonlinear SDOF working example, assuming the
availability of acceleration measurements and precise knowledge of the model form, albeit under the
assumption of unknown model parameters. The performance is illustrated for use of the UKF and PF,
contrasted against the reference simulation; (b) Parameter estimation convergence via use of the UKF
and PF contrasted against the reference values for the nonlinear SDOF working example.

nature of the input force is known, and so this (unparameterized) information is also embedded within the
model learning architecture. In comparison to filtering techniques with an assumed known force, this
approach is less reliant on the physics model prescription, and so this approach has the advantage that it
may be applied to a wide variety of similar problems/instances. The problem of unknown inputs has
recently led to the adoption of Gaussian Process Latent Force Models (GPLFMs), which move beyond the
typical assumption of a random walk model, that are meant to describe the evolution of the input
depending on the problem at hand (Nayek et al., 2019; Rogers et al., 2020; Vettori et al., 2023b; Zou
etal., 2023). Such an approach now moves toward a gray-like method (as discussed in the later sections),
since Gaussian Processes, which are trained on sample data are required for data-driven inference and
characterization of the unknown input model.

In relaxing the strictness of the imposed physics model, BF inference schemes can include model
parameters in the inference task. Such an example is delivered in joint or dual state-parameter estimation
methods (Dertimanis et al., 2019; Teymouri et al., 2023), which are further extended to state-input-
parameter estimation schemes. In this context, Naets et al. (2015) couple reduced-order modeling with
Extended Kalman Filters to achieve online state-input-parameter estimation, while Dertimanis et al.
(2019) combine a dual and an Unscented Kalman filter, to this end; the former for estimating the unknown
structural excitation, and the latter for the combined state-parameter estimation. Naturally, when the
inference task targets multiple quantities, it is important to ensure sufficiency of the available observa-
tions, a task which can be achieved by checking appropriate observability identifiability, and invertibility
criteria (Chatzis et al., 2015; Maes et al., 2019; Shi and Chatzis, 2022). Feng et al. (2020) proposed a
“sparse Kalman filter,” using Bayesian logic, to effectively localize and reconstruct time-domain force
signals on a fixed beam. As another example in the context of damage detection strategies, Nandakumar
and Jacob (2021) presented a method for identifying cracks in a structure, from the state space model,
using a combined Observer Kalman filter identification, and Eigen Realization Algorithm methods.
Another approach to overcome to challenge of model-system discrepancy is to utilize ML approaches
along with BF techniques to “bridge the gap,” but more will be discussed on this in Section 5, as these are
no longer white-box models.
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4. The black box case: deep learning models

Many modern ML methods are based on, or form extensions of, perhaps one of the most well-known
methods, the neural network (NN). The NN can be used as a universal function approximator, where more
complex models will generally require deeper and/or wider networks. When using multiple layers within
the network, the method falls in the deep-learning (DL) class. For a regression problem, the aim of an NN
is to determine an estimate of the mapping from the input x, to the output y. A fully connected, feed-
forward NN is formed by N hidden layers, each with nY) nodes. The nodes of each layer are connected to
every node in the next layer and the values are passed through an activation function ¢. For N hidden
layers, the output of the neural network can be defined as,

Ny(x;W,B):=g(Wx'~' +b'), for I=2,...,N, (6)

where W= {w!,...w"} and B={b',...,b"} are the weights and biases of the network, respectively.
The aim of the training stage is to then determine the network parameters ® = {W, B}, which is done by
minimizing an objective function defined so that when the value vanishes, the solution is satisfied.

1
L= —Nya, (Do =3 2l ™)

KxeQ,

At the other end of the spectrum of a whifte-box (model-based) approach, where the system dynamics
are transparent and therefore largely prescribed, thus lies a black-box approach, employing naive DL
schemes to achieve stochastic representations of monitored systems. Linking to the BF structure described
previously, Variational Autoencoders (VAE) have been extended with a temporal transition process on the
latent space dynamics in order to infer dynamic models from sequential observation data (Bayer and
Osendorfer, 2015). This approach offers greater flexibility than a scheme that relies on a prescribed
physics-based model form, since VAEs are more apt to learning arbitrary nonlinear dynamics. The
obvious shortcoming is that, typically, the inferred latent space need not be linked to coordinates of
physical connotation. This renders such schemes more suitable for inferring dynamical features, and even
condition these on operational variables (Mylonas et al., 2021), but largely unsuitable for reproducing
system response in a virtual sensing context. Following such a scheme, Stochastic Recurrent Networks
(STORN) (Bayer and Osendorfer, 2015) and Deep Markov Models (DMMs) (Krishnan et al., 2016),
which are further referred to as Dynamic Variational Autoencoders (DVAESs), have been applied for
inferring dynamics in a black box context with promising results in speech analysis, music synthesis,
medical diagnosis and dynamics (Vlachas et al., 2022). In structural dynamics, in particular, previous
work of the authoring team Simpson et al. (2021) argues that use of the AutoeEncoder (AE) essentially
leads in capturing a system’s Nonlinear Normal Modes (NNMs), with a better approximation achieved
when a VAE is employed (Simpson et al., 2023). It is reminded that, while potent in delivering compressed
representations, these DL methods do not learn interpretable latent spaces.

In this paper, a rudimentary black-box method is demonstrated to provide a simple example of ML
applied to the case scenario. Only one black-box approach is shown here to keep the focus overall to
PEML techniques. Figure 5 shows the results of applying DMM to the working example. The 20
uncertainty is also included, however, in this case, it is difficult to observe on the figure, as the uncertainty
is small as aresult of the low level of noise within the data. The data is generated for the time interval of 0 to
120 seconds with a sampling rate of 5 Hz and the displacement is assumed to be the only measurement. All
the transition and observation models, as described by Krishnan et al. (2016), are modeled by black-box
neural networks, specifically DMMs. While it is observed that the latent representation captures certain
patterns of observed data, it lacks physical interpretability.

5. Light gray PEML schemes

When the prior physics knowledge of a system is relatively well-described, that is it captures most of the
physics of the true system, it is possible to rely on this knowledge as a relatively strong bias, while further

https://doi.org/10.1017/dce.2024.33 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.33

Data-Centric Engineering e31-11

——— Exact Solution

0 20 40 GO 80 100 120 -=== Predicted

» 20 Range

20 40 60 20 100 120

o

Figure 5. Predicted latent representations versus exact solutions of displacement (top) and velocity
(bottom) using the DMM applied to the working example. Displacement is assumed to be the only
measurement. The blue bounding boxes represent the estimated 2o range.

exploiting learning schemes to capture any model mismatch. The term model mismatch or model-system
discrepancy refers to the portion of the true system’s behavior (or response) which remains uncaught by the
known physics. As a result of the larger degree of reliance on the physics-based model form, we here refer to
this class of methods as “light-gray.” We will first discuss a survey of machine-learning-enhanced Bayesian
filtering methods, which are still mostly driven by physics knowledge embedded in the BF technique. This is
then followed by a section on Physics-Guided Neural Networks, which use the universal-approximation
capabilities of deep-learning to determine a model of model-system discrepancy.

5.1. ML-enhanced Bayesian filtering

As previously stated, classical Bayesian filtering requires the model form to be known a priori, implying
that the resulting accuracy will depend on how exhaustive this model is. To overcome the inaccuracies that
result from model-system discrepancy, ML can be infused with BF techniques to improve inference
potential. To this end, Tatsis et al. (2022) propose to fuse BF with a Covariance Matrix Adaptation
scheme, to extract the unknown position and location of flaws in the inverse problem setting of crack
identification, while simultaneously achieving virtual sensing. The latter is the outcome of a hierarchical
BF approach powered by reduced order modeling.

Using a different approach, Revach et al. (2022) employ a neural network within a Kalman filter scheme
to discover the full form of partially known and observed dynamics. By exploiting the nonlinear estimation
capabilities of the NN, they managed to overcome the challenges of model constraint, that are common in
filtering methods (Aucejo et al., 2019). Using a similar approach, but with a different motivation, Angeli
etal. (2021) combined Kalman filtering with a deep-learning architecture to perform model-order reduction,
by learning the mapping from the full-system coordinates, to a minimal coordinate latent space.

5.2. Physics-guided neural networks

In physics-guided machine learning (PGML), deep learning techniques are employed to capture the
discrepancy between an explicitly defined model based on prior knowledge and the true system from
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which data is attained. The goal is to fine-tune the overall model’s parameters (i.e., the prior and ML
model) in a way that the physical prior knowledge steers the training process toward the desired direction.
By doing so, the model can be guided to learn latent quantities that align with the known physical
principles of the system. This ensures that the resulting model is not only accurate in its predictions but
also possesses physically interpretable latent representations. At this stage, we would like to remind the
reader of the definitions of physics model strictness and physics constraint given in Section 1. PGML
approaches employ a relatively high reliance on the physics-based model form, in that the assumed
physics is imposed in a strict form. However, in order to allow for simulation of model discrepancy, the
level of physics constraint is relatively low, which means that the learner is not forced to narrowly follow
this assumed prescribed form. The relaxation of constraints differs between PGML and physics-informed
(PIML) approaches; PGML techniques often reduce constraints through the use of bias or residual
modeling, whereas PIML schemes employ physics into the loss function as a target solution (i.e., the
solutions are weakly imposed).

One of the key advantages of physics-guided machine learning is its ability to incorporate domain
knowledge into the learning process. This is particularly beneficial in scenarios where data may be
limited, noisy, or expensive to obtain. In comparison to PEML techniques that lay lower on our prescribed
spectrum, PGML methods can offer an increased level of interpretability. By steering the model’s learning
process with physics-based insights, it can more effectively generalize to unseen data and maintain a
coherent understanding of the underlying physical mechanisms.

The training process in physics-guided models involves two key components: (1) Incorporating Prior
Knowledge: Prior knowledge on the physics of the system is integrated into the network architecture, or as
part of the model; (2) Capturing Discrepancy: Deep learning models excel in learning from data, even
when this contradicts prior knowledge. As a result, during training, such a model will gradually adapt and
learn to account for discrepancies between the prior knowledge and the true dynamics of the system. This
adaptability allows the model to converge toward a more accurate representation of the underlying
physics.

Conceptually similar to estimating a residual modeler, Liu et al. (2021, 2022) proposed a probabilistic
physics-guided framework termed a Physics-guided Deep Markov Model (PgDMM) for inferring the
characteristics and latent structure of nonlinear dynamical systems from measurement data. It addresses
the shortcoming of black-box deep generative models (such as the DMM) in terms of lacking physical
interpretation and failing to recover a structured representation of the learned latent space. To overcome
this, the framework combines physics-based models of the partially known physics with a DMM scheme,
resulting in a hybrid modeling approach. The proposed framework leverages the expressive power of DL
while imposing physics-driven restrictions on the latent space, through structured transition and emission
functions, to enhance performance and generalize predictive capabilities. The authors demonstrate the
benefits of this fusion through improved performance on simulation examples and experimental case
studies of nonlinear systems.

Both residual modeling and PgNNs, in general, share a common objective of easing the training
objective of neural networks. Residual modeling achieves this by easing the learning process through a
general approximation, while PgNNs incorporate physical knowledge to provide reliable predictions even
in data-limited situations. However, regarding specific implementations, there are differences between
these two methods. Residual modeling operates without the need for specific domain knowledge,
focusing instead on the residuals in a more general-purpose application. This makes it broadly applicable
across various standard machine learning tasks, especially in the domain of computer vision. PgNNs, on
the other hand, explicitly incorporate physical laws into the model, adding interpretability related to these
physical models. PgNNs can also work in a general setting with any prior models to fit the residuals, but
the key idea is to use physical prior model to obtain a physically interpretable latent representation from
neural networks. This makes PgNNs particularly suited for problems where adherence to physical laws is
paramount. Additionally, while residual networks rely heavily on data for learning, PgNNs can leverage
physical models to make predictions even with limited data, demonstrating their utility in data-
constrained environments.

https://doi.org/10.1017/dce.2024.33 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.33

Data-Centric Engineering e31-13

To demonstrate how a physical prior model can impact the training of DL models, we apply the
PgDMM to our working example, using the same data generation settings as explained in Section 4. In this
case, instead of approaching the system with no prior information, we introduce a physical prior model
into the DMM to guide the training process. This physical prior model is a linear model that excludes the
cubic term in equation (1), which replicates a knowledge gap in the form of additional system complex-
ities. The results are shown in Figure 6. It can be observed that the predictions for both displacements and
velocities align well with the ground truth. The estimation uncertainty is slightly higher for velocities,
which is expected since they are unobserved quantities. It is important to note that the system displays
significant nonlinearity due to the presence of a cubic term with a large coefficient, causing the linear
approximation to deviate noticeably from the true system dynamics. However, the learning-based model
within the framework still captures this discrepancy and reconstructs the underlying dynamics through the
guided training process.

A similar physics-guided RNN was proposed by Yu et al. (2020), which consists of two parts: physics-
based layers and data-driven layers, where physics-based layers encode the underlying physics into the
network and the residual block computes a residual value which reflects the consistency of the prediction
results with the known physics and needs to be optimized toward zero.

Instead of modeling the residual of the prior model, a physics-guided Neural Network (PgNN),
proposed by Karpatne et al. (2017), not only ingests the output of a physics-based model in the neural
network framework, but also uses a novel physics-based learning objective to ensure the learning of
physically consistent predictions, as based on domain knowledge. Similarly, the authors proposed a
Physics-guided Recurrent Neural Network scheme (PGRNN, Jia et al., 2019) that contains two parallel
recurrent structures—a standard RNN flow and an energy flow to be able to capture the variation of
energy balance over time. While the standard RNN flow models the temporal dependencies that better
fit observed data, the energy flow aims to regularize the temporal progression of the model in a
physically consistent fashion. Furthermore, in another PgNN proposed by Robinson et al. (2022), the
information from the known part of the system is injected into an intermediate layer of the neural
network.
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Figure 6. Predictions versus exact solutions of displacement (top) and velocity (bottom) using the
PgDMM applied to the working example. Displacement is assume to be the only measurement. The gray
dash-dot line is the physical prior model and the blue bounding boxes represent the estimated 20 range.
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The physics-guided deep neural network (PGDNN), proposed by Huang et al. (2022), uses a cross-
physics-data domain loss function to fuse features extracted from both the physical domain and data
domain, which evaluates the discrepancy between the output of a FE model and the measured signals from
the real structure. With the physical guidance of the FE model, the learned PGDNN model can be well
generalized to identify test data of unknown damages. The authors also use the same idea in bridge
damage identification under moving vehicle loads (Yin et al., 2023). Similarly, Zhang and Sun (2021)
presented usage of the FE model as an implicit representation of scientific knowledge underlying the
monitored structure and incorporates the output of FE model updating into the NN model setup and
learning.

In Chen and Liu (2021), the physics knowledge is incorporated into the neural network by means of
imposing appropriate constraints on weights, biases or both. Muralidhar et al. (2020) used physics-based
prior model, physical intermediate variables, and physics-guided loss functions to learn physically
interpretable quantities such as pressure field and velocity field.

6. Gray PEML schemes

The motivations which drive the “middle ground” of PEML will—naturally—vary depending on the
nature of the information deficiency, and whether this is a physics knowledge gap or data scarcity. For
example, the knowledge could be made up of a number of possible physical phenomena, or the system
could be known but the parameters not. Or, with the opposite problem, it may be possible to capture data
well in one domain, but be limited in the relative resolution of other domains (e.g., temporal vs. spatial).
These are just a few of the many examples which motivate the use of “gray” PEML techniques. In this
section, two such approaches are surveyed and discussed; first dictionary methods are shown, which
select a suitably sparse representation of the model via linear superposition from a dictionary of candidate
functions. The second technique discussed is the physics-informed neural network, which weakly
imposes conditions on the model output in order to steer the learner. This differs from the previously
discussed physics-guided approaches, where the physics restrictions are strongly imposed by way of a
proposed solution that instantiates an inductive bias to the learner. As will be discussed in detail below, the
latter technique can be applied in a variety of ways, each embedding different prior knowledge and beliefs,
allowing for flexibility in its application.

6.1. Dictionary methods

One of the biggest challenges faced in the practical application of structural mechanics in engineering, is the
presence of irregular, unknown, or ill-defined nonlinearities in the system. Another challenge may occur
from variation in the parameters which govern the prescribed model of the system, which could be from
environmental changes, or from consequential changes such as damage. This motivates less reliance on the
physics-based model form, to allow for freedom in physical-digital system discrepancy whilst satisfying
known physics. One approach to reducing the reliance on the prescribed physics model form is by having the
learner estimate the definition of the model, which may be the sole, or additional, objective of the learner.
Dictionary methods are well-positioned as a solution for less strict physics embedding, where the model is
determined from a set of possible model solutions, allowing freedom in a semi-discrete manner.

The problem of estimating the existence, type, or strength of the model-governing physics is described
as that of equation discovery. This inverse problem can often be very computationally expensive, due to
the large number of forward model calculations required to evaluate the current estimate of the parameters
(Frangos et al., 2010). When determining the presence of governing equation components, often the
identification is drawn from a family of estimated equations. For example, the matching-pursuit algorithm
selects the most sparse representation of a signal from a dictionary of physics-based functions (Vincent
and Bengio, 2002).

For dictionary-based approaches, the idea is to determine an estimate of the model output as some
combination of bases or “atoms.” Often, these bases are formed as candidate functions of the input data,
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and are compiled into a dictionary-matrix ®(x). Then, linear algebra is used to represent the target signal
from a sparse representation of this dictionary and a coefficient matrix =.

y=0(x)E. @®)

And so, the aim of the learner is to determine a suitably sparse solution of =, via some objective function.
Typically, sparsity-promoting optimisation methods are used, such as LASSO (Tibshirani, 1996). The
coefficient matrix can be constrained to be binary values, thus operating as a simple mask of the candidate
function, or can be allowed to contain continuous values, and thus can simultaneously determine
estimated system parameters which are used in the candidate functions. For the case of dynamic systems,
a specific algorithm was developed by Brunton et al. (2016a) for sparse discovery of nonlinear systems.
The team also showed how this could be used in control by including the control parameters in the
dictionary definition (Brunton et al., 2016b). Kaiser et al. (2018) extended this nonlinear dictionary
learning approach to improve control of a dynamic system where data is lacking. To do so, they extended
the method to include the effects of actuation for better forward prediction.

In an example of dictionary-based learning, Flaschel et al. (2021) and Thakolkaran et al. (2022)
showed a method for unsupervised learning of the constitutive laws governing an isotropic or anisotropic
plate. The approach is not only unsupervised, needing only displacement and force data, it is directly
inferrable in a physical manner. The authoring team then extended this work further to include a Bayesian
estimation (Joshi et al., 2022), allowing for quantified uncertainty in the model of the constitutive laws.

Another practical example: Ren et al. (2023) used nonlinear dynamic identification to successfully
predict the forward behavior of a 6DOF ship model, including coupling effects between the rigid body and
water. In this work, the dictionary method is combined with a numerical method to predict the state of the
system in a short time window ahead. This facet is often found when applying DM-based approaches to
practical examples, as the method is intrinsically a model discovery approach, and so a solution step is
required if model output prediction is required.

Data-driven approaches to equation discovery will often require an assumption of the physics models
being exhaustive of the “true” solution; that is all the parameters being estimated will fully define the
model, or the solution will lie within the proposed family of equations. One of the challenges faced with
deterministic methods, such as LASSO (Tibshirani, 1996), is their sensitivity to hyperparameters
(Brunton et al., 2016a); a potential manifestation of which is the estimation of a combination of two
similar models, which is a less accurate estimate of the “true” solution than each of these models
individually. Bayesian approaches can help to overcome this issue, by instead providing a stochastic
estimate of the model, and enforcing sparsity (Park and Casella, 2008).

Fuentes et al. (2021) show a Bayesian approach for nonlinear dynamic system identification which
simultaneously selects the model, and estimates the parameters of the model. Similarly, Nayek et al.
(2021) identify types and strengths of nonlinearities by utilizing spike-and-slab priors in the identification
scheme. As these priors are analytically intractable, this allowed them to be used along with a MCMC
sampling procedure to generate posterior distributions over the parameters. Abdessalem et al. (2018)
showed a method for approximate Bayesian computation of model selection and parameter estimation of
dynamic structures, for cases where the likelihood is either intractable or cannot be approached in
closed form.

6.2. Physics-informed neural networks

Raissi et al. (2019) showed that by exploiting automatic differentiation that is common in the practical
implementation of neural networks, one can embed physics that is known in the form of ordinary/partial
differential equations (ODEs/PDEs). Given a system of known ODEs/PDEs which define the physics,
where the sum of these ODEs/PDEs should equal zero, an objective function is formed which can be
estimated using automatic differentiation over the network. If one was to apply a PINN to estimate the
state of the example in Figure 2, over the collocation domain Q,, using equation (2), the physics-informed
loss function becomes,
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L,(t0) = (aN,— AN, — AN, —Bf)q, ©)

where 0,V is the estimated first-order derivative of the state using automatic differentiation, and
the system parameters are 8 = {m,c,k,k3 }. Boundary conditions are embedded into PINNs in one of
two ways; the first is to embed them in a “soft” manner, where an additional loss term is included
based on a defined boundary condition &(y) (Sun et al., 2020). Given the boundary domain
e,

Lbc:(f*—f(/vy»ag- (10)

The second case, so-called “hard” boundary conditions, involves directly masking the outputs of the
network with the known boundary conditions,

Ny=¢& 0 (11)

where often gradated masks are used to avoid asymptotic gradients in the optimization (Sun et al., 2020).
In the case of estimating the state over a specified time window, the boundary condition becomes the
initial condition (i.e., the state at t = 0).

E=2(0)={u(0),2(0)}, Lpe={(&~Ngero- (12)

The total objective function of the PINN is then formed as the weighted sum of the observation, physics,
and boundary condition losses,

L=1,L, +/1pr + ApeLpe- (13)

The flexibility of the PINN can then be highlighted by considering how the belief of the architecture is
changed when selecting the corresponding objective weighting parameters ;. By considering the
weighting parameters as 1 or 0, Table 1 shows how the selection of objective terms to include changes
the application type of the PINN. The column titled Q. indicates the domain used for the PDE objective
term, where the significant difference is when the observation domain is used, and therefore the PINN
becomes akin to a system identification problem solution.

Figure 7 shows the framework of a generic PINN, highlighting where the framework, specifically the
loss function formulation, can be broken down into the data-driven and physics-embedding components.
It is also possible to include the system parameters 6 as unknowns which are determined as part of the
optimisation process, thatis, ® = {W, B, 8}. Doing so adds the capability as an system identification tool,
as well as equation solution discovery. In system identification, either equation discovery can be
performed, where the aim is to determine the definition of &, or parameter estimation, where the aim
is to determine the values of 8. The framework shown is for the training stage of the model, where the
network parameters ®, and optionally the physical parameters 6, are updated using an optimization
algorithm such as LBFGS (Liu and Nocedal, 1989) or Adam (Kingma and Ba, 2014). Further prior
physical knowledge can be added to PINNs by embedding more objective functions, such as initial
conditions or continuity conditions, which can be formed directly from the output values of the network,
or from the derivatives.

Table 1. Summary of PINN application types, and the physics-enhanced machine learning genre/
category each would be grouped into

Aobs Apde Abe Q. 1% PE-ML Subcategory
1 0 0 Q, — Purely data-driven
1 1 0/1 Q, Unknown System identification
1 1 1 Q. Known Physics-informed learner
0 1 1 Q. Known Forward-modeler
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Figure 7. Framework of a general PINN, highlighting where the data-driven and physics-knowledge are
embedded within the process.

To illustrate the different approaches to implementing a PINN, three paradigms of the method are
discussed here, each to aiming to tackle a different objective.

1. System Identification; the aim is to determine the physics description of the system, either by
equation discovery or by parameter estimation of the system parameters € in equation (9) via
estimating the system state.

2. Enhanced Learning; the aim is to enhance the learner to either better estimate the model given a
more sparse set of data, or to improve learning efficiency.

3. Forward Modeling; where the PINN acts to generate a “simulated” model of the system, given the
system equations and parameters, and the domain of interest.

These points will form the remaining parts of this subsection, where surveys will be shown and an
example of each approach applied to the working example of the Duffing oscillator. The PINN is applied
here as an “instance-modeler”’; where the estimated model is only applicable in the case of the prescribed
initial conditions and forcing signal. Therefore, new estimations made with this model are only applicable
within the training domain. The generalisability and extrapolability presented with the PINN are in terms
of extending beyond the domain of observations.

Physics-informed neural networks are gaining increased attention thanks to some of the advantages
stated above, however, there exist a number of drawbacks which should be noted. Firstly, in many
formulations of PINNs, they suffer from a lack of generalisability—which is a common motivation for
PEML schemes—as they are restricted to the domain on which they were trained (Haghighat et al.,
2021b). This domain may be extended beyond that of observations, however, computationally intensive
training must still be performed before prediction. Furthermore, there is a lack of intuition or knowledge
on the optimization task of PINNs; often, weighting of the losses is done via trial and improvement (Wang
et al., 2021), and an under-defined, or ill-posed, physics prescription may result in many local minima
(Nandi et al., 2021). A related challenge is in the computational effort of training, which can be a
considerable task. This challenge has garnered fair criticism against the use of PINNs as opposed to other
numerical-solving schemes (Grossmann et al., 2023).

6.2.1. PINNs for system identification

As discussed above, PINNs can be used as an approach to system identification, by applying a “soft”
condition on the governing physical laws. The use of a variety of soft conditions, in the form of the loss
functions, allows for discrepancies between the model and data, making them useful for noisy
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observations. A good demonstration of PINNs for simultaneous state-system estimation is shown by Yuan
etal. (2020) and Moradi et al. (2023), where in both examples, they model the displacement of a vibrating
beam, with an accurate estimation of the governing equation parameters also. Zhang et al. (2020) use a
PINN to solve an identification problem for nonhomogeneous materials, using elasticity imaging. An
elegant approach here was done so by utilizing a multi-network architecture to include nonhomogeneous
parameter fields, removing the potential issue caused by exploding dimensionality when including the
spatially dependent material parameters. Sun et al. (2023) recently showed an approach to discovering the
parameters of complex nonlinear dynamic systems using a Physics-informed Spline Learning approach.
This approach employs the same exploitation as PINNs, however, the splines are used to allow for
differentiation from a more sparse set of observed data, by interpolating the underlying dynamics.

Instead of determining the governing parameters of the PDEs, Wu and Xiu (2020) proposed a
method to estimate the forward-in-time solution to a model. By recovering the evolution operator in the
modal space, this reduces the problem from an infinite-dimension to a finite-dimension space. As
opposed to value-based parameter identification, Ritto and Rochinha (202 1) used measurement from a
vibrating bar to update a ML-based classifier which directly infers the damage state of the structure. As
the governing equations are often in the form of PDEs, an estimation of the derivatives is required in the
learning process of many equation discovery approaches. However, Goyal and Benner (2022) proposed
a numerical integration framework with dictionary learning, along with a “Runge—Kutta inspired”
numerical procedure, overcoming the issues presented with derivative approximation from corrupted or
sparse data.

For the working example, the PINN was applied to the Duffing oscillator, shown in Figure 2, and an
equivalent linear system (i.e., k3 = 0). Here, 256 data points were sub-sampled using a Sobol sampler and
passed to the learner, and the physics-loss domain is set to the same as the observation domain
(i.e., Q,=9Q,), positing the framework akin to a system identification scheme. The observation loss
(equation (7)) penalizes the output enough to result in an accurate estimation of the displacement, and
satisfying the physics loss will drive the estimation of the physical parameters.

The results of the state estimation are shown in Figure 8, and the results of the parameter estimation are
shown in Table 2. The state estimation results show accurate modeling, and the estimated values for the
physical parameters also show a good level of accuracy. It is important to note here that accurate
estimation of the state is not the primary objective, given that the domain of interest is well-covered by
the observation data. A notable result is the increased accuracy when modeling only the linear system.
This result can be explained by well-known machine learning intuition that with an increased dimen-
sionality of estimation-space, an increased number of information is also required. Therefore, with the
same /evel of information provided, the accuracy of the results for estimating more physical parameters
will likely be more of a challenge for the learner.

6.2.2. PINNs for enhanced learning

Another utility of PINNs is domain enhancement potential, either by improving domain density from
sparse observations, or by extending the domain beyond that of the observation domain. Practically for
spatio-temporal models, increasing density is often only motivated in the spatial domain, as a result of the
ease of improving time-domain sampling. However, domain-extension approaches are found to be
practically motivated in both space and time.

Xu et al. (2022) used PINNs to accurately model the rigid-body dynamics of an unmanned surface
vehicle as it voyages along a river. This is a nice example of a practical implementation of improving state
prediction from sparse data, and a good example of how to formulate PINNs for relatively complex
descriptions of dynamics. Chen and Liu (202 1) use a PINN for estimating the fatigue S — N curves, where
even on seemingly sufficient data, the uninformed ANN fails to accurately predict. A particular note of
this work, was the inclusion of a probabilistic framework, allowing both freedom in the model construc-
tion, as a result of stochastic considerations, and a quantified estimate of the uncertainty. By utilizing a
finite-element model, in which the parameters were updated using a PINN, Zhang and Sun (2021)
developed a NN-based method for detecting damage.
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Table 2. Results of system estimation for the SDOF oscillator for both the nonlinear and linear case

C k k 3
System Case Predicted Error Predicted Error Predicted Error
Nonlinear 1.002 0.26% 15.02 0.12% 99.22 0.78%
Linear 1.002 0.213% 15.00 0.011% - -

Note. For all parameters, the estimated value and the percentage error are shown.
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Figure 8. Predicted versus exact solution of simultaneous system-state estimation approach to solving the
working example for the nonlinear case (top) and linear case (k3 =0) (bottom).

By utilizing an energy-based formulation of the loss function, Zhuang et al. (2021) modeled
bending, vibration, and buckling of a Kirchoff plate. As well as the informed loss function, the authors
used a non-standard activation function to better emulate the underlying operations which govern the
physics. Another example of an energy-based loss function approach is shown by Goswami et al.
(2020), who combined a PINN with transfer learning to model the phase field of fracture in a material.
They showed how a well-trained model could drastically reduce the computational requirements of this
problem.

The deformation of elastic plates with PINNs was shown by Li et al. (2021), where they made a
comparison between purely data-driven, PDE-based, and energy-based physics informing, finding each
to have different advantages. The PDE-based approach was less dependent on sampling size and
resolution, whereas the energy-based approach had less hyperparameter, and therefore was more efficient
and easier to train. This information may be useful for the future development of PINNs, which suffer from
alack of understanding of the hyperparameter space pathology, to allow for robust optimization strategies,
as discussed by Wang et al. (2021).

Yucesan and Viana (2020) present a methodology for predicting the damage level in a wind turbine
blade, in the form of grease degradation, using PINNs. In their work, the advantage of PINNs is that
instead of aiming to directly model the value of grease degradation, they aim to predict the increment of
grease degradation based on the current value and a number of other measurable quantities. This would be
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Figure 9. Predicted versus exact solution of state estimation approach applied to a subsample of the
working example with no physics embedded (top) and physics-informed embedding (bottom).

a difficult task to perform in a black-box manner, as the values of the increment are not the observed
values, and so the physics embedding helps to overcome this.

Now, we will show the PINN applied as an enhanced learner to the working example, where the physical
parameters are known a priori. The advantages of the PINN in this aspect are more efficient learning, and for
improved extrapolation of the data from sparse observations. To demonstrate, only every sixteenth sample is
instead fed to the learner, emulating a sampling frequency of 0.5328 Hz. Then, the PINN is applied as a
“black-box” architecture (i.e., A, =4, =0), and as a physics-informed modeler, where all loss weight
parameters are included. The results of the two methods applied are shown in Figure 9, where it is clear to see
the strength of embedding physics, demonstrated in the context of sparse data.

6.2.3. PINNs for forward modeling

When applying PINNs for forward modeling of systems and structures, no prior observations are given,
that is, D* = 0, however, it is necessary to provide sufficient boundary and initial conditions, and physics
constraints which describe a complete model. An advantage of PINNs for forward modeling is their
simple implementation; embedding boundary conditions, complex geometries, or new governing equa-
tions is relatively straightforward. The training time of PINNs as forward modelers, in relation to
traditional finite-element methods, is often greater, leading to statements implying their impracticality
(Rezaei et al., 2022). In the context of forward modeling of a known model, and at pre-set collocation
points, this statement of impracticality is well-founded. However, PINNs may also provide a convenient
solution for problems such as; in-time control/prediction, where a PINN could predict an output rapidly, as
the computational effort is done a priori during training, or for determining a better generalization over
high-dimensional modeling space, where the computational cost of FEM methods can rapidly increase
with dimensionality.

PINNs s for forward modeling have gained a lot of traction in micro-scale problems; Haghighat et al.
(2021b) and Henkes et al. (2022)use PINNs to model the instance of displacements and stresses in a unit
cell. In the latter, they showed the capability of the approach to model nonlinear stresses by including a
sharp phase transition within the material. Haghighat and the team also showed how the method could

https://doi.org/10.1017/dce.2024.33 Published online by Cambridge University Press


https://doi.org/10.1017/dce.2024.33

Data-Centric Engineering e31-21

0.2 \ .
—— Exact Solution

— === Predicted

e}

~— 0.0

=

*
—0.2 Dr=0
0 20 40 G0 80 100 120
Time, t (s)

Figure 10. Exact solution versus PINN-based forward modeling solutions of the SDOF Duffing oscillator
example, where no observations of the state are given to the learner.

accurately model structural vibration (Haghighat et al., 2021a), giving only initial and boundary
conditions. Abueidda et al. (2021) showed PINNs for modeling various solid mechanic effects;
elasticity, hyperelasticity, and plasticity, where the method performed well on all types of materials.
In the work by Zheng et al. (2022), fracture mechanics were modeled to a decent accuracy with only
principle physics.

The above examples all follow a fairly straightforward path to the model formulation, by employing
the variables that are inherent to the governing equations as the variables of the ML model. Going beyond
this, Huang et al. (2020) used a proper orthogonal decomposition (POD) neural network to model
plasticity in a unit cell. The advantage of the POD approach is to decouple the multi-dimensional stress,
allowing the use of individual NNs for each stress variable, reducing computation time, and increasing
learning efficiency. Straying away from the common approach of using PDEs to form the physics-based
loss, Abueidda et al. (2022) formulated an energy-based loss term to successfully forward model
hyperelasticity and viscoelasticity in a given material.

As a final demonstrator of PINN utility, we apply it as a forward modeler, with no observed data offered
to the learner, that is, Q, = 0. However, it is important to note that there is still training data reflecting time
domain information. For this implementation, initial conditions, in the form of Dirichlet and Neumann
boundary conditions from equation (12), and the forcing signal are provided. In Figure 7, therefore, only
the physics embedding portion of the framework is included. The results of this forward modeling
approach are shown in Figure 10, where it can be seen the solution matches well with the exact solution.

7. Dark gray PEML schemes

In this final section of the physics-enhanced discussion, the “darkest” genres of PEML techniques (that are
included in this paper) are discussed. These techniques have a lower reliance on the physics-based model
form, as the prescribed model has a lower level of strictness.

7.1. Constrained GPs

One example of physics-encoded learners is constrained Gaussian processes (GPs), which, depending on
kernel design, can be viewed as embedding the general shape of the function, as GPs are a problem of
discovery over the function-space, as opposed to the weight-space (O’Hagan, 1978; Williams and
Rasmussen, 2006). Conceptually, this process can be thought of as estimating a distribution over all
the possible functions that could explain the data, as opposed to one “best fit” model. The aim is to
estimate a nonlinear regression model given a set of observed output data y, and observed input data x,

y=f(x)+e, S:N(O,aﬁ]l), (14)
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where ¢ is a zero-mean Gaussian white-noise process with variance o2. A GP is fully defined by its mean
and covariance functions,

f(x): GP(m(x),K(x,x")). (15)

The mean function m(x) can be any parametric mapping of x, and the covariance function expresses the
similarity between two input vectors x and x’. The primary influence of the user, when implementing a
GP, is in the choice of the covariance kernel, which is calculated as any other kernel; linear pair-wise
distances between points to form a covariance matrix. There are a number of popular kernels that are used
as standard, each of which embed a different belief as to which family of functions the model solution is
drawn from. There are two primary methods of embedding physical knowledge in GPs; the first of which
is to include an initial estimate of the model into the mean function, and so the problem can then be
envisioned as determining the solution of the remaining, unknown physics.

The second approach is to design, or select, the covariance kernels to constrain the shape of the
function estimate, and often combinations of kernels can provide varying levels of physical knowledge
embedding (Cross and Rogers, 2021). In this case, it is possible to relax the reliance on the physics model
form, by for example simply dictating the design of the kernel for the domain on which the physics is
expected to operate. For example, Padonou and Roustant (2016) showed a kernel for predicting on
circular domains. More strictly prescribed model forms can be applied by designing kernels to include
physical knowledge in the form of partial differential equations, or boundary conditions (Solin and
Sérkkd, 2020).

An example of embedding prior knowledge via the mean function is shown by Zhang et al. (2021),
where they showed an improved GP model for the deflection of the Tamar bridge (Cross et al., 2013)
under time-varying environmental conditions, by including an expected linear deflection of the cable due
to temperature. Data from the Tamar bridge represents a relatively complex problem; a large-scale
complicated structure under varying (and non-exhaustive) environmental conditions. However, even
by applying the simplest method of embedding physics into a GP, the modeling was improved. Petersen
et al. (2022) also applied a novel physics-informed GP method to a bridge problem, but with the aim of
estimating wind load from acceleration data. In their work, they developed a novel infusion of GP latent-
force model (GP-LFM) with a Kalman filter-based approach. The inclusion of the GP-LFM allowed for
characterization of the evolution of the wind-load, and this is enriched with prior physical knowledge in
the form of stochastic information on wind-loads taken from wind-tunnel tests. This work provides an
excellent demonstration of how physics information can be embedded to allow the transfer of information
from scaled structures.

Haywood-Alexander et al. (2021) used constrained GPs to model the physical characteristics of
guided-waves in a complex material. Guided waves in complex materials are famously difficult to model
due to their relatively short wavelength in comparison to the material structure. By designing a variety of
kernels, they demonstrated the performance of the GP modeling with varying levels of physics informa-
tion embedded. Notably, they showed that by considering the space in which the physics operates, one can
already improve the modeling capabilities, even before any physics equations are embedded. Continuing
on the topic of elastic waves, Jones et al. (2023) applied PI-GPs to localize acoustic source emission in a
complex domain. They developed constrained GPs further by embedding boundary conditions and the
spatial domain of the problem. This approach has potential for use in modeling on structures with
relatively high geometrical complexity, such as those with lots of joints, or with layered materials.

As stated above, the GP is unique in that it operates in the function space, thus, prior knowledge
embedded is on that of the shape of the function. This characteristic was utilized by Dardeno et al. (2021),
who used weak-form dynamics equations as a mean function within a novel overlapping mixture of
Gaussian processes (OMGP) method. By constraining the expected shape of the functions, this allows the
learner to separate out unsorted data of dynamic structures from within a population.

To demonstrate the constrained GP, here were apply this to the working example in Figure 2. In this
context, the GP estimates a nonlinear operator where the input is time (i.e., x = t). The first kernel we will
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select is the scaled squared-exponential kernel, where [ is a lengthscale hyperparameter, and o is the
scaling hyperparameter,

1
Ksp(t,t*) = exp(—?(t—t*)T(t—t*)) (16)

which embeds only a belief that the function is smooth. Then, following the work of Cross and Rogers
(2021), if we assume a Gaussian white noise force input, an additional physics-derived kernel can be
included,

2
Kspor(t,t*) = UifSe’C‘”"lfl (cos(wdr) + con sin(w, r|)) , T=t—t", (17)
dm*Cw; g

where oy is an additional hyperparameter, representing the square root of the variance of the forcing. To
demonstrate the constrained GP approach, the data from Figure 2 is applied in a similar fashion to the
informed-learner approach used with the PINN in Figure 9. Here, only every twelfth sample is fed to the
learner, and is first applied with the uninformed squared-exponential kernel in equation (16), and then
with the constrained SDOF kernel in equation (17). The results of the estimated solutions using each of
these kernels are shown in Figure 11, along with the estimated 95% (2¢) confidence range. Note, the value
of ¢ here is taken from the estimated covariance matrix, and is not the hyperparameter oy. It is clear to see
the improved estimation of the displacement of the system, but on top of this, the estimated uncertainty is
also reduced. An interesting observations from this is that when using a linear SDOF kernel to model a
nonlinear system, this still results in improved modeling from sparse data.

Constrained Gaussian processes are often used to improve the forecasting of temporal data, which falls
under the umbrella of domain extension schemes. In the context of the example prescribed here, for
accurate forecasting one would need to determine an analytical solution for the covariance of a forced
nonlinear system, as with the prescribed kernel, prediction beyond the scope of the data results in simply a
free-vibration system.
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Figure 11. Predicted versus exact solutions of displacement estimation using a GP applied to a
subsample of the working example, with (top) no physics embedded and (bottom) constrained GP. The
blue bounding boxes represent the estimated 20 range.
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7.2. Physics-encoded neural networks

So far we have only explored how the automatic differentiation mechanisms can help embed physics into
a neural networks. This process can be applied blindly to any type of neural network architecture. A
different approach is to modify the architecture of the neural network itself such that its hidden states
conform to a domain closer to that of the physical problem of study. By imposing specific geometric
constraints, it is possible to bias neural networks toward such domains. Adding additional biases to the
model reduces the variance during the training phase, which leads to a faster convergence. However, such
biases must be carefully imposed such that they replicate the physics of the system of study, else they add a
constant bias error into the model.

The biases that one can introduce in a machine learning model are in most cases symmetries that are
imposed on the nonlinear mappings of the model (Bronstein et al., 2021). The rational for imposing
symmetries stems from Noether’s theorem: every continuous symmetry in a physical system corresponds
to a conserved quantity. Therefore, symmetries in a model’s architecture should be able to encode the
physical properties of the system that are conserved. From henceforth, we will refer to models as “physics-
encoded” whenever their architecture is biased to specifically reproduce the symmetries arising from the
properties of the system of study. Such symmetries can be tailored depending on the prior knowledge
available on the system.

7.2.1. Neural ODE

Neural ordinary differential equations (Chen et al., 2018) are a framework that unifies neural networks and
ordinary differential equations to model dynamical systems. Unlike traditional neural networks that
operate on discrete time steps, Neural ODEs model the evolution of a system continuously over time.
They leverage the powerful tools of ODE theory to learn and infer hidden states, trajectories, and
dynamics from observed data. At the core of Neural ODE:s is the use of the adjoint sensitivity method,
which enables efficient gradient computation. This technique allows gradients to be backpropagated
through the ODE solver, enabling end-to-end training of the model using standard gradient-based
optimization algorithms.

Neural ODE:s offer several advantages over traditional neural networks. Firstly, they provide a flexible
and expressive modeling framework that can capture complex temporal dependencies and nonlinear
dynamics. Secondly, they inherently handle irregularly sampled or sparse data since the ODE solver can
handle time interpolation. This is particularly valuable when dealing with real-world physical systems
where data may be scarce or unevenly sampled. Lastly, Neural ODEs can exploit known physical laws or
priors by incorporating them into the ODE function, thereby enhancing the interpretability and gener-
alization of the model.

Physics-encoded machine learning using Neural ODEs has found applications in various domains,
such as fluid dynamics, particle physics, astronomy, and material science. By incorporating physical
knowledge into the model architecture, Neural ODEs can leverage the underlying physics to improve
predictions, simulate systems, and discover new phenomena. Using PeNNs in an equation-discovery
context, Lai et al. (2021) utilize physics-informed Neural ODEs for a structural identification problem,
where varying levels of prior constraints are embedded in the learner. They showcased a framework that
allows for an inferrable model, by adopting a sparse identification of nonlinear dynamical systems.
Further works by Lai et al. (2022) show that such a scheme can be integrated into generative models such
as VAEs. This framework leverages physics-informed Neural ODEs via embedding eigenmodes derived
from the linearized portion of a physics-based model to capture spatial relationships between DOFs. This
approach is notably applied to virtual sensing, that is, the recovery of generalized response quantities in
unmeasured DOFs from spatially sparse data.

7.2.2. Hamiltonian neural networks
An alternative method for embedding physics into the architecture of the network is to constraint them
according the Hamiltonian formalism. The intuition behind this method originates from Noether’s first
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theorem which states that every differentiable symmetry of the action of a physical system with
conservative forces has a corresponding conservation law. In layman terms, this means that the symmet-
ries that are observed within the dynamics of the system are the result of a conservation of the properties of
said system.

With the success of PINNs, more and more theoretical research on the integration of physical principles
has been taking place. Namely, how do different formulations of a system’s equations can be used as prior
knowledge to bias our model. The most common way in mechanics is to represent a system as its state-
space. An alternative formulation can be done from the point of view of the energy of the system through
the Hamiltonian formulation. For our state-space z in the case of a MDOF formed by the pair (q,p), the
Hamiltonian is formulated as:

1 _
H(q,p) =5p"M "' (@)p+V(q)- (18)
With M~!(q)>0. The Hamiltonian is considered to be separable when H(q,p)=T(p)+V(q). When
looking at the variations of the Hamiltonian over time, one notices that q = % andp=— %. This leads to

the Hamiltonian being time-invariant since:

. oH\ T oH\ T
H=(22) q+(Z2) p=o. 19
(aq>“ <ap>" 19

Greydanus et al. (2019) are the first to have introduced the Hamiltonian formalism to neural networks to
bias the model for physical data. The method is closer to a Physics-informed than to a Physics-encoded
model since the formalism is added through the loss function. The Hamiltonian loss is given by
(we remind the reader that ® are the parameters of the model):

o2 22

20
op ot Jq ot 20)

2 2
In this case, is the neural network is learn the gradients of the system. Such a formalism prevents to the
neural network prediction to stray away from the true state of the system by grounding it in the physical
domain.

This property can also be found in symplectic integrators, that is, integrators derived from the Hamiltonian
formalism. For a given initial value problem, a discrete integration of the system can be performed with
explicit integrators such as Euler integration. Such integration relies on the local Taylor expansion of the flow
of the system. For an integration of the nth order, an integration error of the n + 1-th order accumulates at every
time step, leading to a drift from the true dynamics of the system. This drift can be avoid by opting for
symplectic gradients instead. The first-order symplectic gradients can be derived as follows:

. OH . Qg oH

q op q, h Qe+1 =k oy 2D
. OH . P — Pk oH

= p =2kl Tk =p, —h—. 22
p aq P: h Pr+1 =Pk aq, (22)

For ¢ the continuous time, k the discrete time, and / the discretisation. For the coefficients of symplectic
integrators of the nth order (equivalent to their explicit counterparts), we refer to the formula derived by
Yoshida (1990) (c; and d; given in the paper):

TP +V() — HecihT(P)edrhV(q) + O(h’” 1 ) (23)
i=1

The symplectic integration principle has been extended to a plethora of physics-encoded models. Chen
et al. (2020) modified the original HNN by Greydanus by replacing the ANN with an RNN and by
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updating the gradients in a symplectic manner. Saemundsson et al. (2020) train a Neural ODE with a
split latent space with symplectic integrators. Sanchez-Gonzalez et al. (2019) estimate the Hamiltonian
of the system, then derive the gradients from its estimate to update the model. David and Méhats (2021)
employ the same principle but replace the ANN with a Graph Neural Network (GNN). One of the issues
with the Hamiltonian approach is that it assumes constant energy within the system, something that is
usually not the case for most real-world applications. Many methods attempt to resolve this issue by
incorporating dissipation into their formulation. Sosanya and Greydanus (2022), an adaptation of the
original HNN that splits the gradients into their dissipative and non-dissipative components. Desai et al.
(2021) adopt the port-Hamiltonian formalism to adopt HNNs, making them apt to learn the dynamics of
control systems.

The first work to extend this notion to DL is that of Greydanus et al. (2019), which enforces a
symmetric gradient on a neural network trained to predict the dynamics of a conservative system.
Saemundsson et al. (2020) showed that the Hamiltonian formalism could be combined with the previously
mentioned Neural ODEs, yielding the so-called Symplectic (state-space area preservation) Neural ODEs.
Zhong et al. (2020) also used neural ODEs to learn the physics in an inferrable manner, applying
Hamiltonian dynamics. Particularly, they parameterized the model in order to enforce Hamiltonian
mechanics, even when only velocity data can be accessed as opposed to momentum. Bacsa et al.
(2023) propose a method extending this reasoning to stochastic learning, where a symplectic encoder
learns an energy-preserving latent representation of the system, and opens up new considerations for
physics-embedded NN architectures.

We extend our SDOF oscillator example to other tasks to demonstrate the use of Neural ODEs.
Neural ODEs are trainable forward models in that a neural network is used to approximate the flow of
the system of study. In this context, the neural ODE estimates the latent space z, given the initial value
problem starting at (zo,). The Neural ODE flow estimation is done using the ResNet (He et al., 2015)
such that the integration is accumulated on top of the residuals of the neural network. The neural
network is optimized using the adjoint sensitivity method (Pontryagin et al., 1962). The results are seen
in Figure 12.

We can extend this method within the DMM framework, using the symplectic Neural ODEs, as per
Bacsa et al. (2023). We change the problem accordingly: given that symplectic networks are made to deal
with limit cycles, the forcing is switched from white excitation to a multisine excitation. The results are
seen in Figure 13.
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Figure 12. Predicted versus exact solutions of state-space estimation of the Neural-ODE k+ 1 predictor.
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Figure 13. Predicted versus exact solutions of state-space estimation of the Symplectic Neural-ODE
encoded DMM k + 1 predictor with uncertainty.

8. Discussion

In Section 1, we discussed variants situated across the spectrum of PEML, and examined the character-
ization of such methods based on their reliance on the prescription of the physics-based model form (and
physics constraints) embedded within the learner, and the amount of data used. The selection of an
appropriate scheme is driven by the motivation or, in other words, the nature of the downstream task, the
level and type of prior scientific/physical knowledge, and the amount of data available. When the true
system is unknown, or much too complex to define an adequate model, purely data-driven (black-box)
models are used. As these models are extremely non-generalizable and are limited to only the scenario for
which the data has been collected, they can only reasonably be applied in a sufficiently similar scenario.
Furthermore, such types of models require training on large amounts of data for reasonable accuracy. The
advantage, however, of such models is their extreme levels of flexibility; they embed zero prior belief of
the true system, and are often described as universal approximators.

When the true system is relatively simple, and can be adequately modeled with only prior scientific
knowledge, white-box models can be used. Here, the Bayesian filter approach was presented as an
approximation of a white box model, which embeds a strong prior belief on the description of the physics,
albeit allowing for some modeling and measurement errors, typically (but not necessarily) assumed
Gaussian. This results in the physics prescription imposed being highly strict, in that it defines the
dynamics model within its specification. Comparatively, the physics-guided neural network also embeds a
relatively high reliance on the physics-based model prescription, however, the NN allows for freedom in
the estimation of the model output, akin to a residual modeling scheme. Comparing the two light-gray
methods discussed in this paper, namely; ML-enhanced Bayesian filtering and physics-guided neural
networks, both are often used when supplementary knowledge is required, but most of the underlying
physics is well described with prior knowledge. Naturally, the flexibility of these approaches is relatively
low, a facet sacrificed in order to improve precision in the physical descriptions. ML-enhanced BF
techniques are often applied as estimators, for example, serving for the purpose of virtual sensing, within a
system identification context. PgNNs, on the other hand, often aim to determine improved estimates of the
measured output (e.g., displacement, velocity).
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Light-gray methods often have shared motivations and characteristics as gray methods, but the gray
approaches contain a higher degree of flexibility in terms of the embedded belief. In the case of “darker”
such schemes, the model is still defined with a certain specificity, but they inherit greater flexibility owing
to the more dominant incorporation of an ML method. However, such a lifting of restrictions stems from a
different motivation for each approach. Dictionary methods allow for greater flexibility as they allow to
combine several possible model forms, whereas the flexibility of PINNs may be attributed to the use of
weak-form boundary conditions. Thus, in the former class, the embedded belief'is essentially summarized
in that a sparse representation of the defined dictionary will exhaustively describe the physics of the true
system. For PINN, the prior belief can be described as a reasonably accurate estimate of the model, but
with some discrepancy resulting from either uncertainty in the governing parameters, or in the boundary
conditions specification.

Dark-gray approaches offer maximal flexibility, that is, maximal potential to deviate from prior
assumptions, among the physics-enhanced examples shown here. For such models, the embedded belief
can be translated into regarding prior knowledge as a rather loose description of the #ype of system
handled, or the class/family to which it belongs. Thus, such models are useful for improved generalis-
ability, if this is a primary objective of the scheme, but also require a reasonably large amount of data to
determine adequate estimates of the system. Inadequate levels of data may leave the system underfit,
similar to issues with black-box models. However, in comparison to black-box models, the encoding the
family of the system will allow for better interpolation, or potentially extrapolation, of the model output.

So far, most of the discussion has been centered around the flexibility and the beliefs embedded, and
the fundamental facets the model aims to learn (model output or system parameters). But another aspect to
consider of these methods is their enhanced-model structure, which can be defined as either unified or
superimposed architectures. For a unified architecture, the model itself (e.g., the network or the kernels)
will contain both the machine learning procedure, and the physics embedded. In the case of superimposed
methods, the ML and the physics models are separate and the output of the model is formed by some
combination of these two. This characteristic is not as conveniently correlated to a specific location within
the spectrum plotted in Figure 1 as is the aspect of flexibility. The dictionary, PINN, and physics-encoded
neural network (PeNN) approaches can all be considered to be inherently unified models, whilst PgNN
techniques are naturally superimposed models. However, depending on the specific type of approach,
constrained GP and ML-enhanced filtering techniques can be either unified or superimposed architec-
tures.

9. Conclusions and looking to the future

This paper has discussed, exhibited, and surveyed the spectrum of PEML, using the varied attributes of
different methods to define and characterize them with respect to such a spectrum. This was done via a
survey of recent applications/development of PEML within the wide field of structural mechanics, and
through further demonstration of the alternate schemes on a simple running example of a Duffing
oscillator. The motivation for, and application of, each of these variants will strongly depend on the
use case, and the discussion and detailing of these methods in this paper should help not only the
implementation of these techniques, but also for further research using an understanding of the—almost
—philosophical implications of each method.

As we look toward the future of PEML, many pathways are opened in terms of development,
understanding, and improvement. An existing challenge in machine learning techniques is to overcome
the difficulties that manifest as a result of the increased dimensionality of problems. This challenge is far
from circumvented in PEML; in fact, it becomes potentially more prominent in that PEML forms a
compound of computational paradigms (both physics-based and data-driven), for each of which,
dimensionality has a strong influence on the difficulty of implementation. One of the biggest advantages
of informed ML, in comparison to black-box approaches, is their potential for improved inferability.
However, the interpretability of the model is more difficult to immediately receive, and so further
development can be done to improve this aspect, by utilizing domain transforms.
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In order to improve the perception and utilization of PEML techniques, the unification of architecture
styles, particularly for similar problems, is an invaluable development pathway. This could be to provide
general design approaches given PEML design axioms, or to develop software packages or tools.
Continuing on the technical development of PEML techniques, much like with black-box ML techniques,
work is required to improve computing efficiency, especially at a time where reduction of energy
consumption is increasingly important.

This paper has focused on PEML for structural mechanics, but one could also call attention to the
potentially large impact of PEML as a natural next step in a society that is increasingly adopting, or
opposing, Al. There are clear advantages of improved efficiency, lesser data requirements, and better
generalisability. A highly impactful societal benefit may arise from the improvement of public trust in
ML/AI when using informed models, since the opacity of ML models, and the lack of inferability, form a
key contributor to public distrust (Toreini et al., 2020). The techno-societal study of the potential for
improved public trust on the basis of PEML, would also provide an invaluable knowledge source for
modern engineers and researchers, who can leverage such a knowledge for the development of tools with
high societal impact.
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