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Abstract
Finite state Markov processes and their aggregated Markov processes have been extensively studied, especially in
ion channel modeling and reliability modeling. In reliability field, the asymptotic behaviors of repairable systems
modeled by both processes have been paid much attention to. For a Markov process, it is well-known that limiting
measures such as availability and transition probability do not depend on the initial state of the process. However,
for an aggregated Markov process, it is difficult to directly know whether this conclusion holds true or not from
the limiting measure formulas expressed by the Laplace transforms. In this paper, four limiting measures expressed
by Laplace transforms are proved to be independent of the initial state through Tauber’s theorem. The proof is
presented under the assumption that the rank of transition rate matrix is one less than the dimension of state space
for the Markov process, which includes the case that all states communicate with each other. Some numerical
examples and discussions based on these are presented to illustrate the results directly and to show future related
research topics. Finally, the conclusion of the paper is given.

1. Introduction

Finite-state time-homogenous Markov processes (chains) have been widely used in many areas, for
example, in ion channel modeling [3, 5, 10] and in reliability modeling [2, 6–8, 15, 16, 18, 20, 26]. The
evolution process of a finite-state time-homogenous Markov process is not always observed completely;
sometimes, it can only be obtained partially, which depends on the operational situation and apparatus
used. For the complete information evolution of the processes, there are lots of literature in both theory
and practice. The situation of partially observable information on the evolution becomes more diffi-
cult, but there has been much literature at present since this case can be encountered in more practical
circumstances. The aggregated stochastic processes can be used to decribe evolution processes with
group information observed, for example, the underlying process is known to be in a subset of states
instead of a specific state. In general, people name the aggregated stochastic process in terms of its
underlying stochastic process. For example, if the underlying process possesses the Markov property,
then the corresponding aggregated stochastic process is called an aggregated Markov stochastic pro-
cess. The aggregated Markov and semi-Markov stochastic processes have been extensively used in ion
channel modeling and reliability, for example, see Colquhoun and Hawkes [11], Ball and Sansom [4],
Rubino and Sericola [24], Hawkes et al. [19], Zheng et al. [31], Cui et al. [12–14], and Yi et al. [27–29].
Of course, there are some differences on the studies of aggregated stochastic processes in ion channel
modeling and reliability. For example, the assumptions on the underlying processes and research con-
tents have some differences. In ion channel modeling, the underlying Markov processes are assumed
to possess time reversibility, which is not needed in reliability. In research contents, the steady-state
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behaviors are considered in both subjects, but in reliability, studying the instantaneous properties of the
aggregated stochastic processes is one of the important tasks under the given initial state.

As mentioned above, in reliability, the limiting behaviors have been studied already, which are mainly
done by obtaining the instantaneous measures when time t approaches infinity [1]. It is well known that
the limiting behaviors of the underlying Markov process do not depend on the initial state in most cases
in terms of the common knowledge of Markov processes [23, 25]. Thus, the corresponding aggregated
Markov process also has this property [21]. However, based on the corresponding formulas derived
from the aggregated Markov processes, it is difficult to get this conclusion directly. In detail, the steady-
state measures are obtained in aggregated Markov processes using the Laplace transforms. In terms of
Tauber’s theorem, the steady-state measures equal to the limits of the products of an s and the Laplace
transforms of steady-state measures when s approaches zero from the right side. The Laplace transforms
of steady-state measures contain the initial state probabilities, which, in general, are matrices or vectors.
Thus, unlike one-dimensional case, it is hard to see that the initial state probabilities do not play any role
in the steady-state measures. More details are given in Section 3. The aims of this paper are to present
the rigorous proof on this conclusion, that is the four steady-state measures given in the paper do not
depend on the initial state. The detailed contributions of the paper include the following: (i) Under the
condition Rank(Q) = n − 1 (the dimension of matrix Q is n × n), which includes the case that all states
communicate each other, the proof that four steady-state measures expressed by Laplace transforms do
not depend on the initial state is presented; (ii) A numerical example on the condition Rank(Q) = n− 2
is discussed and the rank of the transition rate matrix also is studied; and (iii) This proof can bridge
a gap between the common knowledge in Markov processes and aggregated Markov processes for the
case of steady-state situation.

The organization of the paper is as follows. In Section 2, some basic knowledge on the aggregated
Markov processes and the inversion on four-block paritioned matrix are presented. Meanwhile, the
proof for that Rank(Q) = n − 1 for the case that all states communicate with each other is given. The
four steady-state measures expressed by Laplace transforms are derived, and two essential terms are
abstracted for the later contents in the paper in Section 3. In Section 4, the main results that two essential
terms that contain the four steady-state measures do not depend on the initial state are presented. Three
different numerical examples are given to illustrate the direct ways for the limiting results in Section 5;
especially, some discussions are presented, which may be useful for the case of Rank(Q) ≤ n − 2.
Finally, the paper is concluded in Section 6.

Throughout this paper, vectors and matrixes are rendered in bold, namely, u denotes a column vector
of ones, I denotes an identity matrix, and 0 denotes a matrix (vector) of zeros, whose dimensions are
apparent from the context. Besides, the symbol T denotes a transpose operator as a superscript.

2. Preliminaries

In this section, some basic knowledge on the theory of aggregated Markov process are presented, which
are developed in pathbreaking papers such as Colquhoun and Hawkes [11] in the ion channel literature
and other papers like Ball and Sansom [5] in the probability literature and Rubino and Sericola [24] and
Zheng et al. [31] in the reliability literature. These knowledge form our basic concepts and notations
in this paper. The basic assumptions to be used are also discussed, and the proofs of some of them are
given in this section.

Consider a finite-state homogenous continuous-time Markov process {X (t), t ≥ 0} with transi-
tion rate matrix Q =

(
qij

)
n×n, state space S = {1, 2, . . . , n}, and initial probability vector "0 =

(U1,U2, . . . ,Un). The stochastic process {X (t), t ≥ 0} can result from many areas such as ion chan-
nel, quality and reliability, operational management, and so on. With many possible reasons, the state
space can be assumed to be aggregated by partitioning into classes, so that it is possible to observe
only which class the stochastic process is in at any given time instead the specific state it is in. This fact
forms a new stochastic process {X̃ (t), t ≥ 0} with state space S̃ such that |S̃| < |S|, that is, each class
in S is a state in S̃. The stochastic process {X̃ (t), t ≥ 0} is called an aggregated Markov process, and
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the stochastic process {X (t), t ≥ 0} is called the underlying one. In reliability field, in general, the state
space S can be divided into two classes: the working (up) class, denoted by W, and the failure (down)
class, denoted by F, that is, S = W∪F. Without loss of generality, it is assumed that W = {1, 2, . . . , no}
and F = {no + 1, no + 2, . . . , n}. The corresponding transition rate matrix Q can also be written as

Q =

(
QWW QWF
QFW QFF

)
. (2.1)

To study the aggregated Markov process, the following concepts and notation are given:

Wpij (t) := P{X (t) remains within W throughout time 0 to time t,
and is in state j at time t |X (0) = i}, i, j ∈ W . (2.2)

After simple manipulations, we get, in matrix form, Wpij (t) are the elements of the no × no matrix

PWW (t) =
(
Wpij (t)

)
no×no

= exp(QWW t). (2.3)

Another important quantity is defined as

gij (t) := lim
Δt→0

[P{X (t) stays in W from time 0 to time t, and leaves W for state j

between t and t + Δt |X (0) = i}/Δt], i ∈ W, j ∈ F. (2.4)

Similarly, we have, in matrix form, gij (t) are the elements of the no × (n − no) matrix

GWF (t) = PWW (t)QWF . (2.5)

The Laplace transform will be used throughout the paper, which is defined for function f (t) as f ∗(s) =∫ ∞
0 e−stf (t) dt. The Laplace transform for a functional matrix is defined elementwise. The Laplace

transforms of Eqs. (2.3) and (2.5), respectively, are

P∗
WW (s) = (sI − QWW )−1, (2.6)

G∗
WF (s) = P∗

WW (s)QWF = (sI − QWW )−1QWF, (2.7)

where s is the Laplace transform variable. From Eq. (2.7), the matrix G∗
WF (0) will be briefly denoted

as GWF, that is,

GWF = G∗
WF (0) = −Q−1

WWQWF . (2.8)

The inversion of a partition matrix will be used in this paper; the related results are presented as follows.
Given a four-block partitioned matrix

M =

(
MWW MWF

MFW MFF

)
,
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if MWW and MFF are not singular, as discussed in Colquhoun and Hawkes [11], its inversed matrix is

M−1 =

(
XW −M−1

WWMWFXF

−M−1
FFMFWXW XF

)
,

where

XW = (I − M−1
WWMWFM−1

FFMFW )−1M−1
WW ,

XF = (I − M−1
FFMFWM−1

WWMWF)−1M−1
FF .

Using the results presented above, for

(sI − Q) =
(
sI − QWW −QWF
−QFW sI − QFF

)
,

we have

(sI − Q)−1 =

(
[P(s)]WW [P(s)]WF
[P(s)]FW [P(s)]FF

)
, (2.9)

where

[P(s)]WW = [I − G∗
WF (s)G

∗
FW (s)]−1P∗

WW (s),
[P(s)]FW = G∗

FW (s) [I − G∗
WF (s)G

∗
FW (s)]−1P∗

WW (s).

For the results on the inversion of a partitioned matrix, there is a requirement on the existence of
both matrix (sI − QWW )−1 and matrix (sI − QFF)−1 for any variable s> 0. The proof for these can be
found in several literature, for example, see Yin and Cui [30].

On the other hand, the existence of Q−1
WW and Q−1

FF is also needed for the underlying stochastic Markov
process {X (t), t ≥ 0}. In the ion channel modeling literature, the time reversibility and communication
for all states on the underlying process are assumed, but in our paper, it is extended into the situation of
Rank(Q) = n− 1, that is, the rank of transition rate matrix Q is equal to n − 1, which can not only cover
the case in ion channel modeling but also include many other cases, for example, see some numerical
examples presented in Section 5 of this paper. The proof of the existence of Q−1

WW and Q−1
FF is given in

the following lemma.

Lemma 2.1. For a finite-state time-homogenous Markov process {X (t), t ≥ 0} with transition rate
matrix Qn×n and state space S, if all states communicate with each other, then Rank(Qn×n) = n− 1 and
Rank(QWW ) = no, Rank(QFF) = n − no.

Proof. Let the transition rate matrix be

Q =

©­­­­­­«
−q11 q12 · · · q1n

q21 −q22
. . .

...
...

. . .
. . . q(n−1)n

qn1 · · · qn(n−1) −qnn

ª®®®®®®¬
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and the steady-state probability vector be 0 = (c1, c2, . . . , cn)T. Since the vector 0 satisfies the
following set of equations {

QT0 = 0,∑n
i=1 ci = 1,

which is equivalent to the following linear set of equations

Q̃i0 = bi, (2.10)

where bi = (0, . . . , 0, 1,︸       ︷︷       ︸
i

0, . . . , 0)T and

Q̃i =

©­­­­­­­­­­­­­«

−q11 q21 · · · qn1
...

...
. . .

...

q1(i−1) q2(i−1) · · · qn(i−1)
1 1 · · · 1

q1(i+1) q2(i+1) · · · qn(i+1)
...

...
. . .

...

q1n q2n · · · −qnn

ª®®®®®®®®®®®®®¬
.

Because we know that there exists a unique solution 0 to Eq. (2.10) and all ci are greater than zero
in terms of all states being communicated to each other, then based on Cramer rule, we have

Rank(Q̃i) = Rank(Q̃i; bi) = n,

cj =
det[Q̃i,j]
det[Q̃i]

, j = 1, 2, . . . , n,

where Q̃i,j is a matrix resulting from replacing the jth column of Q̃i by vector bi. Furthermore, we have
det[Q̃i,j] ≠ 0 because cj > 0, that is, Rank(Q̃i,j) = n for any i, j ∈ S. When taking i = j = n as a special
case, we have

Q̃n−1,n−1 =

©­­­­­«
−q11 · · · q(n−1)1 0
...

. . .
...

...

q1(n−1) · · · −q(n−1) (n−1) 0
1 · · · 1 1

ª®®®®®¬
and

det
(
Q̃(n−1) ,(n−1)

)
= det

©­­­«
−q11 · · · q(n−1)1
...

. . .
...

q1(n−1) · · · −q(n−1) (n−1)

ª®®®¬
= det

©­­­«
−q11 · · · q1(n−1)
...

. . .
...

q(n−1)1 · · · −q(n−1) (n−1)

ª®®®¬ ≠ 0,
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that is, Rank(Q) = n − 1. Furthermore, without loss of generality, it is assumed that the state space S
can be partitioned into two disjoint parts, that is, S = W + F = {1, 2, . . . , no} + {no + 1, no + 2, . . . , n}.
We consider the special case of i = j = no + 1, that is,

Q̃no+1,no+1 =

©­­­­­­­­­­­­­«

−q11 · · · qno1 0 · · ·
...

. . .
...

...
. . .

q1no · · · −qnono 0 · · ·
1 · · · 1 1 · · ·

q1(no+2) · · · q1(no+2) 0 · · ·
...

. . .
...

...
. . .

q1n · · · q1n 0 · · ·

ª®®®®®®®®®®®®®¬
=

©­­­­­­­­­­­­­«

0 · · ·

QT
WW

...
. . .

0 · · ·
1 · · · 1 1 · · ·

q1(no+2) · · · q1(no+2) 0 · · ·
...

. . .
...

...
. . .

q1n · · · q1n 0 · · ·

ª®®®®®®®®®®®®®¬
.

Thus, we have det[QT
WW ] = det[QWW ] ≠ 0, that is to say, Rank(QWW ) = no = |W |. Similarly, we can

prove that Rank(QFF) = n − no = |F|. It completes the proof. �

As mentioned above, if Rank(Qn×n) = n − 1 for a finite-state time-homogenous Markov process, all
states may communicate or not, for example, see examples presented in Section 5. On the other hand,
Lemma 2.1 told us that if all states communicate with each other in a finite state Markov process, then
the rank of its transition rate matrix is n − 1.

Unlike in the ion channel modeling, in this paper, we focus on the limiting behaviors of the aggregated
Markov processes, which are used to describe the maintenance processes in the reliability field. The four
steady-state reliability indexes are studied, which include the steady-state availability, the steady-state
interval availability, the steady-state transition probability between two subsets, and the steady-state
probability staying at a subset. All these four indexes can be expressed through using the aggregated
Markov process and the initial conditions of the underlying process being at the initial time t = 0, which
all are the products of the initial probability vectors and matrices. It is not easy to know directly in terms
of these formulas that these expressions do not depend on the initial probability vectors. However, the
common knowledge in Markov processes tells us that they hold true. The proofs on that will be presented
in terms of these products when time approaches to infinity in next section.

3. Limiting results derived by using aggregated Markov processes

The limiting results in aggregated stochastic processes are considered in many theoretical and practical
situations. In reliability field, especially for repairable systems, some limiting behaviors need to be
considered. The following four reliability-related measures, in general, are paid attention to:

(1) the steady-state availability, denoted as lim
t→∞

A(t);
(2) the steady-state interval availability, denoted as lim

t→∞
A( [t, t + a]), where a ≥ 0;

(3) the steady-state transition probability between two subsets, denoted as lim
t→∞

pS1S2 (t), where Si ( S,
(i = 1, 2) and S1 ∩ S2 = q, q is an empty set; and

(4) the steady-state probability staying in a given subset lim
t→∞

pS0 (t), where S0 ( S, that is, S0 is a proper
subset of state space S.

In the sequeal, the computation formulas for the four measures are derived in terms of the theory of
aggregated Markov processes.
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(1) The steady-state availability
The definition of steady-state availability is given by

lim
t→∞

A(t) = lim
t→∞

P{X (t) ∈ W}. (3.1)

Let A(t) = (A1(t), . . . , A |W | (t)), where Ai (t) = P{X (t) = i ∈ W}, then we have

A(t) = "0

t∫
0

f (u)PWW (t − u) du, (3.2)

where PWW (t) = exp(QWW t) and f (t) =
(
fij (t)

)
|S |× |W | , its elements fij (t) are the probability density

functions of the durations starting from state i at time 0 and ending at time t by entering state j, with
initial probability vector "0 = ("W ,"F). Thus, the Laplace transform of A(t) is

A∗(s) = A∗
W (s) + A∗

F (s), (3.3)

where AW (t) := P{X (t) ∈ W} and AF (t) := P{X (t) ∈ F},

A∗
W (s) = "W

∞∑
r=0

[
G∗

WF (s)G
∗
FW (s)

] r (sI − QWW )−1

= "W
[
I − G∗

WF (s)G
∗
FW (s)

]−1(sI − QWW )−1, (3.4)

this is because the system is in W at time t after it spends a duration of either 0, or 1, or 2, . . . transitions
from W to F and back, and the convolution forms a product by taking the Laplace transform. Similarly,
we have

A∗
F (s) = "FG∗

FW (s)
∞∑

r=0

[
G∗

WF (s)G
∗
FW (s)

] r (sI − QWW )−1

= "FG∗
FW (s)

[
I − G∗

WF (s)G
∗
FW (s)

]−1(sI − QWW )−1. (3.5)

Based on Tauber’s Theorem ([22], Final Value Theorem [9]), Theorem 14.1 in reference [22], or
Theorem 2.6 in reference [9] tells us that

lim
t→0

t
∞∫

0

e−tvs(v) dv = lim
v→∞

s(v).

Then, we have

lim
t→∞

A(t) = lim
t→∞

[(AW (t) + AF (t))uW ] = lim
s↓0

[s(A∗
W (s) + A∗

F (s))uW ], (3.6)

where uW = (1, . . . , 1︸   ︷︷   ︸
|W |

)T.
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(2) The steady-state interval availability lim
t→∞

A([t, t + a])
The definition of steady-state interval availability is given by

lim
t→∞

A( [t, t + a]) = lim
t→∞

P{X (u) ∈ W, for all u ∈ [t, t + a]}. (3.7)

Since A( [t, t + a]) = AW (t) exp(aQWW )uW , thus we have

lim
t→∞

A( [t, t + a]) = lim
t→∞

AW (t) exp(aQWW )uW

= lim
s→0+

[sA∗
W (s)] exp(aQWW )uW . (3.8)

(3) The steady-state transition probability between two subsets lim
t→∞

pS1S2 (t)
The definition of steady-state transition probability between two subsets is given by

lim
t→∞

pS1S2 (t) = lim
t→∞

P{X (t) ∈ S2 |X (0) ∈ S1}. (3.9)

There are two cases to be considered in the following:
Case 1: S1 ∪ S2 = S
Similar to Eq. (3.5), we have

p∗S1S2
(s) = #1G∗

S1S2
(s)

∞∑
r=0

[G∗
S2S1

(s)G∗
S1S2

(s)]rP∗
S2S2

(s)uS2

= #1G∗
S1S2

(s) [I − G∗
S2S1

(s)G∗
S1S2

(s)]−1(sI − QS2S2)
−1uS2 , (3.10)

where the initial probability vector #1 =

(
U1∑

i∈S1
Ui

, . . . , U|S1 |∑
i∈S1

Ui

)
:= (V1, . . . , V |S1 | ) and uS2 = (1, . . . , 1︸   ︷︷   ︸

|S2 |

).

Case 2: S1 + S2 ( S
Let S̄1 = S/S1, then we first consider the p∗S1S̄1

(s). From Case 1, we have known that

p∗S1S̄1
(s) = #1G∗

S1S̄1
(s) [I − G∗

S̄1S1
(s)G∗

S1S̄1
(s)]−1(sI − QS̄1S̄1)

−1uS̄1 ,

where uS̄1 = (1, . . . , 1︸   ︷︷   ︸��S̄1
��

). On the other hand, we have

p∗S1S2
(s) = #1G∗

S1S̄1
(s) [I − G∗

S̄1S1
(s)G∗

S1S̄1
(s)]−1(sI − QS̄1S̄1)

−1v1, (3.11)

where v1 = (1, . . . , 1︸   ︷︷   ︸
|S2 |

, 0, . . . , 0︸   ︷︷   ︸��S̄1
��−|S2 |

)T, with S2 ( S̄1.

(4) The steady-state probability staying in a given subset lim
t→∞

pS0 (t)
The definition of steady-state probability staying in a given subset is given by

lim
t→∞

pS0 (t) = lim
t→∞

P{X (t) ∈ S0}. (3.12)

Note: When S1 = S, lim
t→∞

pS1S2 (t) in Eq. (3.9) reduces to lim
t→∞

pS0 (t) in Eq. (3.12).
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We have

p∗S0
(s) =#0

∞∑
r=0

[G∗
S0S̄0

(s)G∗
S̄0S0

(s)]rP∗
S0S0

(s)u0

+ #̄0G∗
S̄0S0

(s)
∞∑

r=0
[G∗

S0S̄0
(s)G∗

S̄0S0
(s)]rP∗

S0S0
(s)u0

=#0 [I − G∗
S0S̄0

(s)G∗
S̄0S0

(s)]−1P∗
S0S0

(s)u0

+ #̄0G∗
S̄0S0

(s) [I − G∗
S0S̄0

(s)G∗
S̄0S0

(s)]−1P∗
S0S0

(s)u0, (3.13)

where the initial probability vectors #0 = (U1, . . . ,U |S0 | ), #̄0 = (U |S0 |+1, . . . ,U |S | ), and u0 =

(1, . . . , 1︸   ︷︷   ︸
|S0 |

)T.

Note: In some contents, the steady-state probability staying at a given subset lim
t→∞

pS0 (t) is equivalent
to the steady-state availability lim

t→∞
A(t) when two subsets coincide, that is, lim

t→∞
pS0 (t) = lim

t→∞
A(t) when

W = S0.
Based on the four steady-state measures expressed by Eqs. (3.5), (3.6), (3.8), (3.10), (3.11), and

(3.13), we only need to consider essentially two terms, which are

T1(s) :="W [I − G∗
WF (s)G

∗
FW (s)]−1(sI − QWW )−1

+ "FG∗
FW (s) [I − G∗

WF (s)G
∗
FW (s)]−1(sI − QWW )−1, (3.14)

T2(s) := #1G∗
FW (s) [I − G∗

WF (s)G
∗
FW (s)]−1(sI − QWW )−1. (3.15)

Note: when we replace the subsets S1 and S2, S1 and S̄1, S0 and S̄0 by F and W in the corresponding
equations, respectively, then the two terms presented in Eqs. (3.14) and (3.15) are given.

Summarizing the above cases, we need to calculate the following two limits: lim
s↓0

[sTi (s)] (i = 1, 2)
for getting the four steady-state measures under the case that s approaches to zero from the right side,
which is equivalent to the case that time t approaches to infinity.

4. Proofs on the limiting results

As mentioned above, the four limits do not depend on the initial state probability vector of the underlying
Markov process considered, which is a well-known result in Markov processes. However, when using
the results in aggregated stochastic process, it is not directly known that the four limits are not relevant
to the initial state probability vector. In the following, we present a detailed proof on this conclusion.
Before giving the main results, two Lemmas are needed first.

Lemma 4.1. Given a matrix Qn×n, if Rank(Qn×n) = n − k (k ∈ {1, 2, . . . , n − 1}), then there exists a
nonsingular matrix C such that

Qn×n = C−1

(
0 B
0 P (n−k)×(n−k)

)
C, (4.1)

where Rank(P (n−k)×(n−k) ) = n − k.

Proof. See Fang et al. [17] . �
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Corollary 4.1. Let matrix P(s) := sI − Q and Rank(Q) = n − k (k ∈ {1, 2, . . . , n − 1}), where Q is the
transition rate matrix of Markov process {X (t), t ≥ 0} with state space S = {1, 2, . . . , n}, then

det[P(s)] = skPn−k (k), (4.2)

where Pn−k (s) is a polynomial of s with degree n − k and Pn−k (0) ≠ 0.

Proof. Based on Lemma 4.1, we have

det[P(s)] = det

[
sI − C−1

(
0 B
0 P (n−k)×(n−k)

)
C

]
= det

[
C−1

(
sI −

(
0 B
0 P (n−k)×(n−k)

))
C

]

= det

[
sI −

(
0 B
0 P (n−k)×(n−k)

)]

= det


©­­­­­«

s 0
. . . −B

0 s
0 sI − P (n−k)×(n−k)

ª®®®®®¬

= skPn−k (s).

On the other hand, Rank(−P (n−k)×(n−k) (0)) = n − k, that is, Pn−k (0) ≠ 0, which completes
the proof. �

Lemma 4.2. For the Markov process {X (t), t ≥ 0} with state space S = W ∪ F and W ∩ F = q and

transition rate matrix Q =

(
QWW QWF
QFW QFF

)
, then

det[QWW (I − GWFGFW )] = 0. (4.3)

Proof. We have

QWW (I − GWFGFW )uW

= [QWW − QWW (−Q−1
WWQWF) (−Q−1

FFQFW )]uW

= [QWW − QWFQ−1
FFQFW )]uW

= QWWuW − QWFQ−1
FFQFWuW

= QWWuW − QWFQ−1
FF (−QFFuF)

= QWWuW + QWFuF = 0,

that is, the sum of each row of matrix QWW (I − GWFGFW ) is zero, then it completes the proof. �

Lemma 4.3. Let {X (t), t ≥ 0} be a finite-state time-homogenous Markov process with state space S =

{1, 2, . . . , n}, and its transition rate matrix be Q. If S = W∪F and W∩F = q and Rank(Q) = n−1, then
lim
s↓0

[sT1(s)] and lim
s↓0

[sT2(s)] are independent of the initial probability vectors "0 and #1, respectively.
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Proof. First we have

lim
s↓0

T1(s) = T1(0)

= "W [I−GWFGFW ]−1(−QWW )−1 + "F GFW [I − GWFGFW ]−1 (−QWW )−1

= −("W + "F GFW ) [QWW (I−GWFGFW )]−1,

and lim
s↓0

T2(s) = −#1GFW [QWW (I−GWFGFW )]−1. But from Lemma 4.2, we can know that both

lim
s↓0

T1(s) and lim
s↓0

T2(s) do not exist. Thus, we cannot directly get the lim
s↓0

[sTi (s)] (i = 1, 2) by replacing

s with zero.
Now we consider the inversed matrix P(s) directly for a given transition rate matrix Q when

Rank(Q) = n − 1,

P−1(s) = (sI − Q)−1 =
1

det P(s)P∗(s) = 1
sPn−1(s)

P∗(s), (4.4)

where Pn−1(s) is a polynomial of s such that Pn−1(0) ≠ 0, and the adjugate matrix P∗(s) given by

P∗(s) =
©­­­­­«

det[P11(s)] − det[P21(s)] · · · (−1)n+1 det[Pn1(s)]
− det[P12(s)] det[P22(s)] · · · (−1)n+2 det[Pn2(s)]

...
...

. . .
...

(−1)n+1 det[P1n(s)] (−1)n+2 det[P2n(s)] · · · det[Pnn (s)]

ª®®®®®¬
.

On the other hand, we have Pij (s) = sI −Qij, i, j ∈ S, where Qij is a matrix obtained by deleting the ith
row and jth column of Q. Obviously, we known that det[Pij (s)] is a polynomial of s with degree n − 1.
Let det[Pij (s)] = P(i,j)

n−1 (s). Thus, we have

P−1(s) = 1
sPn−1(s)

©­­­­­«
P(1,1)

n−1 (s) −P(2,1)
n−1 (s) · · · (−1)n+1P(n,1)

n−1 (s)
−P(1,2)

n−1 (s) P(2,2)
n−1 (s) · · · (−1)n+2P(n,2)

n−1 (s)
...

...
. . .

...

(−1)n+1P(1,n)
n−1 (s) (−1)n+2P(2,n)

n−1 (s) · · · P(n,n)
n−1 (s)

ª®®®®®¬
.

Besides, we can prove that (−1)i+j det[Pij (0)] = (−1)i+l det[Pil (0)] for any i, j, l ∈ S. This is because,
if we denote pij (0) ≡ pij, for any i, j ∈ S, then it is clear that P(0) =

(
pij (0)

)
n×n = −Q :=

(
pij

)
n×n.

Without loss of generality, it is assumed j < l, and then

det[Pij (0)]

= det[

©­­­­­­­­­­­«

p11 · · · p1(j−1) p1(j+1) · · · p1(l−1) p1l p1(l+1) · · · p1n
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

p(i−1)1 · · · p(i−1) (j−1) p(i−1) (j+1) · · · p(i−1) (l−1) p(i−1)l p(i−1) (l+1) · · · p(i−1)n
p(i+1)1 · · · p(i+1) (j−1) p(i+1) (j+1) · · · p(i+1) (l−1) p(i+1)l p(i+1) (l+1) · · · p(i+1)n

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

pn1 · · · pn(j−1) pn(j+1) · · · pn(l−1) pnl pn(l+1) · · · pnn

ª®®®®®®®®®®®¬
]
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= det[

©­­­­­­­­­­­«

p11 · · · p1(j−1) p1(j+1) · · · p1(l−1) −p1j p1(l+1) · · · p1n
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

p(i−1)1 · · · p(i−1) (j−1) p(i−1) (j+1) · · · p(i−1) (l−1) −p(i−1)j p(i−1) (l+1) · · · p(i−1)n
p(i+1)1 · · · p(i+1) (j−1) p(i+1) (j+1) · · · p(i+1) (l−1) −p(i+1)j p(i+1) (l+1) · · · p(i+1)n

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

pn1 · · · pn(j−1) pn(j+1) · · · pn(l−1) −pnj pn(l+1) · · · pnn

ª®®®®®®®®®®®¬
] .

On the other hand, we have

det[Pil (0)]

=det[

©­­­­­­­­­­­«

p11 · · · p1(j−1) p1j p1(j+1) · · · p1(l−1) p1(l+1) · · · p1n
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

p(i−1)1 · · · p(i−1) (j−1) p(i−1)j p(i−1) (j+1) · · · p(i−1) (l−1) p(i−1) (l+1) · · · p(i−1)n
p(i+1)1 · · · p(i+1) (j−1) p(i+1)j p(i+1) (j+1) · · · p(i+1) (l−1) p(i+1) (l+1) · · · p(i+1)n

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

pn1 · · · pn(j−1) pnj pn(j+1) · · · pn(l−1) pn(l+1) · · · pnn

ª®®®®®®®®®®®¬
]

=det[

©­­­­­­­­­­­«

p11 · · · p1(j−1) p1(j+1) · · · p1(l−1) −p1j p1(l+1) · · · p1n
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.
. . .

.

.

.

p(i−1)1 · · · p(i−1) (j−1) p(i−1) (j+1) · · · p(i−1) (l−1) −p(i−1)j p(i−1) (l+1) · · · p(i−1)n
p(i+1)1 · · · p(i+1) (j−1) p(i+1) (j+1) · · · p(i+1) (l−1) −p(i+1)j p(i+1) (l+1) · · · p(i+1)n

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

pn1 · · · pn(j−1) pn(j+1) · · · pn(l−1) −pnj pn(l+1) · · · pnn

ª®®®®®®®®®®®¬
]

× (−1) (l−1)−j+1

=(−1)l−j det[Pij (0)] .

Thus, we have proved that det(Pi1(0)) = − det(Pi2(0)) = · · · = (−1)n−1 det(Pin(0)), for any i ∈ S,
which implies that matrix P∗(0) has the same row, that is, each column in matrix P∗(0) consists in the
same value.

Furthermore, based on the result of inversion of partitioned matrix presented in Section 2, we have

(sI − Q)−1 =

(
[P(s)]WW [P(s)]WF
[P(s)]FW [P(s)]FF

)
,

where [P(s)]WW = [I − G∗
WF (s)G

∗
FW (s)]−1P∗

WW (s), and

[P(s)]FW = G∗
FW (s) [I − G∗

WF (s)G
∗
FW (s)]−1P∗

WW (s).

On the other hand, from Eq. (4.4), we have

[P(s)]WW =
1

sPn−1(s)

©­­­«
P(1,1)

n−1 (s) · · · (−1) |W |+1P( |W |,1)
n−1 (s)

...
. . .

...

(−1) |W |+1P(1, |W | )
n−1 (s) · · · (−1)2 |W |P( |W |, |W | )

n−1 (s)

ª®®®¬,

https://doi.org/10.1017/S0269964823000153 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964823000153


Probability in the Engineering and Informational Sciences 311

[P(s)]FW =
1

sPn−1(s)

©­­­«
(−1) |W |+2P(1, |W |+1)

n−1 (s) · · · (−1)2 |W |+1P( |W |, |W |+1)
n−1 (s)

...
. . .

...

(−1) |W |+|F |+1P(1, |W |+|F | )
n−1 (s) · · · (−1)2 |W |+|F |P( |W |, |W |+|F | )

n−1 (s)

ª®®®¬.
Thus, we have

lim
s↓0

[s(sI − Q)−1] = 1
Pn−1(0)

P∗(0), (4.5)

with the same row, that is,

lim
s↓0

[sT1(s)]

= UW

©­­­­­­«
d (W)

11 d (W)
12 · · · d (W)

1 |W |
d (W)

11 d (W)
12 · · · d (W)

1 |W |
...

...
. . .

...

d (W)
11 d (W)

12 · · · d (W)
1 |W |

ª®®®®®®¬ |W |× |W |

+ UF

©­­­­­­«
d (W)

11 d (W)
12 · · · d (W)

1 |W |
d (W)

11 d (W)
12 · · · d (W)

1 |W |
...

...
. . .

...

d (W)
11 d (W)

12 · · · d (W)
1 |W |

ª®®®®®®¬ |F |× |W |

=

(
d (W)

11 [ ∑
i∈W

Ui +
∑
i∈F

Ui], d (W)
12 [ ∑

i∈W
Ui +

∑
i∈F

Ui], . . . , d (W)
1 |W | [

∑
i∈W

Ui +
∑
i∈F

Ui]
)

=

(
d (W)

11 , d (W)
12 , . . . , d (W)

1 |W |

)
,

where d (W )
ij = (−1)i+j P(j,i)

n−1 (0)
Pn−1 (0) , i, j ∈ S. Thus, we can have that lim

s↓0
[sT1(s)] does not depend on the initial

probability vector "0 = ("W ,"F).
Similarly, we have that lim

s↓0
[sT2(s)] does not depend on #1. Thus, it completes the proof. �

Theorem 4.1. Let {X (t), t ≥ 0} be a finite-state time-homogenous Markov process with state space
S = {1, 2, . . . , n}, and its transition rate matrix be Q. If S = W ∪ F, W ∩ F = q, and Rank(Q) = n − 1,
then the steady-state availability lim

t→∞
A(t), the steady-state interval availability lim

t→∞
A( [t, t + a]), the

steady-state transition probability between two subsets lim
t→∞

pS1S2 (t), and the steady-state probability
staying in a given subset lim

t→∞
pS0 (t), given in matrix expressions by using aggregated stochastic process

theory, are independent of the initial probability vectors "0 and #1, respectively.

Proof. Based on the results given in Lemma 4.3, it is clear to know that Theorem 4.1 holds. �

Note: For Theorem 4.1, it seems we can understand that the lim
t→∞

A(t), lim
t→∞

A( [t, t+a]), lim
t→∞

pS1S2 (t),
and lim

t→∞
pS0 (t) are independent of the initial probability condition for aggregated Markov processes

when Rank(Q) = n− 1, namely there is at most one absorbing state for the underlying Markov process,
see Examples 5.1 and 5.2, for example. In fact, the limiting behaviors of a finite irreducible aggregated
Markov process are independent of the initial probability condition, so that it is also true under condition
Rank(Q) = n − 1.
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Figure 1. The transition diagram for Example 5.1.

5. Numerical examples and discussion

In this section, some examples will be presented by using the direct computation way to illustrate the
independence of initial probability vectors for direct limits such as steady-state interval and point avail-
abilities, steady-state transition probability between two subsets, and steady-state probability staying in
a given subset, which have all been proved and expressed in Theorem 4.1.

Example 5.1. (Case that Rank(Q) = n − 1 and all states communicate.) Suppose that n= 4, all states
in S = {1, 2, 3, 4} communicate with each other, with W = {1, 2, 3}, F = {4} and

Q =

©­­­­«
−6 1 4 1
1 −3 1 1
1 1 −4 2
2 1 2 −5

ª®®®®¬
.

The transition diagram of {X (t), t ≥ 0} is shown in Figure 1.
We have Rank(Q) = 3, and

s(sI − Q)−1 =

©­­­­­«
s3+12s2+41s+35

s3+18s2+106s+200
1

s+4
4s2+35s+70

s3+18s2+106s+200
s2+16s+45

s3+18s2+106s+200
s2+12s+35

s3+18s2+106s+200
1

s+4
(s+7) (s+10)

s3+18s2+106s+200
s2+13s+45

s3+18s2+106s+200
s2+13s+35

s3+18s2+106s+200
1

s+4
s3+14s2+59s+70

s3+18s2+106s+200
2s2+20s+45

s3+18s2+106s+200
2s2+17s+35

s3+18s2+106s+200
1

s+4
(2s+7) (s+10)

s3+18s2+106s+200
s3+13s2+48s+45

s3+18s2+106s+200

ª®®®®®¬
.

Taking the limit, we have

lim[
s↓0

s(sI − Q)−1] = 1
40

©­­­­«
7 10 14 9
7 10 14 9
7 10 14 9
7 10 14 9

ª®®®®¬
,

which shows that the matrixes lim
s↓0

[sT1(s)] = 1
40 (7, 10, 14) and lim

s↓0
[sT2(s)] = 1

40 (7, 10, 14) possess the

same row; thus, the related steady-state indexes do not depend on the initial probability vector.
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Figure 2. The transition diagram for Example 5.2.

Example 5.2. (Case that Rank(Q) = n − 1 but not all states communicate with each other.) Suppose
that n= 4, three states in S = {1, 2, 3, 4} communicate with each other, but state 4 does not communicate
with states 1, 2, and 3, with W = {1, 2, 3}, F = {4} and,

Q =

©­­­­«
−3 1 2 0
2 −5 3 0
3 1 −4 0
1 2 3 −6

ª®®®®¬
.

The transition diagram of {X (t), t ≥ 0} is shown in Figure 2.
We have Rank(Q) = 3, and

s(sI − Q)−1 =

©­­­­­«
s2+9s+17
s2+12s+36

1
s+6

2s+13
s2+12s+36 0

2s+17
s2+12s+36

s+1
s+6

3s+13
s2+12s+36 0

3s+17
s2+12s+36

1
s+6

s2+8s+13
s2+12s+36 0

s2+22s+102
(s2+12s+36) (s+6)

2(s+3)
(s+6)2

3s2+32s+78
(s2+12s+36) (s+6)

s
s+6

ª®®®®®¬
.

Taking the limit, we have

lim[
s↓0

s(sI − Q)−1] = 1
36

©­­­­«
17 6 13 0
17 6 13 0
17 6 13 0
17 6 13 0

ª®®®®¬
,

which shows that the matrixes lim
s↓0

[sT1(s)] = 1
36 (17, 6, 13) and lim

s↓0
[sT2(s)] = 1

36 (17, 6, 13) possess the

same row; thus, the related steady-state indexes do not depend on the initial probability vector, although
all states do not communicate anymore.
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Figure 3. The transition diagram for Example 5.3.

Example 5.3. (Case that Rank(Q) = n − 2, some states communicate and some not.) Suppose that
n= 6, the state space S = {1, 2, 3, 4, 5, 6}, with W = {1, 2, 3}, F = {4, 5, 6} and

Q =

©­­­­­­­­­«

−2 2 0 0 0 0
1 −1 0 0 0 0
1 2 −8 1 1 3
2 3 1 −10 3 1
0 0 0 0 −2 2
0 0 0 0 1 −1

ª®®®®®®®®®¬
.

Denote S = S1 ∪ S2 ∪ S3 with S1 = {1, 2}, S2 = {3, 4}, S3 = {5, 6}. The states in Si (i = 1, 2, 3)
communicate with each other, and S2 → S1, S1 9 S2 and S2 → S3, S3 9 S2, that is, some states
communicate each other, but some states do not. The transition diagram of {X (t), t ≥ 0} is shown in
Figure 3.

We have Rank(Q) = 4, and

s(sI − Q)−1 =
1

s + 3

©­­­­­­­­­«

s + 1 2 0 0 0 0
1 s + 2 0 0 0 0

v31 v32 v33 v34 v35 v36

v41 v42 v43 v44 v45 v46

0 0 0 0 s + 1 2
0 0 0 0 1 s + 2

ª®®®®®®®®®¬
,

where

v31 =
s2 + 15s + 35
s2 + 18s + 79

, v32 =
2s2 + 29s + 70
s2 + 18s + 79

, v33 =
s(s + 10) (s + 3)
s2 + 18s + 79

,

v34 =
s(s + 3)

s2 + 18s + 79
, v35 =

s2 + 17s + 44
s2 + 18s + 79

, v36 =
3s2 + 39s + 88
s2 + 18s + 79

,

v41 =
2s2 + 22s + 43
s2 + 18s + 79

, v42 =
3s2 + 36s + 86
s2 + 18s + 79

, v43 =
s(s + 3)

s2 + 18s + 79
,

v44 =
s(s + 8) (s + 3)
s2 + 18s + 79

, v45 =
3s2 + 29s + 36
s2 + 18s + 79

, v46 =
s2 + 19s + 72
s2 + 18s + 79

.
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Taking the limit, we have

lim
s↓0

[
s(sI − Q)−1] = 1

3

©­­­­­­­­­«

1 2 0 0 0 0
1 2 0 0 0 0
35
79

70
79 0 0 44

79
88
79

43
79

86
79 0 0 36

79
72
79

0 0 0 0 1 2
0 0 0 0 1 2

ª®®®®®®®®®¬
,

which tells us that when Rank(Q) ≤ n − 2, the situation becomes complicated, which is our future
research work.

In fact, from the knowledge of common finite irreducible Markov processes, we also have that the
initial conditions do not affect the steady-state measures, regardless of the rank of transition rate matrix.
Because, in general, for a finite state space of Markov process {X (t), t ≥ 0}, we have lim

t→∞
Pij (t) =

lim
t→∞

P{X (t) = j |X (0) = i} = cj and lim
t→∞

Pi (t) = lim
t→∞

P{X (t) = i} = ci, both do not depend on the initial
conditions of the underlying Markov process.

For aggregated Markov processes, if the steady-state measures are expressed by the Laplace trans-
forms, it is not easy to known this result holds or not in terms of these Laplace transform formulas. In
the previous contents, we prove it under the case of Rank(Q) = n − 1, while for the other cases that
Rank(Q) ≤ n − 2, it is sure that the conclusion holds too, but it seems to be complicated to prove it.
Here a numerical example is presented for the case of Rank(Q) = n−2 in which the effects of the initial
probability vector on the steady-state measures can be studied more deeply.

Example 5.3 also seems to provide a way to generate a transition rate matrix with Rank(Q) = n − k,
k ∈ {1, 2, . . . , n − 1}, and gives some guidance to understand how the initial state probability vector
affects the steady-state measures. Because, for example, the steady state probabilities staying at subsets
S1 and S2 are lim

t→∞
pS1 (t) = U1 +U2 + 35

79U3 + 43
79U4 and lim

t→∞
pS3 (t) = 44

79U3 + 36
79U4 +U5 +U6. It is obvious

to know that the steady-state probabilities depend on the initial probability vector "0 = (U1,U2, . . . ,U6)
through U1 + U2 and U5 + U6, respectively, instead of individual U1, U2 and U5,U6.

6. Conclusion

In the paper, under the condition that Rank(Q) = n − 1, we directly prove that four limiting measures
expressed by the Laplace transforms derived by using aggregated Markov processes do not depend on
the initial state, which are well-known in common Markov processes. The condition Rank(Q) = n − 1,
which is more extensive than the case of time reversibility in ion channel modeling, includes the case
that all states communicate with each other. Our work implies that (1) four limiting measures do not
depend on the initial probability vector "0, which is a well-known result in Markov repairable systems
in terms of properties of Markov processes, but now this is a direct way to prove this result in aggregated
Markov processes; (2) this proof can bridge a gap between the common knowledge in Markov processes
and aggregated stochastic processes for the case of steady-state situation; (3) similar problems can be
discussed, which are via a direct way based on the results in aggregated stochastic processes; (4) the
initial probability vector "0 appears in the formulas, but these limited results do not depend on this
initial vector, which is an extension of one-dimensional case in which the initial value may disappear
via the division of the same value in the formulas.

The possible future research work may include the study of similar problems under the cases of
aggregated Semi-Markov processes, of Rank(Q) ≤ n − 2, and of time omission problems, and so on.
We believe that our work can solid the theory and applications of aggregated Markov processes on the
related limiting measures, especially in reliability field.
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