ON INTEGRAL FUNCTIONS HAVING PRESCRIBED
ASYMPTOTIC GROWTH. II

J. CLUNIE AND T. KOVARI

1. One of the authors published in 1965 a paper with identical title (1),
in which the following result was proved:

THEOREM A. Let ¢(r) be increasing and convex in log r, with

o(r) = O(log 7) (r > ).

Then there is an integral function f{z) such that as r — o

(i) log M(r, f) ~ o(r),

(ii) T'(r,f) ~ &(r).
In the present paper various improvements of this result will be discussed. In

§ 2 we shall show that by a suitable modification of the original construction
one can make sure that in addition to (i) and (ii) also

(iil) N, 1/(f—=c)) ~¢(r) (r—w)
is satisfied for every finite constant ¢. This improves a result of Edrei and
Fuchs (2). In § 3 we use a different construction to prove that (i) can be
replaced by

(1.1) llog M(r,f) — &(r)] < 3logr + log 3.

In §4 we show, by means of an example, that (1.1) is essentially the best
possible. Finally, in § 5 we prove that if ¢ (r) satisfies an additional condition,
then the right-hand side of (1.1) can be replaced by a constant.

2. In this section we shall prove the following theorem.

THEOREM 1. Let ¢(r) be any real function of v which is increasing and convex
in logr and such that ¢(r) ## O(log7) (r — »). Then there is an integral
function f(z) satisfying (i) and (ii), i.e.

log M(r,f) ~¢(r)  (r—=),

@1) T f) ~ o)  (r—w),

and also (iii), t.e.
(2.2) N 1/(f—¢e) ~T(r,f) (r— o)

for any finite constant c.
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In (1) it was shown that there is an integral function g(z) satisfying (2.1).
The series for this function has non-negative coefficients and for large » the
series is dominated by at most three terms relative to the maximum term.
This means that

g(z) = 20: bn Zn;

where b, > O (7 > 0) and to each 7 > O there corresponds three integers
ny, Na, w3, such that

g(z) = bm Z A My, 37 + Ny 57 + 0(#(7’, g)) (1’ — @, ]zl = 1/).

For some values of 7 it may be possible to absorb one or two of the displayed
terms in o{u(7, g)). In the context of (1) the question did not arise as to
whether or not each non-zero term of the series of g(z) became in turn the
maximum term. However, for our present purposes it is an advantage for
g(2) to have this property. We can in fact assume that it does have this prop-
erty without loss of generality, since if it did not, then non-zero terms which
do not become maximum terms for any value of » could be dropped from the
series and the resulting function would still satisfy (2.1). That this is so is
clear from the proof of (1, Theorem A).

We shall arrive at a function f(z) satisfying both (2.1) and (2.2) by dropping
certain terms from the series of g(2). In what follows we shall relate the
relevant asymptotic behaviour of this f(z) to log u(r, g). It is obvious, from
the nature of the series of g(z), that log M(r, g) ~log u(r, g) {r — «) and
consequently this will not affect the validity of our results.

Let

g(Z) = Zl A}\n r)\n

satisfy (2.1) and suppose that 4,, > 0 (z > 1) and that 4,, #** is the maximum
term of g(z) for r, < ¥ < 7,41 (m > 1). Since each term of the series of g(z) is
in turn the maximum term, it follows easily that when 7 satisfies r, < 7 < 7,41
the sequence {Ay, 7,51 is non-decreasing for » < # and non-increasing for
v > n. For each 7 » 0 we let J, be a set of three integers which includes the
suffices 7 of the ranks A, of the dominant terms of g(z) for |2| = . In parti-
cular we define, for each » > 0, J, to consist of three integers such that if

n € J,and v € J,, then Ay, 7 > 4y, 7t SinceZAM 7 is dominated by three
T
of its terms at most relative to the maximum term, as » — « it follows that

i A)\,, 7’)"' — Z A)\,, 1’“
1

veJr
max =4,—0 n— © ).
ST Tn 41 “(7: g) K ( )
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If A, is the central index of g(2) for |z| = 7, then J, will consist of three of
the integers # — 2, n — 1, n, n + 1, n + 2.
We have, for n > 2,

Arooy 77 {= (r =),

A)\" 1’>\" < 1 (7 > Tn),
and
An s r—)\"ﬂ {z (r = 211,
Ay, 7 <1 (r < 7py1).
Hence for # > 2 there is a (unique) value p, satisfying 7, < p, < 7,41 such
that

Ayucy p?nt = Ay, p+t = K, say.

Observe that in 7, <7 <p, we have Ay, 71> 4,,,,7* and in
prn < 7 < 71 we have Ay, 1> A, -1 Hence, from the monotonic
nature of {4y, 7,51, it follows that for 7, < r < p, the set J, contains n — 1
and » and for p, < 7 < 7,,; the set J, contains # and # + 1. Therefore, for
n > 2 and r satisfying p, < 7 < p,41 the set J, contains # and » + 1.

Let 4,7 =, ( > 1) and define two complementary sets I; and I, of
the integers n > 2jas follows: n € I if

Kn > ['\/6n + 1/ (IOg 77")] A)\n pn)\"

and n € I, otherwise. We now define a subsequence {u,} of {)\,} recursively
in the following manner. Take u; = \; and suppose that ui, us, . .., u, have
been specified. Suppose u, = \,. Define pyp1 = Mga if #+1¢ I, and
Krpr = Noye if # + 1 € Iy, It is clear that the subsequence u, does not omit
two consecutive \,’s. We shall show that the function

f@) = Zl Ay, "
satisfies both (2.1) and (2.2) of Theorem 1.
LemMMA 1. f(2) satisfies (2.1).

Consider first of all those intervals [#,, 7,01] such that X, occurs in the
subsequence {u,}. Clearly the proof of (1, Theorem A) is applicable to f(z)
in such intervals and so

gg}t]?(r,f)}’“ logu(r,f) =logu(r,g)  (rn <7 < rp, r > o).

Consider now those intervals [r,, 7,.1] such that A\, does not occur in the
subsequence {u,}. As we have already pointed out, {g,} cannot omit two
consecutive \,’s and hence in this case A,_1, A,+1 both occur in {u,}. From the
construction of {u,} it follows that » € I; and so
An—1 A +1 1

A)\.‘_\ Pn A)\n+l Pn
An = )\n > '\/67L +
Ax,, Pn Ax, pn

(2.3) Tog n,
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Hence
A)\”_‘ 1,)\71—1
A, w2 Vot log ., (e <7< pn)
and
A)\" o r)\n+1
A)\” 7’)\" Z \/512 + log T (Pn <r << 7’n+1)-

From the monotonic nature of {4,, 7}, and the definition of J, we see
that J,, consists of A\,1, My, Muy1. Therefore, by the definition of 4,

(24) ( Z + Z > A)\» pn)\v < o A)\n pn)\n-

y<n—2  v>n+t2

The series for f(z) contains 4,,_, #**t and 4,,,, 2%t and all its terms, with
the exception perhaps of A4,,_, 2% and A4,,,, 2™, are contained in

(Z + Z >A)\,Z)w.
r<n—2 v>n+2.

Consider the interval [r,, p.]. For 7, <7 < p, the sum of the terms of
f(r) with at most three exceptions is not more than

<Z + Z) Ay, 7.

<n—2 v2nd

For this sum we find that for 7, <7 < pa,

o2 A DD A DD AT

(2 5) v<n—2 v>2nt2 y<n—2 v2n+2
. oS M An—
(7, f) Appy 770 A
A A
2 A 2 At
y<n—2 v2n+2
o~ An—-1 An—1
Axei 10" Axey pn "
< Oy -+ Vo,

where we have used the fact that A4,,_ , 7, ' = u(r, g) and that J,, cannot
contain any » < # — 2 in the first estimate, and (2.3) and (2.4) in the second.
Consideration of the interval [p,, 7,41] in a similar fashion shows that the
series for f(z) with at most three terms omitted when compared with u(r, f)
satisfies the bound given in (2.5).

Hence the series of f(z) relative to its maximum term is dominated by at
most three of its terms. Therefore, as in (1),

log M(r, f) - -
T(?’,f) IOg ﬂ(”:f) (7’ - )
To complete Lemma 1 it only remains to show that
(2.6) log u(r, f) ~ log u(r, g) (r— ).
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We consider 7 — o with 7, < 7 < 7,41, If A\, occurs in the subsequence {u,},
then the result is obvious. If A, does not occur in the subsequence u,, then
M—1, Aq1 do occur and (2.3) is satisfied. In this case

(27) A)\n—l hn—1 > u(?’,f)/(log 77n) (rn <r << Pn)
and
(2.8) Ay P > u(r, )/ (log ) (on < 7 < op1).

Since log log n, = o(log u(r, ) (rn < 7 < #ya1, ¥ > @), we see that (2.7) and
(2.8) give (2.7) as r — » through values under consideration.
This completes the proof of Lemma 1.

LeMMA 2. The series of f(2) relative to the maximum term is dominated by
at most two terms.

We consider first of all » — « through values 7, < 7 < 7,41, where A, does
not occur in the subsequence {u,}. We deal separately with 7, < r < p, and
pn L 7 < py1. From the proof of Lemma 1 it follows that what we have to
show is that if ,_; occurs in {4,}, then

(2.9) Arpg ™2/ u(r, f) — 0 (re <7< pgy T @),
and if A2 occurs in {u,}, then
(2.10) Arpse P/ u(r, f) =0 (on <7 < Pug1, 7> ).

If N,z is in {u,}, then, since \,; is also in {,}, we see, from the construction
of {u,}, that

A)\n_ o _1)\"‘_2 1
T, <V
A)\n_l Pr—1 Of Nn—1
so that, as p,—1 < 7y,
A)\ . r)\n-—z
—=— Bn e < 1 < pp).
A, r)\n—l < Vo1 + 10g 7u_1 ( w <7< pp)
From this inequality, (2.9) follows. In a similar manner if \,,; occurs in
{p.,,}, then
An
A)\n+2 Pr+1 -
N < \/5n+1 + l
Arsr Pr1” OF Mnt1
and s0, as pai1 > 7ui1
An+2

A)\n+2 4
A)\n+1 7)\”+1
From this inequality (2.10) follows.

We consider next r — « through values 7, < 7 < 7,41, where A, occurs in
the subsequence {u,}. Again we deal separately with the cases r, <7 < p,

1
< \/6n+1 + @; (pn < 4 < 7’n«}-l)-
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and p, < 7 < 7,41. Consider 7, < 7 < p,. Suppose at first that \,_; does not
occur in {u,}. As was pointed out earlier in 7, < 7 < p,, two of the three
largest terms of g(r) are A,,_, #» 1 and A4,, 7. In the present case, when
we are assuming that A, occurs in {u,} but X\,_; does not, it follows that as
r— o (r, <7 < p,) there can be at most only one other term of f(r) com-
parable with u(r, f). Thus in this case the series for f(r) is dominated by
at most two terms.

Suppose now that 7, < 7 < p, and both \,_; and \, occur in {,}. In this
case we have

An +1
AZ: Z* < Vet 10%1 T

and so

(2.11) Arpua ™ = o(u(r, f))  (r—o, n <7 < p).

From (2.4),

(2.12) > AT =0 ) o e, <7 < o).

v>nt-2

From (2.11) and (2.12) it follows that the only possible term of f(r) other
than A\,_, 7t which is comparable with u(r,f) as r > o (r, <7 < p,) in
the present case is Ay,_, #¥*72, if this in fact does occur in the series of f(z). If
it does not, then we have the required result at once. If it does, then (2.9)
shows that 4,,-2 #*»~* is small relative to u(r, f) as » — « under our present
assumptions. Note that (2.9) is valid provided \,_s, N\,—; occur in {u,}. Hence
we obtain the required result in this case also.

Similar considerations give the result as » — » with p, < 7 < 7,41 and ),
occurring in {u,}.

Hence the proof of Lemma 2 is complete, since we have shown it to be
true in all possible cases.

LeEMMA 3. Let h(z) = 2 b, 2’ be an integral function such that each term is
in turn the maximum term and relative to its maximum term the series for h(z)
is dominated by at most two terms. Then for any finile c,

N(r,1/(h — ¢) ~ T(r, h) (r— o).
Let |b,|7» be the maximum term for 7, < 7 < 7,41. Define ¢’,, ¢’/, by

(2.13) Boctle™™ 1 [l

1
Ibnla'n”" 27 |bnlo’n”V"
Since the series is dominated by at most two terms when % is large, we
have ¢, < ¢",. In ¢/, < 7 < ¢, when # is large, the only other terms apart
from |[b,|#" that qualify as dominant terms are |b,_i|r’*~ and |b,...|7"»*t. Since
there is only one such other term, it follows from (2.13) that

“’L(Z)I > “’(7’ h)[l - % =+ 0(1)] (le =1 ‘Tln <r <K O'Hn .

_1
=3
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When 7 is large enough as above, ie. ¢, < r < ¢",, then

—1— 2 0 _ _l_fh + 0
(2.14) 27“]; log|h(re™)| do = 5. log™|h(re™)| do

= T(r, k).
Now

2.15) NG 1/ — ¢)) = J;’n(t, 1/(h —¢)) = n{0,1/(h — ¢))

¢

dt

+ #0,1/(h —¢)) logr
and so, by Jensen’s theorem,

N, 1/(h—¢)) = 2~17r 021r10g[h(1'ei0) — ¢l dg+ o).

Clearly %(z) — ¢ satisfies the same conditions as k(z) when [z] = 7 is large
and hence, from (2.14),

(2.16) N, 1/(h—¢) =T, h—c)+01)
T(r, k) + 0(1)

It

provided o', < 7 < ¢,
It is known (4, p. 280) that there is a constant ¢ such that
(2.17) N, 1/(h —a)) ~T(r, k) (r—ow).

Consider ¢, < r < ¢',41. If n is large enough, then both %(z) — ¢ and
h(z) — ¢ have », zeros in |z| < o', and v,y zeros in |5] € ¢/py1. Therefore,
from (2.15), for ¢, < 7 < ¢'pi1

(218)  |N(@r,1/(h — a)) — N, 1/(h — &) < (ar1 — va)
X log (o’ pi1/0") + O(1).

Now
\bn+1lo_rln"n+1 B 1 B 1bnio_ln+11‘n
|anU,,nyn 2 Ibn+1[0"n+1y” +1
or
(2.19) nr1 — va) log (0 ns1/0"’ ) = log 4.

From (2.16), (2.17), (2.18), and (2.19) we obtain Lemma 3.

From Lemmas 1, 2, and 3 we arrive at the result of Theorem 1.

3. In this section we prove the following theorem:

THEOREM 2. Let ¢(r) be an increasing and logarithmically convex fumction
defined and positive for v > 1, subject to the condition that for every n > 0,

(3.1) o(r)/r—e  (r—oe).
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Then there exists an entive function f(z) with positive coefficients such that for
r > 9/5,

(32) 1/BVr) < o(r)/Mr, f) < 3+/r.

Proof. ¢*(r) = 3+/r ¢{r) satisfies the same conditions as ¢(r). Therefore
we can represent log ¢*(#) by

log #*() = log ¢*(1) + | ¥ gy,
1
where ¢(p) is a positive increasing function and, by condition (3.1),
limpeoo ¢(p) = ™.
We write #no = [y (1)], 72, = po = 1. For n > n, we define the sequence {r,} by
Y(r — 0) <n < ¢(r, + 0).

{r.} is an increasing sequence. We shall now define the sequence #, (and
the sequence p, = #,,) by recursion.
First we introduce the notation

By, v) = f:y L__;/’_(Pﬁ dp

3

d(p,») = J‘T” L(IJ)T_E dp

Suppose now that #,, is already defined. For a given positive number ¢ > 1
we define [, and &, such that

BBy gm) < log ¢ < BBy, jm + 1),
AN, kn) < log e < d(ny, bn + 1),

> .

(3.3)

and we define 7,1 by
Tomi1 = MAX{jm, By 1 + 1}.

We note that #,41 > %, and that p,4s > p,. We define the positive numbers
¢n by

(3.4) log ¢y + 7, log o = log ¢*(py).
We shall prove that
1@ = 3 n "
is an entire function which has the desired property. We now write

L.(r) = log ¢ + 1, log 7.
For r < pp,

log ) — ) = | 22=¥ 045 0
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is a decreasing function of 7, while for » > p,,

log 4% — In(r) = | =150
Pm
is an increasing function of r. Hence (taking (3.4) into account),
(3.5) lu(r) <log ¢*(r)

with equality for # = p,. Hence, for every n and m

bn(om) > Li(pm).
Hence the central-index and maximal-term of f(z) are given by

v(om: f) = m,
log p(om, f) = max, by(om) = bn(om)-

For every m, there exists a ¢, such that

Pm < Tm < Pm+1
and

I (O'm) = lm+l<°'m)-
Then, clearly, for g,_1 < 7 < op,

36) g 41,1 ~ e 10) = 1),

We shall now prove a few lemmas.

LeEMMA 4.

0 < log ¢*(r) — log u(r, f) < max{logr, log c}.

The first inequality is an immediate consequence of (3.5) and (3.6). To
prove the second inequality, we assume that p, < 7 < ppi1.
(i) Suppose first that #,.1 = #, + 1. For p, < 7 € o, we find that

G.7) log ¢*(r) — log u(r) = log ¢*(r) — l(r) = f’ II/(P)p— (2 dp

7
<f @d‘):]ogr—logpm<10gr'

pm

Making use of (3.7), for o, < 7 < pny1, we find that
log ¢*(r) — log u(r) = log ¢*(r) — lny1(7)

— JWMH N1 — K[/(P) dp < fﬁmﬂ Momt1 — %(P) dp
7 P om p

= log ¢*(0n) — log pu(on) < log o, < logr.
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(ii) Suppose now that 7,11 = 7,. Then in view of (3.3) and (3.4) we have
that

(3.8) log ¢*(r) — log u(r) < log ¢*(r) —~ Lut1(r)
= log ¢*(r) — {#pi1log 7 + log cuyp1}
= log ¢*(r) — {nm+110g pui1 + log cpi1}
+ #pp1(log pryr — log 7)
= log ¢*(r) — log ¢(pns1) + #my1(10g pmyr — log 7)
- JWHl fmi1 — ¥ (p) dp < fpm+l Tt — Y (p) dp
r P om P
= h(#my Bmi1) = BB, Ju) < log c.

In the same way one proves that (3.8) holds also in the case #,.1 = &,.
This completes the proof of the lemma.

COROLLARY. For v > ¢,
(3.9) 0 <log¢*(r) — log ul(r,f) < logr.

LeMMA 5. With the notations H(m, p) = h(nm, n,), D(m, p) = d(n,, n,) -
(m < p), we have the following inequalities:
(i) D(m,s) > D(m, p) + D(p,s)
(i) H(m, ) > H(m, p) + H(p, s>} form <p<s
(iii) D(m, m + 2) > log ¢,
G(v) H(om, m + 2) > logc,
~v) Dim — 2k — 1, m) > D(im — 2k, m) > klogec,
(vi) Hom,m + 2k + 1) > D(m,m + 2k) > klogec.

Proof of (i).

D(m,s) = ps_\b_(p)_p_'ﬁmdp

Pm

(3.10)

- Lmﬂpl—-_nﬂ do + J:,,, ‘p—(ﬂlfﬁ’dp + (np, — ny)(log p; — log py)

> D(m, p) + D(p, s).

Proof of (ii1). From #pys > #yp1 + 1 2 by + 1 and puye = 70y > a1
it follows that

Ppm +2 rhm +1
D<m,m+2)=f i@p;”—”de W_>p—_nﬂdp
= d(Wp, b + 1) > logc  (by (3.3)).

(ii) and (iv) are proved in a similar way. (v) and (vi) are immediate conse-
quences of (1)—(iv).

https://doi.org/10.4153/CJM-1968-002-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-002-1

INTEGRAL FUNCTIONS 17

LeEMMA 6.
Cm21 P e o™ —
nm < Am < ¢ ’
Cm Pm Cm Pm
(3.11) nm +2k +1 m +2k
Cm+2k+1 Pm Cm+2k Pm —k
nm < m < ¢ y
Cm Pm Cm Pm
In fact,
Ciom’
i FPm
log = =logc; — log ¢ + n;10g pn — 1 10g pr
Cm Pm

n;(log pm — log p;) + (log ¢; + n;log p;) — (log cn -+ ny, log py)

n;(log pn — log p;) + log ¢*(p;) — log ¢*(pn)

”¢@%—md={—DQM) it j <m
o0 \=Hmj)  ifj>m

and thus (3.11) follows immediately from (3.10).

LEMMA 7. For p, < 7 < pny1 we have
0 < f(r) = {eme1 ™t + Cu?™ + Cpp1 7™+ F Cppa 2 <[4/ (c— 1) Julr, f).

In fact, in view of the previous lemma,

m+2 m—2 0
0<f() — 2 er™ =2+ 2 ™
v=m—1 y=0 v=m+3
m—2 ny © ny
Cy ¥ Cy ¥
m 14 nm +1 v
= Cp? Z o T Cmyr? Z —
y=1Cp ¥ y=m+3 Cpy1 ¥
m—~2 Cop n @ Cy p n
nm v Pm nm +1 v Pm41
<™ 25 o T Cm1 2. —
=1 Cp Pm v=m+3 Cpt1 Pm+1
[se} o0
—k —k
Ken?™ 22 ¢ F F ™™D 26
k=1 k=1
2 4u(r, )
nm Nm +1 s
= Cn? + Cm+1 ¥ — < -
( m m+ ) c — 1 c — 1
as stated.
COROLLARY.

(312) wu(r,f) <f(r) <4+ 4/(c — Dlu(r, f) = [4¢/(c — D]ulr, ).

Now we can complete the proof of Theorem 2. From (3.12) we obtain

(3.13) (¢ — 1)/4c < u(r)/f(r) < 1.
On the other hand for » > ¢ we obtain from (3.9) the inequality:
(3.14) 1< o*(r)/ulr) <
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From (3.13) and (3.14) we obtain immediately that
(c — 1)/4dc < *()/f(r) < 7,
4c 1 "
c—1 1 4/6—1\/(7)(#(?) /‘/46
©.15) 1/ IPEBVIOI G <A iV
The substitution ¢ = 9/5, ¢(r) = (3//7)¢*(r) now gives (3.2).

4, In this section it will be convenient to make use of the following result
of P. Erdos and one of the authors.

LEMMA 8 (3, Theorem 1). For every entire funciion f(z), there exists an entire
SJunction F(z) with positive coeffictents and with the property

< M@, f)/F(r) < 3.
To show that (3.2) is essentially best possible we shall prove

THEOREM 3. There exists a function ¢o(r) satisfying the conditions of Theorem
2, and having the property that for every emtive function f(z)

. 1 $o(r)
(4.1) lim Sr:lg Tog /7 log MG, ) > 1.
Proof. Let 7o = 0, r, = 2% for # > 1, and let
¢(r)=~—1——r"+%=A s forr, <r <7
0 711,2‘..7% n n n+1e

(The function ¢,(r) defined here is of very slow growth, but by a slight modi-
fication of the construction we could obtain functions of arbitrarily fast
growth which have the same property). Clearly, ¢,(r) satisfies the conditions
of Theorem 2. Suppose now that for this function (4.1) is false, and that for
some entire function f(z), € > 0, and » > R,, we have

loggo(r)/M(r, )] < (3 — €) log 7.

Then, by Lemma 8, we could also construct an entire function with positive
coefficients

Fiz) = Z a, 2", say,
0

such that for r > R,

(4.2) loglgo(r)/ F(r)] < 3(1 — €)log r.
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Hence, for 7, < r < 7,41,

0 SR/ (Aarh) < A0

@0

A r 30, < 4, 4079,
m=0
5 m—n—2 - m—n—} m—n—%
4.3) Z Um 7 = D Oy ot (r/Tny1) z
m=n+1 m=n-+1

1 1
: -0 1 —a
< (1/Tni1)? Ap 7nyd® = A, 7 1t %,

n n
1 1 el
Z an 7,m—n-é Z am rnm—'n 2(1,n/7,) n—m+}
m=0 m=>0 3 g 11 1
L (r/r)e A, r,2 % = A, v, 20

Adding these two inequalities, and using the first inequality of (4.3), we
find that

¢ )] 3 —1e 1-1e 1
(4.4) T g Py P

1 -1 1-1

r*° <7'7n+1 2e+rn 26-

Let log 7 = (log 7,)¥ (log 7,41)%. Then

log 7,41 logr

logr ~ log,

if n > nele). Also, for n > ny(e), r¥< > r,2e > 2. Hence, for n > ny(e),

— 2
=\/n—l—1>—€-

Ute < r < rn+1%€ and 27'”1—%‘ <1 < re
so that
Pttt < 3r¥e and  pl-he < Lk
and finally
reragaie 4 rlhe < ke

which contradicts (4.4). Hence (4.1) is proved.

5. TarorREM 4. Let ¢(r) be an increasing and logarithmically convex function
defined for r > 1. ¢(r) can be written in the form

s0) = s e [ H2g,

where Y (o) 15 a positive increasing function. We also assume that for some ¢ > 1
and every r > 1

(5.1) Yler) —¢(r) > L
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Then there exists an entire function f(2) with positive coefficients and such that
Vie—1) o(r) 2¢
% SMep “Ve-1°

Proof. ¢*(r) = [2/ (/¢ — 1)]¢(r) satisfies the same conditions as ¢(r), and
we have

(5.2)

log ¢*(r) = log ¢*(1) + f %’ﬁ do.

It is an immediate consequence of (5.1) that

limy e ¥(p) = o.

We shall show that the function f(2) constructed in § 3 has the desired prop-
erty. It is a consequence of (5.1) that

(5.3) Tus1/te < C.
Now we can replace Lemma 4 by
LEmMA 4*. 0 < log ¢*(r) — log u(r, ) < log c.
It is only necessary to consider the case when 7,4, = n, + 1 and
om K < op.
Then in view of (5.3) we have, as in (3.7),

log ¢*(r) — log u(r) < logr — log pr < log pmi1 — log py
= log 7y,4+1 — log 7,,, < log e,

as stated. It follows immediately that
(5.4) 1 < ¢*(r)/ulr) <c
From (3.13) and (5.4) we obtain

c—=1 _ ¢*@)
1 < ) < ¢,
V=1 _ /Y= DI 2
2 fr) Vie—-1)’
which proves (5.2).
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