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Summary

~Tn a~ stably subdivided population with symmetric migration,- the chance-that_aJavoured allele _will_ _
be fixed is independent of population structure. However, random extinction introduces an extra
component of sampling drift, and reduces the probability of fixation. In this paper, the fixation
probability is calculated using the diffusion approximation; comparison with exact solution of the
discrete model shows this to be accurate. The key parameters are the rates of selection, migration
and extinction, scaled relative to population size (S = 4Ns, M = 4Nm, A = 4/VA); results apply to
a haploid model, or to diploids with additive selection. If new colonies derive from many demes,
the fixation probability cannot be reduced by more than half. However, if colonies are initially
homogeneous, fixation probability can be much reduced. In the limit of low migration and
extinction rates (M, A <̂  1), it is 2s/{I +(A/MS)(\ — exp( — S))}, whilst in the opposite limit
(M,A g> 1), it is 4sM/{A(A + M)}. In the limit of weak selection (S « 1), it is 4sM/{(A + 2)(A + M)}.
These factors are not the same as the reduction in effective population size (NJN), showing that
the effects of population structure on selected alleles cannot be understood from the behaviour
of neutral markers.

1. Introduction

The simplest view of evolution is that it consists of the
accumulation of favourable mutations. The rate of
adaptation is then given by the product of the number
of genes in the population, the mutation rate to alleles
that increase fitness in the current environment and
genetic background, and the average probability that
each is fixed (P). If the fitness of individual genes
follows a Poisson distribution, with the favoured
allele having a mean fitness of W = 1 +s, then P is
given by the solution to P = 1 — exp(— WP), with
P x 2s for small s (Fisher, 1930). It is usually assumed,
following Maruyama (1970), that the fixation prob-
ability is independent of population subdivision, and
that subdivision therefore has no influence on the
accumulation of alleles that are everywhere favour-
able. In this note, I show that random extinction and
recolonization can greatly reduce the chance that a
weakly selected allele will be fixed.

2. The model

For simplicity, I will base the exact derivations on the
haploid island model. However, the approximate
results will also apply to the diploid case. There are

infinitely many demes, each containing 2N genes. In
each generation, every gene produces a very large
number of offspring. (The fitness of the advantageous
allele is (1+s), relative to the ancestral type. The
results also apply with additive selection.) A fraction
m of these are exchanged with a common pool of
migrants (or equivalently, migration is equally likely
between any pair of demes). The 2N genes that make
up the next generation are then sampled at random
(i.e. the Wright-Fisher model; Crow & Kimura,
1970). In deriving results for large TV, it is convenient
to define the scaled parameters, 5 = 4Ns, M = 4Nm,
A = 4NA, where m, A are the migration and extinction
rates.

In each generation, there is a chance A that a deme
will go extinct, and be immediately recolonized. The
2N colonists can either be drawn independently from
the current migrant pool, or can all be derived from a
single randomly chosen gene, taken after selection.
These two forms of recolonization should be seen as
the extremes: colonization by one or a few diploid
individuals, from one or several demes, would lie
between them. Colonization from many demes corre-
sponds to Slatkin's (1977) 'migrant pool' model,
where the number of haploid colonists equals 2N.
Colonization from one gene corresponds either to the
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' migrant pool' or to the ' propagule pool' model with
a single colonizing gene.

The assumption that the newly founded colony
increases to its carrying capacity of 2N genes in a
single generation is unrealistic. However, most of the
results will be derived for the diffusion limit, when
2N > 1, m, A, s <̂  1. Then, one expects that the
population will grow to its carrying capacity from one
individual in x log (2N) generations, which is much
smaller than the characteristic timescale of evol-
utionary change, x 27V generations. Similarly, the
delay before a colonist arrives should be x \/{Nm)
generations, which will also be small relative to the
characteristic timescale.

3. Approximate argument for small Nm, NX

The fixation probability will be calculated numerically
using both exact solutions for the discrete Wright-
Fisher model, and the diffusion approximation. First,
however, I will give an approximate argument that
relies on separating the process of fixation into two
parts: the establishment of the favourable allele in a
single deme, and then spread from that one deme
throughout the whole population. This kind of
argument was introduced by Slatkin (1981) and Lande
(1979, 1985) to follow the spread of underdominant
alleles, and has recently been used by Tachida &
Iizuka (1991). It will be accurate if, on average, the
time taken for the favoured allele to spread through a
single deme is much shorter than the time between
extinctions, or between ' infections' of new demes, so

2s

4Ns = 10

4Ns = 1
4Ns = 01

4Ns = 10

4Ns= 1
4Ns = 01

0
>Jm

Fig. 1. The probability of fixation, as a function of the
ratio between the rates of extinction and migration (A/m),
for 4Ns = 5 = 0-1, 1, 10, in the limit of low migration
and extinction rates [A, M = 4NA, 4Nm <g 1; eqn (1)].
(a) Colonists come from a single deme. (b) Colonists
come from many demes.

that demes are usually fixed for one or other allele.
This requires m, A <̂  s.

Suppose that the favoured allele is introduced into
a single deme at frequency u. Neglecting migration
and extinction, the probability that it will be fixed in
that deme is

Px(u) = (1 -exp(-S«))/( l - exp( -S) ) .

Here, Kimura's (1962) diffusion approximation has
been used; this is a good approximation for weak
selection. The chance of fixation of a single allele is

/>(l/2A0 = (1 -exp(-25))/(l - e x p ( - S ) )

* 2^/(1-exp(-S)).

The chance that this one deme will successfully
infect all the other demes depends on the probability
per generation that a fixed deme will lose the new
allele by chance (/_), and on the expected number of
other demes which it infects per generation (f+). The
chance that the wild-type allele carried by a single
immigrant will displace the fitter allele is

2j/(exp(S)-l).

In every generation, the expected number of immi-
grants is 2Nm, and so for small Nm, the probability
of loss by drift is 4Nm/exp(S) — 1). Allowing for the
chance of extinction,

/_ = {A + (1 - A) 4Nms/(exp (S) -1)}.

Assuming that m, s, A are all small, this is approxi-
mately /_ = {A + 4Nms/(exp (S) -1)}.

The number of fixed demes may increase through
emigration or recolonization. A fixed deme sends out
2Nm emigrants on average, each of which has a
chance 2s/(l — exp( — S)) of successful invasion. If we
assumed instead that migration occurs after selection,
but before density regulation ('hard selection'), then a
deme fixed for the fitter allele would on average send
out 2Nm(l+s) emigrants. However, this only in-
creases the rate of infection, /+, by a factor s, which is
assumed to be negligible.

A fraction A of demes becomes empty in every
generation. If colonization is from a single deme, the
expected number of colonizations by the new allele is
just A. If, on the other hand, colonists are drawn
independently, the new allele will almost always be
present in a single copy when it is present at all, and
will then have a chance

P1(l/2N)x2s/(\-exp(-S))

of fixing. The expected number of successful invasions
is thus 2NAP1(1/2N) = AS/(\ - exp( -S ) ) .
Summing, and approximating (1 — A) by 1, /+ =
{A + Sm/(l — exp(—S))} for colonization from one
individual, or/* = S(A+m)/(l — exp(—S1)) for colon-
ization from a mixed propagule pool.

Slatkin (1981) showed that in this kind of model,
where there is a probability /_ of loss, plus a Poisson
distribution of increase with expectation /+, the net
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probability of fixation through the whole set of demes
is (1-/_//+) (for/_,/+ « 1). Multiplying this by the
probability of initial fixation in one deme, we have

P(u) =
( l-exp(-Sii))

1 + (A/MS) (1 - exp ( - S))

(colonists from a single gene)

( l -exp(-Sw)) / AS

(la)

(colonists from many demes). (1 b)

(This argument is based on the assumption that only
one deme changes at a time, which is satisfied with
small m, A.) These approximations are illustrated in
Fig. 1, which shows how the net probability of
fixation decreases as the rate of extinctions increases.
Note that only the rate of extinction relative to the
rate-of migration- (A/-M = X/m) is-rel&vant. When-
extinction of demes is much more frequent than
migration of individuals, and colonists come from one
gene, the fixation probability declines to zero

(P(\/2N) « 2s(SM/A)/(\ -exp(-S))).

When selection is strong relative to drift, the chance of
fixation is proportional to the square of the selective
advantage (S = 4Ns §> 1, P(\/2N) x SNs2m/A).

In contrast, when colonists come from many demes,
the fixation probability declines by a factor of not less
than half (P*(u) « s when A ̂ > m, S <̂  1, since

In general, the probability of fixation with multiple
colonists is always greater than that with one colonist.
This is because in the former case the advantageous
allele gains an advantage during the competition
between genes that occurs during the colonization
process (/* >/+).

4. Discrete solution

I now derive exact solutions for the discrete model. To
develop the method, examine first the case with no
extinction. Consider the chance Qi that all i copies
of the fitter allele in a deme are ultimately lost
(Qi = \— /*<). After selection and immigration of
wild-type alleles, the gene frequency in the gamete pool
is

u* = -m)/(2N+si(\ -m)).

The next generation is sampled from this pool to give
j genes with binomial probability. The chance that all
these j genes are ultimately lost is Qr The expected
number of good genes that land (almost certainly,
alone) in other demes is mi(\ +s). (The model assumes
hard selection, in that the fitter the deme. the more
migrants it produces. As noted above, this makes little
difference when selection is weak.) The actual number

of infected demes, k, follows a Poisson distribution,
and the chance that the allele is lost from all these is
Q\. Multiplying these factors, and summing over the
distribution of j and k gives

(im(\+s)f
k\ QX

= exp(-/m , ) , (2)

where Pi = \-Qi.
It is tempting to suppose that the different alleles in

each deme are lost independently of each other, as
would be the case for a single large population. Then
Qt = Q{, and eqn (2) could be summed to give a
transcendental-equation_for JPJ :

Qt = exp(-/m(l + s)P1)(\-u*P1f (3)

However, since u* depends on i, eqn (3) does not have
the form Q[, and so the argument is inconsistent: with
Wright—Fisher sampling, the fitnesses of the different
genes in a deme are negatively correlated, and so their
chances of fixation are not independent. For the same
reason, the solution to eqn (2) is not precisely
independent of population structure (AM), even with
hard selection. Maruyama's (1970) result was derived
using the diffusion approximation, and so does not
hold exactly in small populations, and with strong
selection. However, eqn (3) does reduce to Fisher's
(1930) equation for weak selection (s <̂  1), and is then
independent of migration. Table 1 a shows that the
diffusion approximation is accurate even with selec-
tion as strong as s = 0-2, and populations of as few as
five individuals.

Equation (2) can readily be extended to include
extinction:

Qt = exp ( - im{\ + s) P,) exp ( - A(l + s) (i/2N) P2N)

(colonization from a single gene) (4 a)

x < ( i — A ) I 2 J I . I " v Qj I + A |
I Vj-o V J 1 I )

(colonists from many demes). (4b)

The right-hand term in each equation gives the chance
that all the / alleles in a deme are ultimately lost from
that deme. This is the chance that the deme im-
mediately goes extinct (A), plus the chance that the
deme does not go extinct immediately, but that the j
copies produced by binomial sampling are ultimately
lost. Spread by migration gives a factor
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as before. If colonists are drawn from many demes,
then the expected number of newly colonized demes
which contain a single copy of the fitter allele is
Az(l + s) (assuming that colonists are drawn from the
gene pool after selection, giving the factor (1+s)).
This leads to the factor exp(-/'A(l + s)P*), in the
same way as for spread by migration. If new colonies
are derived from a single gene, then the expected
number of colonies seeded by one of the /copies of the
fitter allele is E(k) = A/(l +s)/2N. The fitter allele is
initially fixed in the new colonies, and so the chance
that it is ultimately lost from all k colonies is Q\N. This
leads to the factor exp( — A(l + s)(i/2N)P2N) in eqn
(4 a).

Equation (4) defines a set of simultaneous equations
for i \ , . . . , P2N, which can be solved numerically. In the
following section, a diffusion approximation is de-
rived, and is shown to be a good approximation to the
discrete model for all but very small deme sizes.

5. The diffusion limit

We take the limit of large N, keeping the scaled
parameters S = 4Ns, M = 4Nm, A = 4NA constant.
The fixation probability P( is then approximated by
P(u), where u = i/2N; the probability of fixation of a
single gene is now written P(l/2N), instead of Pv The
sum over the binomial distribution is replaced by an
integral over a normal distribution, ijr(e), with mean
(suv-mu), and variance uv/2N. Equation (4a), for
colonization from a single gene, gives

1 _ />(„) = exp [ - 2Nmu{\ + s)P(\ /2N)]

xexp[-A(l+s)uP(l)]

(5)

Expanding P(x) in a Taylor's series around u, replacing
m, s, A by the corresponding scaled parameters, and
keeping only leading terms gives:

0 =
ou

—
ou

, (6 a)

where E = P(l) for clarity. The factors of (\+s),
which represent the extra contribution of demes
carrying the fitter allele with hard selection, make a
negligible contribution. P(1/2N) has been written as
2sU, leading, after scaling, to the factor STI in the
third term. P(0) = 0, and in the continuous limit,
2sU = P(\/2N) = (\/2N)(dP/du)u_0. Hence,

(dP/du)u_0 = 4nsU = STI.

Similarly, for colonization from many demes:

d2P* dP*
-—=- + (Suv-Mu)-^-
ou ou

+ u(M+A)Sn(\-P*)-AP*. (6b)

0 =

The boundary conditions for eqn (6 a, b) are
p(0) = 0, (dP/8u)u.o = STI. The parameter n is then
determined by the requirement that both P and
(BP/du) be finite at u = 1. Consider first colonization
from a single gene [eqn (6a)]. Near u = 1, v <| 1, and
so the diffusion term uv(82P/du2) becomes small. The
equation therefore admits an unacceptable solution of
the form P = vx~M. For this singular component to be
zero, we must have

du

where

s = P(\), sn = (dp/du)u_o. (la)

Similarly, for colonization from many demes, we have
the condition:

ou
-H*)-AE* = 0,

where

H* = />*(!), STI = (8P*/8u)u=0. (7 b)

Though I have not found any general analytic
solution to eqn (6 a, b), it can be solved in the limit
of rare migration and extinction. As M,A tend to
zero, the terms in selection dominate, and the
equations admit a family of solutions of the form
P(u) = n(l -exp(-Sw)). Substitution into eqn (7 a, b)
then confirms the approximations of eqn (1 a, b).

An approximate solution can also be obtained in
the opposite limit, where M, A >̂ S, 1. In this case, the
new allele is expected to move across many demes
before selection appreciably raises its frequency. This
suggests that its chance of fixation should be pro-
portional to the number of copies (P x u), and be
independent of their distribution across demes. This is
the case where colonists come from one gene:
substitution of this linear solution into eqn (6 a)
confirms that this is a solution, to leading order in
1/M. (A is assumed to be of the same order as M.)
However, the coefficient of proportionality must be
determined by considering higher-order terms. Sub-
stituting

P(u) = (au/M)-(<f>(u)/M

leads to

(colonists from one gene). (8 a)

For colonists from many demes, the leading term is of
order one, and does not have the expected simple
linear form:

P*(u) =
Jo

(colonists from many demes).

where y = [S(A + 2M)]/[2(A + Af)].

(Sb)
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Note that this is a function only of A/M and yu. The
probability of fixation of a single gene, relative to that
with no extinction, is

2s r

P(\/2N)
2s

2M

A(A + M)
+ O(\/M2)

(colonists from one gene) (9 a)

P*(\/2N) (A + 2M)
2s

+ O(\/M)
2(A + M)

(colonists from many demes). (9 b)

Note that in both cases, this is independent of the
selection pressure, 5 = ANs. As migration and ex-
tinction become frequent (M, A -»• oo), the probability
of fixation tends to zero with colonization from one
gene [eqn (9 a)], but remains of order 25 with
colonization from many demes [eqn (96)]. In the latter
case, it tends to s .as extinction.becomes much more
frequent than migration; this is also the minimum in
the opposite limit of low migration and extinction
[eqn (1 a, b)].

The diffusion equation can also be solved in the
limit of weak selection (S = ANs <̂  1). Taking terms
of highest order in S, in the same way as above:

2SMu Su

(colonists from one gene) (10 a)

(colonists from many demes). (106)

Equations (10) and (8 a, b) are consistent, in that they
reduce to the same form in the limit of small S and
large A, M. The probability of fixation of a single
gene, relative to that with no extinction, is:

P(\/2N)
2s

2M

(A + 2)(A + M)

(colonists from one gene) (11 a)

P*(\/2N) (A + 2M)
2s

+ O(S)
2(A + M)

(colonists from many demes). (11 b)

In both cases, these equations are more accurate than
eqn (9 a, b) which was derived for the limit of large A,
M. As selection becomes weaker (5->0), the prob-
ability of fixation tends to these limiting forms, which
are shown by dotted lines in Fig. 2. With colonization
from many demes, P*(\/2N) tends to s as extinction
becomes much more frequent than migration, con-
firming that in this case, the fixation probability can
never be reduced by more than half.

Numerical solutions to the diffusion equations were
produced using the Runge-Kutta algorithm in Mathe-
matica (Wolfram, 1991). For eqn (66), where colonists

(a) 4Ns = 1

4Nm = 001
4Nm = 01
4Nm = 1

10
)Jm

Fig. 2. For a given ratio between extinction and
migration (A/w = A/M), the fixation probability
decreases as migration and extinction rates increase. The
solid curves gave the limit of low migration and
extinction rates [eqn (1)], as in Fig. 1. The dotted curves
give the limit of weak selection [eqn (11)], which
converges to the limit of high migration and extinction
rates [eqn (9)] for large A, M. The symbols give numerical
solutions to the diffusion equation [eqn (6)]. (a) Colonists
from one gene; S = 4Ns = 1. (b) Colonists from one
gene; S = 4A^ =10. (c) Colonists from many demes; S =
4Ns = 1. (d) Colonists from many demes; S = 4Ns =10.

come from many demes, one finds that value of the
initial gradient (STI = (dP*/du)u_0) which satisfies
eqn (76), and hence gives a finite solution at u = 1.
The solution to eqn (6 a), where colonists derive from
a single gene, is harder, because it depends on finding
a value of 5T1 = (dP*/du)u_0 which satisfies eqn (7a),
and also a value of S which gives P(l) = H.

GRH62
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6. Results

Table 1 a compares exact values for the discrete model
[s = 005, 0025; eqn (2)] with those from the diffusion
approximation (s = e; P(u) = (1 — exp( — Su))), in the

Table 1. For each parameter combination,
P{1/2N)/2s gives the probability of fixation of a
single advantageous gene, relative to the expectation
for weak selection in a large panmictic population
{2s). P(l) gives the chance that a favoured gene that
is fixed in one deme will ultimately spread through
the whole population. All results are for S = 4Ns = 1.
The first rows in each set give exact results for the
discrete model [eqn (1)], for s = 0-05, N = 5, s = 0-025,
N = 10, and (for some cases) s = 00125, N = 20.
Rows headed by s = e give results for the limit of
weak selection, based on the diffusion approximation
[eqn (6)]. The last row in each set, headed by
4Nm = e', give results for the limit of low migration and
extinction [eqn (1)]

4Ns

1

1

1

1

1

1
1

1

1

1

1

1
1

1

1

4Nm

1

01

e'

1

01

e'
1

01

e'

1

01

e'
1

01

e'

4N\

0

0

0

s P(\/2N)/2s

No extinction
005
0025
e
005
0-025
e
e

(b) Colonists from
10

1

10e'
1

01

e'

005
0025
e
0-05
0025
e
e
005
0025
e
005
0025
e
e

0-9328
0-9654
1000
0-9309
0-9644
1
1

one gene

01648
00816
00122
01433
01132
00813
01366
0-4720
0-4354
0-3970
0-5648
0-5723
0-5805
0-6127

(c) Colonists from many demes
10

1

10e'
1

01

e'

005
0025
00125
e
005
0025
00125
e
e
005
0025
e
005
0025
e
e

10598
0-8005
0-6803
0-5673
0-5828
0-5925
0-5976
0-6032
0-6200
0-7979
0-7864
0-7732
0-7376
0-7620
0-7881
0-7910

P(l)

0-6242
0-6281
0-6321
0-6233
0-6276
0-6321
0-6321

0-1456
0-0735
00112
01071
00833
00588
00863
0-3467
0-3167
0-2863
0-3837
0-3786
0-3737
0-3870

0-6219
0-4925
0-4301
0-3967
0-3930
0-3889
0-3868
0-3849
0-2477
0-5270
0-5099
0-4919
0-4943
0-4964
0-4985
0-5000

absence of extinction. Agreement is close even when
the population is small (N = 5, s = 0-05). Moreover,
comparison of values for 4Nm = 1 and 4Nm = 0-1
shows that fixation probabilities depend only very
slightly on migration rates. This is consistent with
Maruyama's (1970) result in the limit of weak
selection.

The last row in each part of Table 1, headed by
4Nm = e'', gives values for the limit of rare extinction
and migration [eqn (1)]. The diffusion approximation
(s = e) does approach these values as both 4Nm and
4NX become small. Figure 1 shows how the fixation
probability in this limit depends on the relative rates
of extinction and migration. Colonization from one
gene can lead to a substantial reduction in fixation
probability, provided that S is not too large (Fig. 1 a).
In the limit where drift dominates selection within
demes (S = 4Ns -4 1), the fixation probability tends to
2sM/(M+A) [from eqn (la)]. On the other hand, if
selection within demes is strong (S P 1), then the
fixation probability tends to 2sMS/(A + MS). Now,
the chance of fixation is proportional to s2 when
1 <? S <̂  A/M, so that extinction will disproportion-
ally reduce the contribution of weakly advantageous
genes. With founders from many demes, the effect of
extinction is much smaller, and can never be larger
than twofold (2s > P(\/2N)> s). This is because
colonization from a mixed pool of immigrants gives
an opportunity for selection which favours the fitter
allele.

Figure 2 shows the effect of increasing migration
and extinction rates, again plotted as a function of the
ratio between them. This further reduces the fixation
probability, for both models of colonization. Extinc-
tions can now have a substantial effect even when
selection within demes is strong (S > 1). The dotted
curves show the analytic approximations of eqn
(11 a, b), for the limit of weak selection; this converges
to the limit of frequent migration and extinction [eqn
(9)] for large A, M. These curves are independent of
selection, and show that with colonization from many
demes, the reduction in fixation probability cannot be
greater than twofold.

Figure 3 shows how the probability of fixation
depends on the initial frequency of the gene within a
single deme (P(u)). This is compared with the form
expected in the limit of low migration and extinction,
when the spread of the allele separates into es-
tablishment within one deme, followed by stochastic
spread through the whole population: P(u) =
11(1 -exp(—Su)) (dotted curves). Agreement is close
for 4Nm = 0-1, as expected. However, when migration
is more frequent, and selection moderate (4Ns = 1,
4Nm = 1 ) , the curves approach the linear form
predicted in the limit of high migration. [With
colonization from many demes, P(u) is not expected
to be strictly linear in the limit of large M, A. However,
for the parameters plotted in Figs 3(c, d), the function
given by eqn (86) is close to linear.]
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0 1 r (a) 4Ns = 1, X/m = 10

P{u)
4Nm - 0 1

=—r^=-_ 4Nm =

4Nm = 0-1

4Nm = 1

0 __

4Nm = 01
4Nm = 1

4Nm = 01

Fig. 3. The probability of fixation, P(u), as a function of
initial frequency in a deme, u. In each figure, the solid
curves give P(u), calculated from the diffusion
approximation [eqn (6)]. The dotted curves give
P(u) = n(l — exp( — Su)), which is the form reached in
the limit of low migration and extinction rates [eqn (1)].
(a) Colonists from one gene; 5 = 4Ns = 1, X/m = 10.
(b) Colonists from one gene; 5 = 4Ns = 10, X/m = 10.
(c) Colonists from many demes; S = 4Ns — 1, X/m =10.
(d) Colonists fromn many demes; S = 4Ns = 10, X/m = 10.

7. Discussion

Random extinction introduces an extra component of
sampling drift, and so reduces the probability of
fixation of advantageous alleles. Unless demes are
very small, and selection very strong, the fixation
probability can be calculated using the diffusion
approximation, and depends on the rates of selection,
migration and extinction, scaled relative to population
size (S = 4Ns, M = ANm, A = 4NA). Though the dif-
fusion equation can only be solved numerically,
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analytic approximations can be found for the limits of
low and high migration and extinction, and for weak
selection [eqns (1), (9), and (11) respectively].

Both the analytic formulae, and numerical results
for intermediate M, A, show that the effect of random
extinction depends strongly on how new demes are
colonized. If the genes in a new colony are drawn from
many demes, then the fixation probability can be
reduced by no more than half, from 2s to s. In
contrast, when new colonies all derive from a single
randomly chosen gene, the fixation probability can
become very small. The difference between the two
models is that when colonists are genetically variable,
the colonization process involves selection as well as
drift, and so favours the fitter allele. The importance
of the diversity of new colonies has been emphasized
in previous studies of the consequences of extinction
for neutral alleles (e.g. Slatkin, 1977, 1981; Whitlock
&JMcCauley,_199_0). _

When migration and extinction are infrequent (A,
M < 1), the fixation probability can only be reduced
substantially if colonies derive from a single gene, and
if extinction is much more frequent than migration
(A >̂ M; Fig. 1 a). Migration cannot be very much
rarer than extinction, because new colonies must form
from incoming migrants. However, the number of
immigrants per generation is Nm, and so the delay
before an immigrant arrives is approximately 1 /(Nm)
generations; this can be much smaller than the time
between extinctions (1/A) even if A P m. Furthermore,
if fitness is strongly density-dependent, immigrants
may do well in an empty site, and yet rarely succeed in
an established population.

Even if migration and extinction occur at similar
rates, fixation probability can still be substantially
reduced if colonies are founded from a single gene,
and if extinction is frequent relative to selection (i.e.
A >̂ s; Fig. 2a). Equation (lla), which applies in the
limit of weak selection, shows that the chance that a
single mutant will be fixed is

P{\/2N) = 2s /{(I +2JVA)(1 + A/m)}.

Since 2NA might well be large, especially if extinction
is caused by environmental rather than demographic
fluctuations, fixation probability could be much
reduced.

Michalakis and Olivieri (1993) have recently used
simulations to examine the probability that a chromo-
some rearrangement will fix throughout a two-
dimensional population. They show that the prob-
ability of fixation of a karyotype favoured by meiotic
drive can be substantially reduced, provided that
migration is not too frequent {Nm <\,NX 01 to 0-5;
their Fig. 2). (Note that meiotic drive is equivalent to
additive selection.) In these simulations, extinct demes
were recolonized by migrants at a rate Nm, and so for
small Nm, new colonies derive from one or a few
individuals. Michalakis and Olivieri's results show a
stronger effect than would be expected from the above
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formulae, suggesting that extinction may have a
stronger effect in two dimensions than in the island
model.

Fisher's 'fundamental theorem' (Fisher, 1930)
predicts that the increase in mean fitness due to
natural selection should equal the additive genetic
variance in relative fitness. Since weakly selected
alleles (4Ns <̂  1) may have a much reduced chance of
fixation in a structured population, they may produce
less adaptation than would be expected from their
contribution to the variance in fitness. The con-
tribution of weakly selected alleles is reduced in a
similar way by the 'hitch-hiking' effect of more
strongly favoured substitutions (Barton, 1993), and
by recurrent mutation (Keightley, 1991).

The reduction in fixation probability described here
can be seen as being due to the random component of
fitness introduced by extinction. Presumably, if ex-
tinction and/or recolonization were selective, as they
are to a degree with a mixed founding population, the
fixation probability would be greater. However, we
have seen, in passing from the discrete model to the
diffusion limit, that the difference between hard and
soft selection is negligible. That is, the assumption
that demes make a contribution to the pool of
colonists proportional to their mean fitness has a
negligible effect when selection is weak. This parallels
the results of Rouhani & Barton (1993), who found
that in models of Wright's 'shifting balance', group
selection can only be important if the contribution to
the migrant pool depends disproportionately on mean
fitness. It also accords with the simulation results of
Madalena & Hill (1972), who showed that for an
additive quantitative trait, fixation probabilities are
reduced even when there is strong selection among
sublines.

In a single population, the fixation probability is
given by 2s(NJN), where Ne is the effective population
size (if 5 <g 1; Kimura, 1962). The effects of extinction
cannot generally be understood simply through a
reduction in effective population size, because they
depend on selection as well as on population structure.
However, with high migration and extinction rates
[eqn (9)], and with weak selection [eqn (11)], the
fixation probability is reduced by a factor independent
of selection, which suggests that this factor might just
be (NJN).

To find (NJN), we solve Slatkin's (1977) equations
in the limit of a large number (n) of demes, large N,
and small mutation rate fi, and set the average
heterozygosity t o / = 1/(1 + 4nNe/i). (Slatkin's model
differs slightly from that used here, since he assumes
that drift occurs before migration. However, this has
no effect in the limit of large N.) This definition of Ne

is one of many alternatives. In a single panmictic
population of size TV, the probability J{t) that two
randomly chosen genes will become identical by
descent precisely t generations back declines geo-
metrically at a rate \/2N. However, in a structured

population, f(t) is a more complicated function, and
cannot be summarized by any one 'Ne'. The definition
used here, which takes the limit of small /i, is equivalent
to finding the asymptotic decline mj(t) for large / (see
Ewens, 1979).

When colonies derive from many demes,

{NJN) = (1 + 2NA + 4Nm)/(4N(m

[Slatkin, 1977, eqn (23)];

this differs from eqn (11 b) by a factor

When colonies are founded from a single gene,

(NJN) = (1 + 2NA + 4Nm)/(4N(m + X)(\ +2NX));

this differs from eqn (11 a) by a factor

\/(\+\/2m+\/4Nm),

implying that fixation probability may be reduced
much more than neutral variability if extinction is
frequent relative to migration. One can see the
discrepancy more simply by considering a population
with no extinction: then, the fixation probability is
independent of Nm, whereas (NJN) = (\ + \/4Nm)
[Maruyama, 1970; eqn (18) of Slatkin, 1977]. Thus,
the effect of population structure on an advantageous
gene cannot in general be understood from its effects
on neutral alleles. The inadequacy of effective popula-
tion size for understanding subdivided populations
is already known from, for example, analyses of
underdominance (Slatkin, 1981). However, it is
somewhat more surprising that it also applies in a
haploid model, or with additive selection.
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