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1. Introduction. If \p(x) is a real-valued function which has a jump 
discontinuity at x = £ and otherwise satisfies the Dirichlet conditions in a 
neighbourhood of x = £ then {sn(x)}} the sequence of partial sums of the 
Fourier series for \//(x)y cannot converge uniformly at x = £. Moreover, it 
can be shown that given r in [ — 7r, T] then there is a sequence {tn\ such that 
tn —> £ and 

Hm * < 0 - *<* + 0) + *(* - 0) + »tt + 0 ) - » f t - Q l ("sin, 
w->oo * ^ J o y 

This behaviour of {sn(aO} is called the Gibbs phenomenon. If {(rn(#)} is the 
transform of {sn(x)} by a summability method 7", and if {(rn(x)} also has the 
property described then we say that T preserves the Gibbs phenomenon. 

Miracle (10) has proved that in order to show that a regular summability 
method T preserves the Gibbs phenomenon it suffices to show that if r is in 
[ —7T, 7r] there is a sequence {tn\ such that tn —> 0 and 

lim<rn(0 = I dy. 
»-*» «̂  o y 

Here {an(x)} is the ^-transform of the sequence of partial sums of the Fourier 
series for the particular function 

1( N ( - T T / 2 -TT < x < 0 
0 ( X ) = \ TT/2 0 < * < T T 

0 ( - T T ) = 0(0) = 0(TT) = 0 </>(x) = </>(x + 2TT). 

An extensive bibliography for the Gibbs phenomenon may be found in 
Miracle's paper (10). 

The Lebesgue constants for a summability method determined by an 
infinite matrix T = (tnk) are defined by 

7T * / o 

^. 

sin £ 
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The sequence {Ln(T)\ is of considerable interest in the theory of summability 
of Fourier series. For if T satisfies 

oo 

(1.1) E M * < °° n = 0,1,2, . . . 
&=0 

if supn |Ln(r) | < oo and if \f/(x) is continuous in [a, b] then the Fourier series 
for \f/(x) is uniformly T-summable to \j/(x) in [a, b]. However, if {Ln(T)\ is 
not a bounded sequence then there are continuous functions whose Fourier 
series are not always T-summable (5, pp. 58-60). 

Lorch (7; 8) has studied the Lebesgue constants for the (E, 1) and Borel 
methods, Lorch and Newman (9) have studied them for the Hausdorff methods, 
and Livingston (6) has studied them for the (£, p) methods. 

Now if f(z) is a function that is analytic in a neighbourhood of the origin, we 
may form an infinite matrix F = (fnk) in the following manner. Let 

oo 

!/(*)]"= £/.*** n=l,2,... 

/oo = 1 fok = 0 £ = 1 , 2 , . . . . 

Then Fis said to be generated by/(z) and ^determines a sequence-to-sequence 
transformation. 

Here we shall study the Gibbs phenomenon and the Lebesgue constants for 
summability methods of the type just described. We shall see that if suitable 
restrictions are imposed on/(z) then the summability method determined by F 
preserves the Gibbs phenomenon and that an asymptotic expansion can be 
obtained for Ln{F), showing that {Ln(F)\ is unbounded. 

2. The main theorems. The restrictions on f(z) are that 

(2.1) j\z) be analytic for \z\ < R where R > 1, 

(2.2) / ( l ) = 1, 

and 

(2.3) |/(2)| < 1 when \z\ < 1, z ^ \. 

The matrix F generated by such a function f(z) is called a Sonnenschein 
matrix (12). If we also assume that 

(2.4) Re A 7* 0 where A is defined by 

/(*) - sf = Aip(z - l)p + 0(1)(z - l)v+\ s - * 1 

and f = / r ( l ) , then F is a regular matrix (1). In fact, if f{z) satisfies the 
hypotheses (2.1), (2.2), (2.3) and if f(z) is not of the form/(s) = zk (k = 1, 
2, . . .) then (2.4) is a necessary condition that F be regular (3). 

From the hypotheses (2.1)-(2.4) it follows that f = / ' ( l ) > 0 , that 
| = — Re^4 > 0, and that p is an even positive integer, where A and p are 
given by (2.4). Further, with f(e2it) = Re'*, we may write 
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(2.5) R = 1 - f (20p + 0(tp+1) t -> 0, 

and 

(2.6) fl = 2f* + 0(*2) / - > 0 . 

We may now prove the following theorems about the matrix F generated by 
a function f(z) satisfying (2.1)-(2.4). 

THEOREM 2.1. The summability method determined by F preserves the Gibbs 
phenomenon. 

THEOREM 2.2. An asymptotic expansion for Ln(F) is given by 

T ,_. 4 1 np~Y 4T 4 7T 
i» (^ ) = —̂2 log — —2 - -2 log -

^ 7 T £ pTT "!T Z 

+ 2 logr(Ocosi r /d / + 0(l) »-»«> 
*/ o 

where y is Euler s constant, and the numbers p, f, and £ are as defined above, 

Proof of Theorem 2.1. The sequence of partial sums of the Fourier series for 
the function </>(x) defined in the Introduction is known (2, p. 296) to be given 
by 

Sn(x)= r ^ ^ d t « = 0,1,2 

J o sin t 

Assume that \x\ < TT/2. The ^-transform of J5„(x)) is then given by , ^ f *sin 2kt 
A;=O «/ o sin t A=0 « / 0 

But (2.1) implies (1.1), and using (1.1) and the fact that 

|sin 2kt\ < &7r|sin t\ \t\ < TT/2 

we see that the order of summation and integration may be reversed and we 
may write 

*»(*)= r ~ ^ 7 * « = 0,1,2, 
J o sin t 

where 
Tin ind T>n inQ\ 

K e — i<i e 
2% 

and 

Rie
i9l=f(e-Ut). 

Using (2.6) we have that 

sin n9 = sin 2nÇt + 0(nt2) nt2 -> 0. 

And by (2.5) and (2.6) it follows that 
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(2.7) 61 = -9 + 0(t*) / - > 0 

and 

(2.8) Ri = R + 0(tp+1) t -> 0. 

Combining these results and using (2.5) 

ypn = sin 2nÇt + 0(nt2) nt2^>0. 

Hence 

sin 2n$tJ± , 2, 2 A <w + 0(wx ) wx —> 0. 
«^ 0 

Thus, given r such that 0 < r < IT, let £n = r/(2»f). Then 

cr,(0 = f ^ d y + OC*"1) 
J 0 7 

w —> 00 . 

And if — 7T < r < 0, then 0 < — r < 7r, SO that since o-n(x) = — an( — x) we 
may choose tn = r/(2wf) and still have 

<r»(0 = f ^ d y + OC»"1) Jo ^ 
w —> 00 . 

y " ' * ' 

This together with an application of Miracle's results mentioned in the 
Introduction completes the proof of Theorem 2.1. 

Proof of Theorem 2.2. The Lebesgue constants for F are given by 
• 7T/2 

sin t 

where 

9 CT/Z\\ 
Ln(F) = - ^ d t n = 0 , 1 , 2 , . . . 

T t / o 

^n — 

jnn i(n&+t) nn i(n0i—t) 

2i 

Using (2.5) and (2.6) 

K = Rnsm[n(6 - dJ/2 + t]emd+6l)/2 

+ 0(ntp+1) ntp+1->0. 

Also we have that 

-^-7 = 7 + 0 ( 0 t-+0. 
sin t t 

Thus if \/p > a > \/{p + 1) we have that 

f " " " M * = r - g l g n , [ n ( g - g x ) / 2 + /] ^ 0 ^ 
J 0 sin / Jo sin / 

r-aR»\Sm[n(d - flt)/2]| ^ + ^ I - C H - » . ) 

Jo ^ 

W —-> 00 

W — > 00 . 
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By (2.5) 
Rn = e-nt(2t)P(1 + 0 { n e +i ) } n f + 1 _^ Q 

So t h a t 

r/2Rn\sm[n(d - 61)/2 + t]\ ^ < 2 - M . - ^ « £ 
J n - a Sin / ^ 7T ^ 2 

+ 0(nl-{v+1)a) n^ oo. 

Hence 

r - ^ ] s i n [ w ( 9 - g l ) / 2 ] i ^ + o ( 1 ) 

«/ o £ 
W — > oo . 

Again using (2.6) with co = (0 - 0i)/2f 

T h u s 

7T «/ o t 

2 1 e sin wfco . , / i N = — ' — dco + o( l ) 

2 r T / V { M > i n ( n r + Dcol 
_ __ i L do) + oil) n —•> oo . 

7T « / ( ) CO 

Then, using results due to Lorch (7), 

T m 2 f T / 2 | s i n ( n r + l ) c o l J 4 r / 2 l - g - * " J , / 1 x Ln{F)=- J ^ ^dœ 2 du + o(l) 
T JO CO T Jo CO 

• 7T/2 
f T / 2 l s i n ( n r + l)co[ J 4 p 4 7 , m 

i j v L-±du — — ï l o g » 5 ( i r / 2 ) — -—2 + 0(1) w—> oo. 
«/n CO D7T P7T 

However, the first term in this last expression for Ln(F) is jus t Ln, the nth 
Lebesgue constant for ordinary convergence. Using the known asymptot ic 
expansion for Ln (4) we may then write 

T (m 4 n * - y 4 7 
i » ( ^ ) = T~2 l0g — T~2 

£>7T g £>7T 

f1 4 7T 
+ 2 1 log r ( 0 cos irtdt - -2 log - + o( l ) n —> oo . 

t/o 7T ^ 

This completes the proof of Theorem 2.2. 

3. A n e x a m p l e . Let 

a+ (1 - a - ff)z 

where a and /3 are complex numbers. Then the matrix F generated by this 
f(z) is called a K a r a m a t a matr ix (1). Conditions t ha t T^be regular (11) are t h a t 
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(3.1) a=l3 = 0 or 1 - | a | 2 > (1 - 5 ) ( 1 - j8) > 0. 

Here 

P2 _ . 4(0 + 0(1 - g - |8))sin^ 
* ~ 1 ~ ' \1-Peui\2 

and 

- a( î5î) + o )̂ *-o. 
Thus under conditions (3.1) F preserves the Gibbs phenomenon and 

T (F\ 2 »(1 - «)2(1 - 0) 
Z » ( ^ - r ï l 0 g 2 ( l - / 3 ) ( j 8 + a ( l - « - j 9 ) ) 

7T~ «/ o ~ 7T~ " 2 
2 + 2 I log r ( 0 COS fft dt — —2 log — + 0 (1 ) W —» 00 . 
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