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Abstract

Recent higher-order explicit Runge–Kutta methods are compared with the classic
fourth-order (RK4) method in long-term integration of both energy-conserving and
lossy systems. By comparing quantity of function evaluations against accuracy for
systems with and without known solutions, optimal methods are proposed. For a
conservative system, we consider positional accuracy for Newtonian systems of two
or three bodies and total angular momentum for a simplified Solar System model, over
moderate astronomical timescales (tens of millions of years). For a nonconservative
system, we investigate a relativistic two-body problem with gravitational wave emission.
We find that methods of tenth and twelfth order consistently outperform lower-order
methods for the systems considered here.

2020 Mathematics subject classification: 65L06.

Keywords and phrases: numerical methods, Runge–Kutta method, differential equa-
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1. Introduction

A popular technique for the numerical solution of many initial-value problems is the
family of Runge–Kutta (RK) methods. An historical overview of this approach to
solving differential equations is given by Butcher [7]. Explicit Runge–Kutta (ERK)
methods are straightforward to code, because they give explicit formulae for the
solution at the next time-step, in terms only of the solution at the current time. The
most famous of these is the classical fourth-order, four-stage method in the text by
Atkinson [3, p. 371]. An improved approach, which still retains the relative simplicity
of ERK methods, is provided by the family of Runge–Kutta–Fehlberg methods
[3, p. 376], in which pairs of RK methods are used together to create explicit formulae
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that control the growth of numerical error by adaptive time-stepping. A survey of these
ideas is presented by Enright et al. [12], who also discuss concepts such as the detection
of stiff zones in the solution and the development of ERK methods specifically for use
in systems of second-order equations.

In this current work, we will directly compare the performance of some of the
explicit RK methods developed in the last twenty years with the classic fourth-order
Runge–Kutta (RK4) method. To make this comparison, we will consider conservative
Newtonian orbits as well as a nonconservative relativistic binary system. The aim of
this work is to identify which ERK methods are optimal for solving different systems
of equations and to discuss any pertinent considerations.

The Newtonian equations for orbital motion of planets in the Solar System are
straightforward to write down and lead to a system of conservative second-order
differential equations for the positions (and velocities) of each planet. Since this
n-body system is nonlinear, it is capable of exhibiting complex behaviours, including
resonances, instability, quasi-periodicity and chaos. Long-term simulation of orbital
motion therefore requires numerical integration techniques of extremely high accuracy
and the question naturally arises as to how far forward in time it is possible to integrate
these differential equations, using any quadrature technique, before accumulated
numerical error renders the results meaningless.

Anastassi and Simos [2] discuss RK methods for such second-order systems for
orbital motions. Because orbital motion is one in which overall energy is conserved,
attention has also focussed on symplectic RK methods, and these, too, are surveyed
by Enright et al. [12]. In these techniques, the aim is to preserve, in the numerical
approximation, some quantity such as a discrete analogue of energy that should be
constant in the exact system of differential equations. This should ensure that orbits
remain elliptical, rather than spiralling into the Sun, due to a loss of (discrete) energy in
the numerical approximation. An assessment of symplectic methods for Solar System
dynamics is presented by Saha and Tremaine [32], and they conclude that these
integrators are unquestionably the best available in this context; in this present paper,
we will briefly consider the performance of symplectic methods as compared with
ERK techniques.

Of course, techniques other than RK methods are also available for the integration
of orbital equations. RK methods are single-step integrators, in that the solution at each
time-step only depends on conditions at the previous step. Multi-step methods are also
possible, however, and can have certain advantages in stability, although now values at
each time-step depend on values at the previous k time-steps for a k-step method.
Such techniques can be more onerous to code. A mathematical analysis of these
methods is presented by Dahlquist [11], and a symmetric multi-step technique has
been adapted for orbital systems by Quinlan and Tremaine [30]. More recently, Zeebe
[36] has compared various methods, observing that a Bulirsch–Stoer extrapolative
method required vastly more computational time to achieve the same accuracy as a
symplectic technique. To improve numerical stability, implicit RK methods have also
been developed, in particular, to allow the solution of stiff equations; such systems
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can occur in orbital-type equations through resonances or relaxation oscillations.
In general, however, implicit RK methods require a nonlinear system of algebraic
equations to be solved at each time-step, and this could pose considerable difficulty.
Consequently, diagonally implicit RK methods have been proposed to make their
implementation easier, while nevertheless retaining some of the stability advantages.
A review of these techniques has been given by Kennedy and Carpenter [24].

The long-term stability of the Solar System is a key question in understanding
planetary dynamics and accurate, reliable large-time integrations of the governing
equations are usually necessary. Laskar [26] reported numerical integrations of
approximate, averaged equations of Solar System motion, from which he concluded
that the Solar System is chaotic. Resonances in the motions of the inner planets
made his numerical solutions unreliable at some time beyond 10 mega-years (Myr).
Laskar et al. [27] confirmed these results by integrating the equations for the whole
Solar System over a 6-Myr time interval, and showed the presence of resonances in
the motions of the Earth and Mars. These findings are consistent with a subsequent
integration of the Newtonian equations for the Sun and eight planets, carried out by
Batygin and Laughlin [4]. Their results also showed an instability in the motion of
Mercury, which eventually destabilizes the Solar System. Olsen et al. [29] likewise
found that long-term numerical solutions were only reliable over an interval of
60 Myr, and that the system becomes chaotic. However, here we are simulating
n-body problems to demonstrate accuracy of integrators and so are concerned only
with numerical instabilities. We note that stellar system integrations normally use
mixed-variable symplectic methods based on the work of Wisdom and Holman [35],
which are more efficient in dealing with close encounters of two bodies. We will briefly
consider a fourth-order symplectic method, but will not consider the more specialized
methods developed for orbital mechanics.

Relativistic orbits may also be considered a type of n-body problem, requiring for-
ward integration to simulate the orbits as they spiral inwards. The field of gravitational
wave (GW) astronomy has progressed greatly since the detection of the first merging
binary black hole (BBH) system in September 2015 [1]. The advanced Laser Interfer-
ometer Gravitational-wave Observatory (aLIGO) uses a matched-filtering detection
algorithm to target a 4-dimensional parameter space describing the most common
variants of compact binary sources, that is, those with spin-aligned components
on quasi-circular orbits [17, 19, 31]. However, several studies have suggested this
algorithm may miss compact binaries formed in dense stellar environments due to
their more eccentric orbits [19–21, 25]. Constructing the template waveforms involves
numerically solving the Einstein field equations to describe the inspiral, merger and
ringdown. The large (9-dimensional) parameter space and computationally intensive
nature of numerical relativity (NR) simulations has led to the development of accurate
Keplerian-type parametric solutions including a post-Newtonian (PN) approximation
[18]. The PN approximation invokes a gauge-invariant dimensionless parameter, x,
related to the total mass of the binary system and the orbital frequency. The temporal
evolution of this parameter is computed using a first-order differential equation that
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considers the present state of the Keplerian-type orbit and the PN corrections [21,
equation (5)]. The eccentricity, mean anomaly and phase of the orbit are typically
computed with this gauge-invariant parameter as a coupled system of ordinary
differential equations (ODEs). The waveform for the merger-ringdown, for example,
derived using the IRS model introduced by Kelly et al. [23] and calibrated with NR
simulations [21], can be appended to that of the inspiral phase.

Large systems of ODEs may also arise from the numerical solution of partial
differential equations (PDEs) in fluid mechanics or combustion theory, for example.
Any numerical technique that approximates the spatial derivatives in some manner
results in a large system of time-dependent ODEs that must be integrated forward in
time. RK methods are often employed for this purpose. There are three broad classes
of techniques that are of this type. The first are methods such as finite-element or
discontinuous Galerkin methods, in which spatial variations are approximated over
collections of small elements of finite size. Examples of these approaches are given
in the review by Cockburn and Shu [9]. A second type is related to the method of
lines, in which finite differences are used to approximate only the spatial derivatives,
so that the PDE is replaced by a system of ODEs at each spatial node point. Verwer
[33] applies this approach to the solution of parabolic PDEs, which arise in diffusion
processes, and a somewhat similar approach has been used recently by Zhao et al. [38]
to solve systems of nonlinear wave equations in conservation form. The third group
of techniques are spectral methods, in which the unknown function is expressed as a
series of orthogonal functions in space, with time-dependent Fourier coefficients that
solve systems of ODEs that must be integrated forward in time. Walters and Forbes
[34] recently used methods of this type to study Rayleigh–Taylor instabilities in fluid
mechanics, in three space variables and using RK methods for the time integration. We
do not consider PDEs further in this paper, however, instead focus on ODE systems
arising in orbital motions. Our primary interest is ERK methods, since these are the
easiest to code, for large systems of ODEs, and so are the first choice in a wide
variety of applications. We will consider two types of problems to be solved: n-body
Newtonian systems and a two-body relativistic binary orbit. These are areas of current
interest and we give a very brief introduction to these topics here.

This present paper is concerned with higher-order ERK methods, which will be
examined in the solution of n-body systems, and their practical implementation. These
methods are equally applicable to the solution of PDEs as described above, and
Forbes et al. [15] employed a 10th-order, 16-stage ERK recently to study a problem
in free-surface hydrodynamics.

In Section 2, we lay out the general structure of ERK methods and identify
the particular methods used here. Section 3 presents the n-body equations and our
numerical scheme to solve them. We provide modern Fortran code and show the
results of tests using methods of various orders. The performance of these methods for
Newtonian Solar System orbits is discussed, and in Section 3.4, they are also applied
to a two-body post-Newtonian system radiating gravitational waves. A discussion
concludes the paper in Section 4.
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Throughout this study, we have compared results obtained using double-precision
(64-bit floats) and quad-precision (128-bit floats). Many modern compilers allow this
choice to be made by means of a single compiler switch, as was the case here,
using the open-source compiler, GFORTRAN. We note, however, that calculations using
quad-precision floats are implemented via an additional software layer and so perform
slower by some orders of magnitude on standard desktop hardware.

2. Explicit Runge–Kutta methods

ERK methods have the property that function values at each new time-step depend
only on values at the current time level. This makes these methods fast and particularly
simple to code. For clarity, the ERK method is used to solve an initial value problem
of the form

dy
dt
= f (t, y(t)), y(t0) = y0,

for some known function f, with initial value y0 at known time t0. The solution after a
small time-step Δt is given by

tn+1 = tn + Δt,

yn+1 = yn + Δt
p∑

i=1

biki,

with

ki = f
(
tn + ciΔt, yn + Δt

i−1∑
j=1

aijkj

)
.

The coefficients aij, bi, ci are defined by the particular RK method chosen. The aij

components are a set of coefficients in lower triangular matrix form. For a method of
p stages, i = j = p, there are a total of p( p − 1)/2 such coefficients, although some of
these may be zero. There are p weights, bj. The ci components are simply the sum
of the corresponding row of aij components, that is, ci =

∑i−1
j=1 aij. Newtonian n-body

problems may be classified as autonomous systems, that is, systems in which the
derivative function, f, (in this case, acceleration) does not depend on the independent
variable (time), but only on the dependent variables (position, velocity). For such
systems, the intermediate function evaluations, ki, take a slightly simpler form:

ki = f
(
yn + Δt

i−1∑
j=1

aijkj

)
,

and the ci components are not required.
Each ERK method may be characterized by its “Butcher tableau”, being a visual

display of these coefficients used for each step of the ERK method. The number p of
stages of an RK method is the number of function evaluations performed at every
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0
c2 a2,1

: :
ci ai,1 ai,i−1

: : :
cp ap,1 ... ap,p−1

b1 ... ... bp

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

1
3

1
3

1
6

0
1
3

1
3

2
3 0 2

3
1
3

1
12

1
3 − 1

12
1
2 − 1

16
9
8 − 3

16 − 3
8

1
2 0 9

8 − 3
8 − 3

4
1
2

1 9
44 − 9

11
63
44

18
11 0 − 16

11
11

120 0 27
40

27
40 − 4

15 − 4
15

11
120

FIGURE 1. The Butcher tableau is a standard way of displaying the coefficients for RK methods. For
ERK methods, the aij coefficients are displayed in lower-triangular matrix form, with their row-sums, ci,
as a column on the left and the integration weights, bj, as a row underneath. The general form for ERK
methods is shown in the left panel, the “classic” RK4 method is in the centre panel and one of Butcher’s
RK6 methods is shown in the right panel.

time-step of the integration routine. The order of an RK method is a measure of
the accuracy of the method, in terms of powers of the time-step, Δt. The “classic”
fourth-order method has four stages and is fourth-order accurate in global truncation
error (the numerical solution at the final time will vary from the true solution by a
factor proportional to Δt4). The number of stages required for a given order increases
quickly for high-order methods, although the general formula defining the required
number of stages for a given order is not known. A method is generally labelled
by its order. Thus, the Butcher RK6 method is a sixth-order method, although it
requires seven function evaluations (stages) per time-step. The Butcher tableau for
a general ERK of p stages is presented in the left panel of Figure 1, and as specific
examples, Runge and Kutta’s “classic” RK4 method [3, p. 371] is presented in the
middle panel and Butcher’s RK6 method [6] (with his choices of λ = 4, μ = 1/3, these
being additional constraints that are chosen to complete the definition of a particular
method) on the right.

In the current paper, we consider RK methods ranging from the classic RK4
method with four stages up to a 35 stage 14th-order method. With p = 35 stages,
the highest-order method investigated here has 35 × 34/2 = 595 aij coefficients.
Regardless of the number of stages and coefficients, the numerical algorithm is the
same and will be described in Section 3, along with a small code sample.

Seven explicit RK methods are considered in this work, which will mostly be
referenced by the number of stages they contain. These are listed by the number of
stages and order of accuracy of each method in Table 1. We note that several of these
methods can be expanded to embed methods of lower or higher order, which allow the
use of adaptive stepsize control. We have not investigated the use of adaptive stepsize
in the current work, although we note that such methods may be efficient, particularly
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TABLE 1. The seven methods investigated in this work are listed below, showing number of stages and
order of accuracy. The number of stages increases rapidly with increasing order of accuracy.

Stages Order Source

4 4 Atkinson [3]
7 6 Butcher [6]
11 8 Cooper and Verner [10]
16 10 Zhang [37]
17 10 Feagin [13]
25 12 Feagin [14]
35 14 Feagin [14]

for high ellipticity orbits where the accelerations and velocities vary greatly throughout
the orbital path.

3. The n-body simulations

A system of three or more bodies interacting under Newtonian gravity has motion
of the bodies which is not generally solvable analytically. However, given knowledge
of the masses, positions and velocities of all of the bodies (“initial conditions”), these
systems may be integrated forward in time to determine positions and velocities at a
future time. Such a simulation of Newtonian n-body problems requires the solution of
the gravitational equation

r̈i = −
n∑

j=1

mj

r3
ij

rij : i � j,

where rij is the position vector from the jth body to the ith body, rij is the corresponding
distance, mj is the mass of the jth body and r̈i is the acceleration of the ith body, and
units have been chosen such that Newton’s constant has value 1. The components in
Cartesian co-ordinates have equations:

ẍi = −
n∑

j=1

mj

r3
ij

(xi − xj) : i � j,

ÿi = −
n∑

j=1

mj

r3
ij

(yi − yj) : i � j,

z̈i = −
n∑

j=1

mj

r3
ij

(zi − zj) : i � j,

rij =

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2.
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FIGURE 2. The orbital paths of the two- and three-body simulations, showing the initial locations of the
bodies, along with an indication of their initial velocities, represented by the arrows. The left panel shows
the simplified two-body orbit, where the mass is all located at the origin and a much lighter body orbits
in an elliptical path. The ellipse shown here has eccentricity of 0.6. The central panel shows the orbits of
two massive bodies orbiting a more massive central body. The right panel shows the path of three equal
mass bodies chasing each other around a figure-eight path. Initially, the central body has twice the speed
of the other two bodies, but in the opposite direction, so that the system has zero total momentum.

The RK methods integrate first-order equations, so the three second-order
Newtonian equations are re-written as six first-order equations:

ẋi = v x
i , ẏi = v y

i , żi = vz
i ,

v̇ x
i = −

n∑
j=1

mj

r3
ij

(xi − xj) : i � j,

v̇ y
i = −

n∑
j=1

mj

r3
ij

(yi − yj) : i � j,

v̇z
i = −

n∑
j=1

mj

r3
ij

(zi − zj) : i � j,

rij =

√
(xj − xi)2 + (yj − yi)2 + (zj − zi)2,

where v x
i , v y

i and vz
i are the Cartesian velocity components of the ith body. For a

system containing n bodies, this is now a coupled system of 6n first-order differential
equations to be integrated forward in time. Here we first consider some simple two- and
three-body systems. These include elliptical orbits and two simple three-body systems,
with orbital paths shown in Figure 2, and as described below. These are followed by a
nine-body Solar System model, and a relativistic binary black hole inspiral.

We found it expedient to load the aij and bj values from text files at the start of
the program. The explicit RK calculation is then written in a general way that works
correctly with any number of stages. For illustration, the RK calculation to move the
system forward by the small time-step Δt is shown in Figure 3, in modern Fortran, for
an RK method with number of stages equal to rksteps. The positions and velocities of
all of the bodies in the system are stored in vectors x, y, z, vx, vy, vz. For example, x(1) is
the x-value of the first body, and x(n) is the x-value of the nth body. The “accel” code is
a simple routine that calculates the Newtonian acceleration of each body due to all the
other bodies in the system. This routine takes in the arrays containing the position data
for all the bodies in the system (in this case, xi, yi, zi) and their corresponding masses
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FIGURE 3. The n-body 3D code to utilize any of the ERK methods, is shown here in modern Fortran. The
initial values are loaded into the variables xi etc. Next, the intermediate integration point is determined,
based on the aij values. The accelerations at that point are determined, based on the masses and positions
of all the other bodies. Finally, the positions and velocities are updated based on all the integrated values
at each stage, weighted by the bj weights.

(masses) and the number of bodies in the system (n masses), and returns the component
accelerations (vxk, vyk, vzk, that is, the derivatives of the velocity components). These
acceleration data are stored in vxk, vyk, vzk for each of the stages of the RK routine,
and for each body. “Matmul” is the intrinsic Fortran routine for matrix multiplication.
The time values after each step of the integration process are stored in the variable t.

For clarity, the “accel” routine for the n-body simulations is shown in Figure 4,
apart from the variable definitions. The term r2 is the square of the distance between
two bodies, and r3 is the inverse of the cube of that distance.

The accuracy of any forward-integration scheme, such as the one shown in Figure 3,
is dependent on the smallness of the time-step Δt. The dependence of accuracy on
the stepsize is illustrated in Figure 5. For this illustration, a circular orbit has been
numerically integrated using Zhang’s 10th-order 16-stage method [37] for 1000 orbits.
The position of the satellite in the final orbit is compared against its analytically
determined position. The maximum discrepancy in position in the final orbit is plotted
against the stepsize, using log10 scales. This line has a slope of 9.82, demonstrating
that the method is close to 10th-order accurate (that is, Δerr ∝ Δt9.82).
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FIGURE 4. The code snippet used to update the position of each body. The “cycle” statement skips the
calculation where m = j. That is, the body’s acceleration is not affected by its own position and mass.

FIGURE 5. Display of error level due to different stepsize Δt. Both the error and Δt are displayed using
log scales, which appears as a linear relation, demonstrating the power law dependence of accuracy on Δt.
This graph compares results at different step-sizes for a simple circular orbit using quad-precision (128-bit
floats) integrated by the 16-stage 10th-order method. The error is relative to the analytically determined
position for the final orbit after 1000 orbits.

In comparing the various RK methods, the computational time is primarily
dependent on the number of function evaluations, being the number of time-steps
multiplied by the number of RK stages per time-step. For the remainder of this study,
the error will be plotted against the number of function calls.

3.1. Kepler orbits The best known orbital system is the two-body system, acting
under Newtonian gravity. The two bodies follow paths that are conic sections. We
consider here a bound orbit (an ellipse), and also further simplify the problem by
considering a body at the origin, and an orbiting body of comparably small mass. In
this case, the solution consists of no motion of the body at the origin, while the orbiting
body follows an elliptical path, with one focus at the origin.
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The test system is set up with a body with dimensionless mass 1 at the origin. A
particle of negligible mass orbits in an elliptical path with specific angular momentum
L = 1, eccentricity ε, semi-major axis a = L2/(1 − ε2). Such an orbit has period
T = 2πa3/2. At time t = 0, we set

(x, y, z) = (L2/(1 + ε), 0, 0) and (ẋ, ẏ, ż) = (0, (1 + ε)/L, 0).

These initial conditions describe an ellipse in the x–y plane.
To compare the seven RK methods under consideration, the elliptical system is

integrated forward in time for 100 orbits. The final orbit is compared with the analytical
solution at each time-step in the final orbital period. Specifically, the relative error is
defined as Err = ((xrk − xan)2 + (yrk − yan)2)/r2

an, where xan and xrk are the x-values of
position computed with the analytical method and the RK method, respectively, and
similarly for y and r. The largest value of this error in the final orbit is plotted for each
method for various numbers of evaluation steps per orbit, in Figure 6. The upper panels
show the results using double precision (64-bit floats), and the lower panels show the
results using quad-precision (128-bit floats).

For the high eccentricity cases, the stepsize has been significantly reduced to handle
the rapid motion of the orbiting body whilst near the origin. It may be seen in Figure 6
that the runtime has been increased by a factor of approximately 30 in the ε = 0.9 case
over the ε = 0.3 case. It is clear that the efficiency in high eccentricity cases would
be increased by the use of an adaptive stepsize method, but this has not been pursued
here.

Figure 6 shows the error, on a logarithmic scale, versus the number of function
evaluations per orbital period, also on a logarithmic scale. The number of function
evaluations is therefore the number of stages of the method multiplied by the number
of time-steps per orbit. Thus, at the same number of function evaluations, Zhang’s
10th-order 16 stage method has a time-step that is four times as large as that of
the four-stage RK4 method. It may be observed that, given a sufficiently small
time-step, the higher-order integrators consistently reach the same level of precision
for lower computational cost. This is particularly so with the quad-precision models.
However, caution should be taken when using large stepsizes, where the 12th- and
14th-order integrators, in particular, may perform very badly. It is also apparent
that there is a minimum useful stepsize for each method, beyond which there are
no further improvements in accuracy. This is seen in the “levelling off ” in the
double-precision graphs. Once the accuracy of the method is close to the limit
of the machine-precision, reducing the stepsize will not help. In fact, it may be
seen in Figure 6 that decreasing the stepsize beyond this point, resulting in more
function evaluations, actually decreases accuracy slightly due to greater accumulation
of “rounding errors”.

These results suggest that high-accuracy double-precision calculations will be
performed accurately with the 10th- and 12th-order integrators, and the classic RK4 is

https://doi.org/10.1017/S1446181122000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181122000141


238 S. J. Walters, R. J. Turner and L. K. Forbes [12]

FIGURE 6. Maximum variation of position for each of the RK methods for elliptical orbits. The
eccentricity varies from 0 to 0.9. The legend shows the different RK methods by their number of stages.
The x-axis shows the number of function evaluations per orbit. The y-axis shows the variation relative to
the analytic value for the final orbit. Both axes use log10 scaling. The upper figures show results using
double precision (64-bit floats), the lower using quad-precision (128-bit floats).

much slower. In the case of quadruple-precision, the 12th-order method is excellent,
and may be a safer method than the 14th-order, unless very small time-steps are used.

A note on symplectic methods: Symplectic methods are suited to conservative sys-
tems such as the Newtonian systems we are considering. While a detailed investigation
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FIGURE 7. Comparison of the fourth-order symplectic method with the four- and seven-stage RK
methods. The x-axis shows the total number of function evaluations for an elliptical system with
eccentricity of 0.6. The y-axis shows the variation relative to the analytic value for the orbit. Both axes
use log10 scaling. The upper panel shows results using 64-bit floats, the lower using 128-bit floats.

of these methods is beyond the scope of this paper, we did perform some simulations
of the Kepler orbit with a fourth-order symplectic integrator (the optimized method of
[28]) for an elliptical orbit with eccentricity 0.6. The symplectic method is compared
with the RK4 and RK6 methods in Figure 7. These three methods were evaluated with
respect to the analytically determined elliptical orbit. In every case, the fourth-order
symplectic integrator was more efficient than the classic RK4 method, but less efficient
than the RK6 method (which is itself usually less efficient than even higher-order
methods, as seen in Figure 6). This suggests that at a given order, n-body problems are
solved more efficiently with an optimized symplectic integrator, if available. However,
for high positional accuracy, the order of the method is more important than whether
the method is symplectic or not.

3.2. Three-body orbits While there is no solution to the general Newtonian
three-body problem, many solutions to particular three-body systems are known. We
first consider here a simple three-body system with central body at the origin with
dimensionless mass 1, orbited by two satellites of mass 0.1 situated on opposite sides
of the origin, at radius 1. These satellites have initial speed

√
1 + 0.1/4, as required

for a circular orbit. The accuracies of the RK methods against the exact circular orbit
are shown in Figure 8, in double- and quad-precision. Even in the double-precision
case, it may be seen that the fourth-order method takes approximately 50 times as long
to reach the 10−10 accuracy level as the 10th- and 12th-order methods, so the savings
are not insignificant. For very high accuracy, the 12th- and 14th-order methods clearly
perform better than the lower-order methods in this problem.

Another stable three-body system is the remarkable figure-eight system with three
equal masses and zero total momentum [8]. The three bodies are initially placed
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FIGURE 8. Maximum variation of position for each of the RK methods for the circular three-body
problem. The legend shows the different RK methods by their number of stages. The x-axis shows the
number of function evaluations per orbit. The y-axis shows the variation relative to the analytic value for
the final orbit. Both axes use log10 scaling. The upper panel shows results using 64-bit floats, the lower
using 128-bit floats.

co-linearly, as shown in the right panel in Figure 2. The body at the origin has twice
the velocity of the other two bodies. This system has a region of stable orbits. The
accuracy of the integration methods is tracked by variations in the total momentum of
the system (which should remain zero). The accuracy of the RK methods is shown in
Figure 9. As with the circular three-body system, the 12th- and 14th-order methods
clearly out-perform the other methods in the high-accuracy region, but perform
poorly when used with large stepsizes, particularly the 14th-order method. In the
double-precision case, the fourth-order method is very slow, and even the sixth-order
method is significantly slower than the higher-order methods.

3.3. Solar System orbits We now consider the orbits of the nine major bodies in
our Solar System (the sun and the eight planets). Initial position and velocity data
were obtained from the JPL web interface [22]. The co-ordinate system was then
adjusted to place the origin at the barycentre, and the system integrated forward in
time. To measure the accuracy of the RK integrators, the z-component of the initial
angular momentum was compared with the angular momentum at each time-step
in the final (Earth) year of the simulation, and the largest relative error displayed
against each RK method for a various number of function evaluations per (Earth)
year. For context, the variation of the z-component of momentum for each of the
bodies is shown in Figure 10, smoothed for clarity using a 25-year moving average,
to remove short-timescale, high-amplitude variabilities. It may be seen that while the
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FIGURE 9. Final maximum absolute value of the variation of angular momentum for each of the RK
methods for the figure-eight three-body problem. The legend shows the different RK methods by their
number of stages. The x-axis shows the number of function evaluations per orbit. The y-axis shows the
maximum absolute value of the total angular momentum for the final orbit. Both axes use log10 scaling.
The upper panel shows results using 64-bit floats, the lower using 128-bit floats.

FIGURE 10. Variation in the z-component of angular momentum for each of the nine Solar System bodies
over 500 000 years, smoothed with a 25-year moving average. The variation is dominated by Jupiter
(black) and Saturn (red online), exchanging momenta over a 50 000-year period. The total momentum of
the system should remain zero.

total momentum of the system should remain constant, there is significant transfer of
momenta between the bodies. This transfer is dominated by Jupiter and Saturn, with a
period of just over 50 000 years. There is also a longer envelope visible with a period
of approximately 600 000 years. However, for the main purpose of this paper, the
concern is with accuracy, which in this case may be assessed by considering the change
in total momentum. Total momentum should be conserved, so the best integration
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FIGURE 11. Final maximum absolute value of the variation in the total system z-component of angular
momentum for each of the RK methods for the nine-body Solar System. The legend shows the different
RK methods by their number of stages. The x-axis shows the number of function evaluations per orbit.
The y-axis shows the maximum absolute value of the total angular momentum for the final orbit. Both
axes utilize log10 scaling. The upper panel shows results using double precision (64-bit), the lower using
quad-precision (128-bit).

methods have the lowest variation. A comparison of the seven RK methods is shown
in Figure 11, considering the total change in the z-component of momentum after a
period of time. The double-precision model (upper panel) was simulated over a period
of 500 000 earth years. Calculations using quad-precision numbers are not directly
supported in hardware, resulting in much longer runtimes. To perform comparisons
in a reasonable time, the quad-precision runs were conducted over a period of 1000
simulated earth years.

The comparison of the RK methods here shows similarities with the two- and
three-body systems discussed previously. The higher-order methods generally perform
better, reaching higher accuracy for the same computational effort, given a suitably
small time-step. Again, caution is advised when using the highest-order method as
it may perform worse than the other methods for large time-steps. The 10th- and
12th-order methods perform well consistently, with the 12th-order method clearly
outperforming lower-order methods in the quad-precision simulation. The 14th-order
method does not appear to be a good choice in the double precision runs, but may
outperform all lower-order methods in the quad-precision simulation, given a small
enough time-step.

3.3.1. Long-time simulations Over a long period of time, it was found that the
simulation fails at some point. Presumably, this is due to accumulation of errors
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FIGURE 12. Variation in z-component of angular momentum for the nine-body Solar System. The upper
panel show the results using 85 time-steps per earth year, which become unstable at 4.9 million years.
The lower panel used 90 time-steps per year and became unstable at 13.4 million years.

associated with the Runge–Kutta approximation (also known as “truncation errors”).
This is demonstrated in Figure 12 by the diverging of the extrema of the angular
momenta of the orbiting bodies, occurring at approximately 4.9 million years for a
simulation using 85 time-steps per earth year, and at 13.4 million years when using 90.
Up until this point, the individual angular momenta show a pattern similar to that seen
in Figure 10, oscillating back and forth regularly, but staying between extrema which
do not vary. The point in time at which this divergence occurs is strongly dependent
on the stepsize (Δt) used. Feagin’s 17-step RK10 method was used for these long-term
Solar System simulations. In Figure 13, we show a simulation using 95 time-steps per
year (dashed lines), laid over the 90 time-steps simulation (dotted lines), and zoomed
in to the time when the divergence occurs. We see that the two simulations are visually
indistinguishable until approximately 13.38 million years, at which time the coarser
simulation (larger Δt) diverges rapidly. In the lower panel, we have added the results
from use of the fourth-order symplectic method, using 80 time-steps per year. This
method maintains angular momenta terms as well as Feagin’s RK10 method using
95 time-steps per year. As noted earlier, this is the design strength of symplectic
methods, but they do not match the accuracy of the higher-order RK methods. That is,
symplectic methods maintain the conserved quantities, such as energy and momentum,
but this does not guarantee that the bodies will be in the correct position at each time,
as was demonstrated by comparison to an analytical model in Figure 7.

The time to failure (log10 scale) is plotted against the number of points per year in
Figure 14. This shows a strong power-law correlation between the number of time-steps
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FIGURE 13. Comparison of the variation in the z-component of angular momentum for the nine-body
Solar System using Feagin’s RK10 method. In the upper panel, we have used dotted lines (with squares)
and dashed lines (with circles) for 90 or 95 points per year, respectively. It may be seen that the two
methods diverge at 1.338 × 107 years. A fourth-order symplectic method has been added in the lower
panel, shown with a dash-dot line, with “+” markers. This symplectic simulation used 80 points per year,
with four function calls per point. Additional magnification is used in the lower panel. By observing that
the “+” and circle markers stay together, it is apparent that the symplectic method maintains the angular
momenta terms better than a much slower (90 points per year) RK method.

used and the time at which numerical failure occurs. However several points did not
fit this model well, with some failing significantly earlier than expected. We assume
that this is due to a particular value of time-step causing a function evaluation at a
time when there is higher than normal accelerations, such as a conjunction of planets.
This causes a larger truncation error which slowly builds, eventually causing failure
of the integration procedure. Perhaps this is an example of a slow-burning numerical
instability such as that mentioned in relation to the DuFort–Frankel averaging method
by Galloway and Ivers [16]. While caution is indicated, the simulation time is clearly
significantly extended by increasing the number of time-steps. The graph in Figure 14

https://doi.org/10.1017/S1446181122000141 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181122000141


[19] A comparison of explicit Runge–Kutta methods 245

FIGURE 14. The number of years until numerical failure of the Solar System model, plotted using a log10
scale, against the number of points per year used in the simulation. While the graph has a strong linear
correlation, there is significant variability, as seen in the data at 62, 64 and 65 points per year.

suggests that 120 points per year would be sufficient to allow a simulation up to
one billion years. It is possible that adaptive time-stepping methods would avoid this
instability, as they do not accept truncation errors larger than a pre-defined value.

3.4. Gravitational wave emissions A simple two-body relativistic system, a
pseudo-circular double black hole binary, is considered in Figure 15. The positions
of the black holes and the gravitational wave components are computed using the
post-Newtonian equations given by Boyle et al. [5], which are a General Relativistic
approximation, valid to 3.5 post-Newtonian order. These are equivalent to the more
general elliptical orbit equations of Hinder et al. [18], but with equal masses and zero
eccentricity. These equations are a good approximation for the inspiral until close to
the merger.

Using the geometrized units c = G = 1, the quantities to be integrated are

ẋ =
16x5

5m

[
1 − 487

168
x + 4πx3/2 +

274229
72576

x2 − 254π
21

x5/2

+

(178384023737
3353011200

+
1475π2

192
− 1712γ

105
− 856

105
ln(16x)

)
x3 +

3310π
189

x7/2
]
,

φ̇ =
x3/2

m
,

where x is related to the orbital radius r by

r = m
[1
x
− 11

12
+

43
36

x +
38745π2 − 1886084

725760
x2
]
.

The gravitational wave displacement for the h+ polarisation at a distance R from the
binary is calculated as
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FIGURE 15. Accuracy of the Binary Black Hole simulation. The top left panel shows the orbital paths of
the two equal mass black holes. The top right panel shows the value over time of the gravitational wave
component h+. The bottom panels compare the accuracy of the RK methods using double-precision (left)
and quad-precision (right). The final value of h+ in each simulation is compared against the value of h+
calculated using high precision and very small time-steps. Both axes use log10 scaling.

h+ =
1

2R
[cos 2φ(−2 + 17/4x − 4πx3/2 + 15917/2880x2 + 9πx5/2)

+ sin 2φ(−x3/2[12 ln(x) − 22/3 + 8γ] + x5/2[27 ln(x) − 47/10 + 18γ)])].

The orbital phase of one of the bodies is φ, and of the other, φ + π, while m is
the mass of each of the two bodies and γ is Euler’s constant. The constant R is the
distance to the observer, which for the purposes of this simulation has been arbitrarily
set to 90. In Figure 15, the inspiral of the two bodies is shown, along with the value
of the gravitational wave component h+ against time. These results are qualitatively
consistent with those of Huerta et al. [21]. As we are interested only in how well
the different RK methods perform, we have chosen arbitrary values for the mass
and initial separation. The value of h+ converges to a certain value as the accuracy
of the integration procedure improves, so the simulation was initially run at very
high accuracy, and that value of h+ was used to evaluate the lower accuracy runs.
The lower panels of Figure 15 show the performance of the RK methods against
number of function evaluations. The required precision in gravitational wave detection
events clearly warrants a high accuracy method. In achieving this high accuracy
in the quad precision case, the higher-order methods are seen to be significantly
faster than the lower-order methods. Optimized computational efficiency for the
desired precision improves methods describing the inspiral phase of black hole binary
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systems, which may aid in the detection of a greater breadth of GW events using
LIGO.

4. Conclusions

While the particular choice of ERK method depends on the problem, these
investigations suggest that the classic RK4 method is rarely a good choice when both
efficiency and accuracy are important, at least for the types of systems considered here.
The 10th- and 12th-order methods consistently out-perform lower-order methods, at
both double and quadruple precision. The 14th-order method appears to be on course
to exceed all lower methods if very high accuracy is desired, but caution should be
used, as it may under-perform all of the methods used here for large stepsizes, as may
be seen in most of the figures. We note that in a very different setting, fluid flow over a
bump [15], we tested these ERK integrators, and found at least an order of magnitude
decrease in run-time by choosing Zhang’s 10th-order method [37] over the classic
RK4 method, for the same level of accuracy. This suggests that modern higher-order
integrators may be worth considering as an alternative to the classic RK4 method in a
wide range of problems.

Together with hardware improvements and GPU acceleration, these new integrators
have allowed a great improvement in accuracy of numerical integration over the last
ten to twenty years. Problems that could not be simulated accurately in a reasonable
amount of time, or without more sophisticated integration techniques, may now be
solved by researchers with simple code running on modest hardware. Additionally,
these explicit methods are easily implemented on graphics hardware for very parallel
data applications, such as n-body systems with large numbers of bodies or for fluid
flow problems.

The more general conclusion is that in many cases, it may be worth testing a
range of integration methods to determine those well suited to the problem at hand,
before committing to a large computational integrative task. The standard format of
the coefficients of the ERK methods (the Butcher tableau) makes it particularly easy
to write a routine to test ERK methods on a sample problem, similar to the large
computational task, to determine an optimal method. Savings in computational time
can be significant.
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