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On the core of ideals

Craig Huneke and Ngô Viêt Trung

Abstract

This paper studies the core of an ideal in a Noetherian local or graded ring. By definition,
the core of an ideal is the intersection of all reductions of the ideal. We provide computa-
tional formulae for the determination of the core of a graded ring, meaning the core of the
unique homogeneous maximal ideal. We then apply the formulae to give answers to several
questions raised by Corso, Polini and Ulrich. We are also able to answer in the positive
a conjecture raised by these three authors concerning a closed formula for the core. We
give a positive answer to their question in the case in which the ring is Cohen–Macaulay
with a residue field of characteristic 0, and in the case the ideal is equimultiple.

Introduction

Let I be an ideal in a Noetherian ring. An ideal J ⊆ I is called a reduction of I if there is a positive
number n such that JIn = In+1. In other words, J is a reduction of I if and only if I is integrally
dependent on J (see [NR54]). The core of I, denoted by core(I), is defined to be the intersection of
all reductions of I.

The core of ideals was first studied by Rees and Sally [RS88], partly due to its connection to the
theorem of Briançon and Skoda. Later, Huneke and Swanson [HS95] determined the core of integrally
closed ideals in two-dimensional regular local rings and showed a close relationship to Lipman’s
adjoint ideal. Recently, Corso, Polini and Ulrich [CPU01, CPU02] gave explicit descriptions for the
core of certain ideals in Cohen–Macaulay local rings, extending the result of [HS95]. In these two
papers, several questions and conjectures were raised which provided motivation for our work. More
recently, Hyry and Smith [HS02] have shown that the core and its properties are closely related to
a conjecture of Kawamata on the existence of sections for numerically effective line bundles which
are adjoint to an ample line bundle over a complex smooth algebraic variety, and they generalize
the result in [HS95] to arbitrary dimension and more general rings. Nonetheless, there are many
unanswered questions on the nature of the core. One reason is that it is difficult to determine the
core and there are relatively few computed examples.

Our focus in this paper is in effective computation of the core with an eye to partially answering
some questions raised in [CPU01, CPU02]. A first approach to understanding the core was given
by [RS88]. For an ideal I in a local Noetherian ring (R,m) having analytic spread �, one can
take � generic generators of I in a ring of the form R[Uij ]mR[Uij ] which generate an ideal Q. This
ideal is then a generic minimal reduction of the extended ideal and a natural question is whether
core(I) = Q∩R. In [CPU01, Theorem 4.7] this equality is proved under special conditions: namely,
if R is a local Cohen–Macaulay ring with infinite residue field, and I satisfies G� and is weakly
(�−1)-residually S2. While these conditions look somewhat technical, every m-primary ideal satisfies
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the conditions. In particular the core of an m-primary ideal in a local Cohen–Macaulay ring can
be computed as the contraction of a generic reduction. In [CPU01, Example 4.11] they give an
example to show this is not true if R is not Cohen–Macaulay. Under the same conditions, it is
also shown in [CPU01, Theorem 4.8] that, if R → R′ is a flat local homomorphism of Cohen–
Macaulay local rings with infinite residue fields, I is an ideal of R of analytic spread �, I and
IR′ are G� and universally weakly (� − 1)-residually S2, then core(IR′) = core(I)R′. They raise
as questions whether or not core(I) ⊆ Q ∩ R in general and whether or not for arbitrary flat
local homomorphisms core(I)R′ ⊆ core(IR′). We are able to give partial answers to both of these
questions (see the discussion below).

In [CPU02, Conjecture 5.1] the following very general conjecture was made concerning how to
calculate the core.

Conjecture 0.1. Let R be a local Cohen–Macaulay ring with infinite residue field. Let I be an
R-ideal of analytic spread � that satisfies G� and is weakly (�−1)-residually S2. Let J be a minimal
reduction of I and let r denote the reduction number of I with respect to J . Then

core(I) = (Jr : Ir)I = (Jr : Ir)J = Jr+1 : Ir.

An interesting case of this conjecture occurs when I is an equimultiple ideal. In this case the
conditions G� and weakly (�− 1)-residually S2 are automatically satisfied, so the conjecture applies
to all such ideals. In [HS02, Theorem 1.3.3], it is shown that the core of I is equal to Jn+1 : In for
n � 0 provided I is equimultiple, R contains the rational numbers, and R[It] is Cohen–Macaulay.
We are able to verify part of Conjecture 0.1 for equimultiple ideals in local rings with characteristic-0
residue field, namely that core(I) = Jr+1 : Ir. We have been informed that this result has been
obtained independently by Polini and Ulrich when dimR = 1 or when R is a Gorenstein ring [PU04].
The one-dimensional case of this conjecture also follows from the work of Hyry and Smith [HS02].

Another main result of this paper is a closed formula for the graded core of the maximal graded
ideal of standard graded algebras over a field. Let A be a standard graded algebra over a field k.
A reduction of A is a graded ideal Q generated by linear forms such that Qn = An for all large n.
Similarly as in the local case, we define the core of A, denoted by core(A), to be the intersection of
the (minimal) reductions of A. In other words, core(A) is the intersection of the graded reductions
of the irrelevant ideal of A. The importance of the graded core of a homogeneous ideal has recently
been shown by Hyry and Smith [HS02].

If k is an infinite field, every minimal reduction of A can be considered as a specialization of
an ideal Qu generated by generic linear forms in a polynomial ring A[u]. The parameter space
of specializations which are minimal reductions of A has been described explicitly in [Tru03].
This leads us to the interesting problem of determining the intersection of the specializations of
a graded module over k[u] upon a given locus. We are able to give an effective solution to this
problem when k is an algebraically closed field (Corollary 1.4). Combining this result with a strati-
fication of the parameter space of minimal reductions of A we get a closed formula for core(A) in
terms of the generic ideal Qu (Theorem 1.6). This formula allows us to study basic properties of
the graded core. For instance, we can show that, in general, core(A ⊗k E) �= core(A) ⊗k E, where
E is a field extension of k (Example 1.8).

Our formula for the graded core of the maximal irrelevant ideal is perhaps more interesting
when the base ring is not Cohen–Macaulay. In terms of computation, one can always intersect
arbitrary minimal reductions and hope for stabilization. This strategy is particularly effective in the
Cohen–Macaulay case where there is a bound for how many such intersections are needed [CPU01].
However, in the non-Cohen–Macaulay case, one has to take into account special minimal reductions
which can not be chosen arbitrarily, due to the stratification in our formula.
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The results on the core of graded algebras will be found in § 1. Section 2 largely deals with
the core of ideals in local rings. We construct counter-examples to some open questions on the
core raised in [CPU01] and [Tru03]. In particular, we show that the equation core(IR′) = core(I)R′

does not hold for an arbitrary flat local homomorphism R → R′ of Cohen–Macaulay local rings
(Example 2.4). In § 3 we settle Conjecture 0.1 in the affirmative for equimultiple ideals in
Cohen–Macaulay rings with characteristic-0 residue field (Theorem 3.7). In particular, we can prove
in the one-dimensional case that core(I) = IK, whereK is the conductor of R in the blowing-up ring
at I (Theorem 3.2).

1. Core of graded algebras

Let A =
⊕

n�0An be a standard graded algebra over an infinite field k with d = dimA. Let
x1, . . . , xm be linear forms which generate the vector space A1. For every point α = (αij | i =
1, . . . , d, j = 1, . . . ,m) ∈ P

N
k , N := dm − 1, we will denote by Qα the ideal generated by d linear

forms
yi = αi1x1 + · · · + αimxm (i = 1, . . . , d).

We may consider Qα as a point of the Grassmannian G(d,m). However, for computational purposes
we will study the properties of Qα in terms of α.

Let u = (uij | i = 1, . . . , d, j = 1, . . . ,m) be a family of N+1 indeterminates. Consider d generic
elements

zi = ui1x1 + · · · + uimxm (i = 1, . . . , d).
For every integer n � 0 fix a basis Bn for the vector space An. For n � 1 we write every element
of the form zif , i = 1, . . . , d, f ∈ Bn−1, as a linear combination of the elements of Bn. Let Mn

denote the matrix of the coefficients of these linear combinations. Then Mn is a matrix with entries
in k[u]. For every integer t � 0 let It(Mn) denote the ideal of k[u] generated by the t-minors
of Mn. Put hn = dimk An. Let Vn be the zero locus of Ihn(Mn) in P

N
k . It was shown in [Tru03,

Theorem 2.1(i)] that P
N
k = V0 ⊇ V1 ⊇ · · · ⊇ Vn ⊇ · · · is a non-increasing sequence of projective

varieties. This sequence must be stationary for n large enough. Hence we can introduce the number

r := max{n | Vn �= Vn+1}.
By [Tru03, Theorem 2.1(ii)] we get the following parametric characterization for the minimal
reductions of A.

Proposition 1.1. The ideal Qα is a minimal reduction of A if and only if α �∈ Vr+1.

The number r introduced above has a clear meaning. For every minimal reduction Q of A
let rQ(A) denote the largest number n such that Qn �= An. Then rQ(A) is called the reduction
number of Q. If Q = (x1, . . . , xd), then rQ(A) is the maximum degree of the minimal generators of
A as a graded module over its Noether normalization k[x1, . . . , xd] [Vas96]. The supremum of the
reduction numbers of minimal reductions of A is called the big reduction number of A [Vas99] and
we will denote it by br(A). It was shown in [Tru03, Corollary 2.3] that

br(A) = r.

Upper bounds for br(A) in terms of other invariants of A can be found in [Tru87], [Vas96] and
[Vas99]. We note that it is obvious that

mbr(A)+1 ⊆ core(A).

Let Qu be the ideal of A[u] generated by the generic elements z1, . . . , zd. It is clear that every
minimal reduction Qα is obtained from Qu by the substitution u to α. If we view A[u] as a graded
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algebra over k[u], then every form of a fixed degree n of Qα is the evaluation of a form of degree n
in u of Qu at α. Since A[u]n is a free module of rank hn over k[u], we may represent every form of
degree n in u of Qu as a vector of hn polynomials in k[u]. If we evaluate these polynomials at α,
we will get a vector which represents a form of degree n of Qα and all forms of Qα are obtained in
this way. By Proposition 1.1, a form of degree n belongs to core(A) if and only if, for all α �∈ Vr+1,
it is the evaluation of some form of degree n in u of Qu at α. Therefore, to compute core(A) we need
to consider the following problem.

Problem. Let E be a graded submodule of a free module F = k[u]h, h � 1. Consider the elements
of E as vectors of h polynomials in k[u]. Given a projective variety V ⊂ P

N
k , determine the set

coreV (E) :=
⋂

α�∈V

Eα,

where Eα ⊆ kh denotes the vector space generated by all vectors obtained from vectors of E by the
substitution u to α.

This problem can be effectively solved if k is an algebraically closed field. In fact our solution
can be phrased quite generally and computationally solves how to compute

⋂
mmM where M is

a finitely generated R-module, R is a Noetherian Jacobson ring, and the intersection runs over all
maximal ideals in an open set of Spec(R). Recall that R is said to be Jacobson if every prime ideal
is the intersection of the maximal ideals containing it. Explicitly, we have the following proposition.

Proposition 1.2. Let R be a Noetherian Jacobson ring. Let M be a finitely generated R-module
with a presentation

G
φ−→ F −→M −→ 0,

where G and F are finitely generated free R-modules. Let Ij be the ideal of j-minors of φ, where, by
convention, I0 = R. Fix an ideal J in R, and let D(J) ⊆ mspec(R) be the open set in the maximal
spectrum of R given by all maximal ideals not containing J . Then,⋂

m∈D(J)

mM =
⋂
t�1

(
√
It )M :M JIt−1.

Proof. We first reduce to the case J = R. Let v ∈ ⋂
m∈D(J) mM . Let x ∈ J be arbitrary. Then

xv ∈ ⋂
m∈mspec(R) mM . We assume we have proved the proposition in the case that J = R, in which

case D(J) = mspec(R). Then

xv ∈
⋂
t�1

(
√
It )M :M It−1.

Since x is arbitrary in J , it follows that

v ∈
⋂
t�1

(
√
It )M :M JIt−1.

Conversely, suppose that

v ∈
⋂
t�1

(
√
It )M :M JIt−1.

For all x ∈ J ,

xv ∈
⋂
t�1

(
√
It )M :M It−1,

so assuming the case in which J = R, we have that xv ∈ ⋂
m∈mspec(R) mM . If m ∈ D(J), then

xv ∈ mM will imply that v ∈ mM , because M/mM is a vector space over R/m, and the image of x
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in R/m is a unit. Thus, v ∈ ⋂
m∈D(J) mM . It remains to prove the proposition in the case in which

J = R, which we henceforth assume.
Let m be a maximal ideal of R. We adopt the following notation: for a module or element, we

write an overline for the image after tensoring with R/m.
We prove that ⋂

t�1

(
√
It )M :M It−1 ⊆

⋂
m∈mspec(R)

mM.

Let v be an element in
⋂

t�1(
√
It )M :M It−1. Let m be an arbitrary maximal ideal of R, and set r

equal to the rank of φ. Then Ir+1(φ) ⊆ m, and Ir is not contained in m. Choose an element c /∈ m

such that c ∈ Ir. By assumption, we have that cv ∈ √
Ir+1M , and hence c · v = 0 in M = M/mM .

But c is a non-zero element of the field R/m, and thus v = 0, i.e. v ∈ mM .
To finish the proof we show the opposite containment, i.e.⋂

m∈mspec(R)

mM ⊆
⋂
t�1

(
√
It )M :M It−1.

Let v ∈ ⋂
m∈mspec(R) mM . Choose a lifting u ∈ F of v. By assumption, for all maximal ideals m,

v = 0, so that u is in the image of φ. We claim that for all t, It−1v ⊆ (
√
It )M . To prove this it

suffices to prove that for all t, It−1u ⊆ (
√
It )F + Im(φ). Assume this is not true for some t, which

we fix. Replace R by R/
√
It, and M by M/(

√
It )M . For all maximal ideals m of R/

√
It, we have

that the image of v in M/(
√
It )M is in m(M/(

√
It )M), and to achieve a contradiction, it suffices

to prove that vIt−1 = 0. Henceforth we assume that
√
It = 0. In this case the rank of φ is at most

t− 1. Let G = Rs and F = Rh. Adjoin u to the matrix φ to get an h by s+ 1 matrix ψ whose last
column is u. For all maximal ideals m, the rank of ψ is the same as the rank of φ. Hence the rank
of φ and thus the rank of ψ is at most t− 1. From Lemma 1.3 below it follows that It(ψ) = 0. Let
e1, . . . , es be the given basis of G. If we adjoin the row (φ(e1), . . . , φ(es), u) to ψ to get a new matrix,
then all new t-minors (which involve the row (φ(e1), . . . , φ(es), u)) vanish. Expanding these minors
we see that the product of any (t− 1)-minor of φ with u can be expressed as a linear combination
of φ(e1), . . . , φ(es). Therefore, It−1(φ)u ∈ Im(φ), proving this direction.

Lemma 1.3. Let R be a reduced Jacobson ring, and let φ : Rs −→ Rh be a homomorphism of free
R-modules. Then rank(φ) = max{rank(φ)} where the maximum is taken over all maximal ideals m

of R, and where φ denotes the map from (R/m)s −→ (R/m)h induced by φ.

Proof. Clearly the maximum is at most the rank of φ. Set r = rank(φ). Then the (r+1)-size minors
of φ are zero, and there is a non-zero r × r minor. Since R is reduced and Jacobson, there is a
maximal ideal m which does not contain Ir(φ). Passing to R/m gives that r = rank(φ).

Now we use Proposition 1.2 to study the problem above. Let E be a graded submodule of a free
module F = k[u]h for h � 1. Choose a set of generators g1, . . . , gs for E. Let B denote the h × s
matrix of the coordinates of g1, . . . , gs. For every integer t � 0 let It be the ideal of k[u] generated
by the t-minors of B. We let M = F/E, and denote the canonical projection of F onto M by π.

Corollary 1.4. Assume that k is an algebraically closed field. Let J be an ideal of k[u] such that√
J is the defining ideal of V . Then

coreV (E) =
⋂
t�1

[(E +
√
It F ) : JIt−1] ∩ kr.

Proof. Let f be an arbitrary vector in coreV (E). We think of f as living in k[u]h as a vector of
constants. Note that α /∈ V if and only if the maximal ideal mα ∈ D(J). Then f ∈ Eα if and only if
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π(f) ∈ mαM . Hence by Proposition 1.2, we have that f ∈ coreV (E) if and only if f ∈ ⋂
α/∈V Eα, if

and only if

π(f) ∈
⋂

mα∈D(J)

mαM =
⋂
t�1

(
√
It )M :M JIt−1,

if and only if

f ∈
⋂
t�1

[(E +
√
It F ) : JIt−1].

The above corollary allows us to compute the graded pieces of core(A). But what we need is a
closed formula for the whole ideal core(A). Such a formula can be found by taking into account all
possible Hilbert functions of minimal reductions of A. First, we shall describe the parameter space
of minimal reductions with a given Hilbert function.

Let n and t be fixed positive integers. We denote by Vn,t the zero locus of It(Mn) in P
N
k ,

where It(Mn) is the ideal of k[u] generated by the t-minors of the matrix Mn introduced before
Proposition 1.1. Note that Vn,1 ⊆ Vn,2 ⊆ · · ·Vn,t ⊆ · · · is a non-decreasing sequence of subschemes
of P

N
k and that Vn = Vn,hn , where hn = dimkAn.

Lemma 1.5. With the above notation we have

Vn,t+1 \ (Vn,t ∪ Vr+1) = {α ∈ P
N
k | Qα is a minimal reduction of A with dimk(Qα)n = t}.

Proof. Let Mn(α) denote the matrix obtained from Mn by the substitution u to α. By the def-
inition of Mn we have dimk(Qα)n = rankMn(α). Hence dimk(Qα)n = t since α ∈ Vn,t+1 \ Vn,t.
By Proposition 1.1, Qα is a minimal reduction of A if and only if α �∈ Vr+1. The conclusion is
immediate.

Let Qα be an arbitrary minimal reduction of A. For n � r + 1 we have (Qα)n = An by
[Tru03, Theorem 2.1(ii)], hence dimk(Qα)n is independent of the choice of Qα. Therefore, the Hilbert
function of Qα is determined by the finite sequence of values dimk(Qα)n, n = 1, . . . , r.

To every sequence H = {a1, . . . , ar} of r positive integers we associate a set

VH :=
r⋂

n=1

(Vn,an+1 \ (Vn,an ∪ Vr+1)).

We call H an admissible sequence if VH �= ∅. Let S be the set of all admissible sequences. By
Lemma 1.5 we have

VH = {α ∈ P
N
k | Qα is a minimal reduction of A with dimk(Qα)n = an, n = 1, . . . , r}.

Therefore we may view S as the set of all possible Hilbert functions of minimal reductions of core(A).
The next theorem uses the finiteness of S to give a closed formula for core(A). We believe this

is the first general such formula without conditions on A.

Theorem 1.6. Assume that k is an algebraically closed field. Put J = Ihr+1(Mr+1). Then

core(A) =
⋂

(a1,...,ar)∈S

[(
Qu +

r∑
n=1

√
Ian+1(Mn)

)
: J

r∏
n=1

Ian(Mn)
]
∩A.

Proof. For brevity let

C :=
⋂

(a1,...,ar)∈S

[(
Qu +

r∑
n=1

√
Ian+1(Mn)

)
: J

r∏
n=1

Ian(Mn)
]
∩A.
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We will first show that An ⊂ C for n � r + 1, which obviously implies that core(A)n ⊂ C. Write
every element of the form zif , i = 1, . . . , d, f ∈ Br, as a linear combination of the elements
of Br+1. By definition, Mr+1 is the matrix of the coefficients of these linear combinations. Since
hr+1 = dimk Ar+1 = �Br+1, the product of every hr+1-minor of Mr+1 with an element of Br+1 can
be written as a linear combination of the elements zif . From this it follows that JAr+1 ⊂ Qu. Hence
Ar+1 ⊂ (Qu : J)∩A ⊆ C. Since A is generated by the elements of A1, this implies An ⊂ (Ar+1) ⊆ C
for all n � r + 1.

Now we will show that core(A)n ⊂ C for n � r. By Proposition 1.1 we have

core(A)n =
⋂

α�∈Vr+1

(Qα)n.

Applying Corollary 1.4 we obtain⋂
α�∈Vr+1

(Qα)n ⊂
⋂
t�0

[(Qu +
√
It+1(Mn) ) : JIt(Mn)] ∩A.

For any sequence (a1, . . . , ar) ∈ S we have

(Qu +
√
Ian+1(Mn) ) : JIan(Mn) ⊆

(
Qu +

r∑
n=1

√
Ian+1(Mn)

)
: J

r∏
n=1

Ian(Mn).

Therefore ⋂
t�0

[(Qu +
√
It+1(Mn) ) : JIt(Mn)] ∩A ⊆ C.

So we get core(A)n ⊂ C for n � r. Summing up we can conclude that core(A) ⊆ C.

It remains to show that core(A) ⊇ C. Let f be an arbitrary element in C. By Proposition 1.1
we have to show that f ∈ Qα for all α �∈ Vr+1. For every positive integer n � r choose an to be the
unique positive integer with the property α ∈ Vn,an+1 \ Vn,an . Put H = {a1, . . . , ar}. Then α ∈ VH .
Hence H is an admissible sequence. From this it follows that

fJ
r∏

n=1

Ian(Mn) ⊆ Qu +
r∑

n=1

√
Ian+1(Mn).

Note that α is a zero of
∑r

n=1

√
Ian+1(Mn) and that there exists a polynomial c(u) ∈ J

∏r
n=1

Ian(Mn) such that c(α) �= 0. Since c(u)f ∈ Qu +
∑r

n=1

√
Ian+1(Mn), substituting u to α we get

f ∈ Qα. So we have proved that C ⊆ core(A). The proof of Theorem 1.6 is now complete.

The following example shows that the condition k being an algebraically closed field is necessary
in Theorem 1.6.

Example 1.7. Let A = R[x1, x2] = R[X1,X2]/(X3
1X2 + X1X

3
2 ,X

5
2 ). Then dimA = 1. Put Qu =

(u1x1 + u2x2) ⊂ R[u1, u2, x1, x2], where u1, u2 are two indeterminates. For every n let Bn be the
basis of An which consists of monomials (in x1, x2) that have the possibly highest rank in the
lexicographical order. The matrices Mn of the coefficients of the elements of the form (u1x1+u2x2)f ,
f ∈ Bn−1, written as linear combinations of elements of Bn, look as follows:

M1 =
(
u1 u2

)
,

M2 =
(
u1 u2 0
0 u1 u2

)
,
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M3 =


u1 u2 0 0

0 u1 u2 0
0 0 u1 u2


 ,

M4 =



u1 u2 0 0
0 u1 u2 0
0 −u2 u1 0
0 −u1 0 u2


 ,

M5 =



u1 u2 0
0 u1 u2

0 −u2 u1

0 0 −u1


 ,

M6 =


u1 0

0 u2

0 u1


 ,

M7 =
(
u1

0

)
,

Mn = (u1) (n � 8).

Therefore, V1 = V2 = V3 = P
1
R
, V4 = {u1 = 0} ∪ {u2 = 0} and Vn = {u1 = 0} for n � 5. Hence

r = br(A) = max{n | Vn �= Vn+1} = 4 and J = u1(u1, u2)2. Since the big reduction number is 4,
it follows that (x1, x2)5 ⊆ core(A). Since all minimal reductions of A have the form (α1x1 + α2x2)
with α1 �= 0 and since A is defined by forms of degree � 4, we can easily check that core(A)
has no elements of degree < 4 and x4

1, x
3
1x2, x

2
1x

2
2, x1x

3
2 ∈ core(A)4, x4

2 �∈ core(A)4. Therefore,
core(A) = (x4

1, x
3
1x2, x

2
1x

2
2). Note that

It(Mn) = (u1, u2)t, if t = 1, . . . , n (n � 3),

It(M4) =

{
(u1, u2)t, if t = 1, 2, 3,
u1u2(u2

1 + u2
2), if t = 4.

Then there are two admissible sequences {1, 2, 3, 3} and {1,2,3,4}. If Theorem 1.6 holds for the base
field R, we would get

core(A) = [(Qu, u1u2(u2
1 + u2

2)) : u1(u1, u2)11] ∩ [Qu : u2
1u2(u2

1 + u2
2)(u1, u2)8] ∩A

= (x4
1 + x2

1x
2
2, x

2
1x

3
2, x1x

4
2) �= (x4

1, x
3
1x2, x

2
1x

2
2),

which is a contradiction.

The next example shows that the formula core(A ⊗k E) = core(A) ⊗k E does not hold for
arbitrary field extension E of k.

Example 1.8. Let A = R[x1, x2] = R[X1,X2]/(X2
1X2 + X3

2 ,X
4
2 ). Then dimA = 1. Put Qu =

(u1x1 + u2x2) ⊂ R[u1, u2, x1, x2], where u1, u2 are two indeterminates. For every n let Bn be the
basis of An which consists of monomials (in x1, x2) that have the possibly highest rank in the
lexicographical order. The matrices Mn of the coefficients of the elements of the form (u1x1+u2x2)f ,
f ∈ Bn−1, written as linear combinations of elements of Bn, look as follows:

M1 =
(
u1 u2

)
,

M2 =
(
u1 u2 0
0 u1 u2

)
,

8
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M3 =


u1 u2 0

0 u1 u2

0 −u2 u1


 ,

M4 =


u1 u2

0 u1

0 −u2


 ,

M5 =
(
u1 u2

0 u1

)
,

M6 =
(
u1

0

)
,

Mn = (u1) (n � 7).

So we get V1 = V2 = P
1
R
, and Vn = {u1 = 0} for n � 3. Hence r = br(A) = max{n | Vn �= Vn+1} = 2

and J = (u3
1 + u1u

2
2). As a consequence, (x1, x2)3 ⊆ core(A), since in general mbr(A)+1 ⊆ core(A).

As all minimal reductions of A have the form (α1x1 + α2x2) with α1 �= 0 and since A is defined
by forms of degree > 2, one can easily check that core(A) does not contain any form of degree 2.
Therefore, core(A) = (x1, x2)3.

The core of A will be changed if we replace R by C. In this case, we have V1 = V2 = P
1
C
, V3 =

{u1 = 0} ∪ {u1 = ±iu2}, and Vn = {u1 = 0} for n � 4. Hence r = br(A) = max{n | Vn �= Vn+1} = 3
and J = u1(u1, u2). Note that

It(M3) = (u1, u2)2, if t = 1, 2,

I3(M3) = u1(u2
1 + u2

2).

We can easily verify that there are only two admissible sequences (1, 2, 2) and (1, 2, 3). By
Theorem 1.6 we get

core(A) = [(Qu, u1(u2
1 + u2

2)) : u1(u1, u2)6] ∩ [Qu : u2
1(u

2
1 + u2

2)(u1, u2)4] ∩A
= (x3

1 + x1x
2
2, x1x

3
2) �= (x1, x2)3.

The formula of Theorem 1.6 involves many operations with determinantal ideals. Hence we have
tried to find a simpler formula. By the same argument as in the last part of the proof of Theorem 1.6
we always have

(Qu : J∞) ∩A ⊆ core(A),
where Qu : J∞ denotes the set of all elements f ∈ A[u] such that fJn ∈ Qu for some positive
integer n. Since

√
J is the defining ideal of Vr+1 and P

N
k \ Vr+1 is the parameter space of minimal

reductions of A, one may raise the question whether core(A) = (Qu : J∞) ∩ A holds in general.
This question has a positive answer in the following case.

Corollary 1.9. Assume that k is an algebraically closed field. If the Hilbert function of every
minimal reduction Qα of A does not depend on the choice of α, then

core(A) = (Qu : J∞) ∩A.
Proof. It is sufficient to show that core(A) ⊆ (Qu : J∞) ∩ A. Let an = rankMn, n = 1, . . . , r, and
H = {a1, . . . , ar}. Then Ian(Mn) �= 0 and Ian+1(Mn) = 0. Hence Vn,an �= P

N
k and Vn,an+1 = P

N
k .

It follows that

VH = P
N
k

∖( r⋃
n=1

Vn,an ∪ Vr+1

)
�= ∅.

So H is an admissible sequence. By the independence of Hilbert functions of minimal reductions,
the parameter space of minimal reductions equals the parameter space of minimal reductions with

9
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Hilbert functions determined by H. Hence we must have VH = P
N
k \Vr+1. This implies Vn,an ⊆ Vr+1,

hence
√
Ian(Mn) ⊇ J for all n = 1, . . . , r. Therefore, applying Theorem 1.6 we get

core(A) =
(
Qu : J

r∏
n=1

Ian(Mn)
)
∩A ⊆ (Qu : J∞) ∩A.

The condition on the independence of Hilbert functions of minimal reductions is satisfied if A
is a Cohen–Macaulay ring. In this case, one can even show that

core(A) = (Qu : J∞) ∩A = QuA(u) ∩A,
where A(u) := A ⊗k k(u) (the proof is similar to that of [CPU01, Theorem 4.7(b)] or [Tru03,
Corollary 4.6]).

Now we will use Theorem 1.6 to construct a counter-example to the question whether core(A) =
(Qu : J∞) ∩A holds in general.

Example 1.10. Let A = k[x1, x2] = k[X1,X2]/(X2
1X

2
2 ,X

5
2 ). Then dimA = 1. Put Qu = (u1x1 +

u2x2) ⊂ k[u1, u2, x1, x2], where u1, u2 are two indeterminates. For every n let Bn be the basis of An

which consists of monomials of degree n in x1, x2. If we arrange these monomials in lexicographical
order, then the matrices Mn of the coefficients of the elements of the form (u1x1+u2x2)f , f ∈ Bn−1,
written as linear combinations of elements of Bn, look as follows:

M1 =
(
u1 u2

)
,

M2 =
(
u1 u2 0
0 u1 u2

)
,

M3 =


u1 u2 0 0

0 u1 u2 0
0 0 u1 u2


 ,

M4 =



u1 u2 0 0
0 u1 0 0
0 0 u2 0
0 0 u1 u2


 ,

M5 =



u1 u2 0
0 u1 0
0 0 u2

0 0 u1


 ,

M6 =


u1 u2

0 u1

0 0


 ,

Mn =
(
u1 u2

0 u1

)
(n � 7).

So we get V1 = V2 = V3 = P
1
k, V4 = {u1 = 0} ∪ {u2 = 0}, and Vn = {u1 = 0} for n � 5. Hence

r = br(A) = max{n | Vn �= Vn+1} = 4 and J = u2
1(u1, u2). Note that

It(Mn) = (u1, u2)n, if t = 1, . . . , n (n � 3),

It(M4) =

{
u2

1u
2
2, if t = 4,

(u1, u2)3, if t = 3.

Then we can easily check that there are only two admissible sequences (1, 2, 3, 3) and (1, 2, 3, 4).

10
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By Theorem 1.6 we get

core(A) = [(Qu, u1u2) : u2
1(u1, u2)10] ∩ [Qu : u4

1u
2
2(u1, u2)7] ∩A

= (x4
1, x

3
1x2, x1x

3
2).

On the other hand, we have

(Qu : J∞) ∩A = (x4
1, x

3
1x2, x1x

4
2) �= (x4

1, x
3
1x2, x1x

3
2).

One may also ask whether core(A) = QuA(u) ∩A holds for an arbitrary graded algebra A. The
reason for raising this question is the fact that QuA(u) is the generic minimal reduction of A(u).
As noted before, it has a positive answer if A is a Cohen–Macaulay ring. But, as in the local case
[CPU01, Example 4.11], this question has a negative answer in general.

Example 1.11. Let A = k[x1, x2]/(x1x2, x
3
2). Then dimA = 1 and we can put Qu = (u1x1 + u2x2).

It is easy to check that QuA(u) ∩ A = (x1, x2)2. Since x2
2 �∈ (x1), we have x2

2 �∈ core(A). Hence
core(A) �= QuA(u) ∩A.

Following Corso, Polini and Ulrich [CPU01, Question (iii)] one may weaken the above question
to whether core(A) ⊆ QuA(u) ∩ A for an arbitrary graded algebra A. Using Theorem 1.6 we can
give a positive answer when k is an algebraically closed field.

Corollary 1.12. Assume that k is an algebraically closed field. Then

core(A) ⊆ QuA(u) ∩A.
Proof. Let an = rankMn, n = 1, . . . , r, andH = {a1, . . . , ar}. As shown in the proof of Corollary 1.9,
H is an admissible sequence. Note that Ian+1(Mn) = 0 for all n = 1, . . . , r. Then we can deduce
from Theorem 1.6 that

core(A)A(u) ⊆
(
Qu : J

r∏
n=1

Ian(Mn)
)
A(u) = QuA(u).

Since core(A) ⊆ core(A)A(u) ∩A, this implies the statement.

2. Core of ideals in local rings

Let (R,m) be a local ring with infinite residue field k and I an ideal of R. Recall that an ideal J
is a reduction of I if there exists an integer n such that JIn = In+1. The least integer n with this
property is called the reduction number of I with respect to J , and we will denote it by rJ(I). The
big reduction number of I, denoted by br(I), is the supremum of all reduction numbers rJ(I), where
J is a minimal reduction of I with respect to inclusion.

These notions are closely related to their counterparts in the graded case. Let
F (I) =

⊕
n�0 I

n/mIn, the fiber ring of I. Then F (I) is a standard graded algebra over k. It is
known that every minimal reduction of I is generated by d elements [NR54], where d = dimF (I)
(the analytic spread of I). In fact, if c1, . . . , cd are elements of I and c∗1, . . . , c∗d are the residue
classes of c1, . . . , cd in I/mI, then J = (c1, . . . , cd) is a minimal reduction of I if and only if
Q = (c∗1, . . . , c∗d) is a minimal reduction of F (I). Moreover, we have rJ(I) = rQ(F (I)) and, in
particular, br(I) = br(F (I)) [Tru03, Lemma 4.1].

Assume that I = (a1, . . . , am). Write

ci =
m∑

j=1

αijaj (i = 1, . . . , d)

11
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and put α = (αij) ∈ Rmd. We may view J as a specialization at α of the ideal Q ⊂ R[u] generated
by the generic elements:

bi =
m∑

j=1

uijai (i = 1, . . . , d),

where u = {uij | i = 1, . . . , d, j = 1, . . . ,m} is a family of indeterminates. The parameter space of
the specializations of Q which are minimal reductions of I can be described explicitly as follows.

Put r = br(I). Fix two minimal bases of Ir and Ir+1 which consist of monomials in the elements
a1, . . . , am. Write the elements of the form big, where bi is a generic element of I (i = 1, . . . , d) and
g is a monomial of the fixed basis of Ir, as a linear combination of the elements of the fixed basis of
Ir+1 with coefficients in the polynomial ring R[u]. Let M denote the matrix of these coefficients. Let
J denote the ideal of R[u] generated by the (h × h)-minors of M , where h is the minimal number
of generators of Ir+1. It was shown in [Tru03, Proposition 4.3] that J is a minimal reduction of I if
and only if Jα = R, where Jα denotes the ideal of R obtained from J by the substitution u to α.

Unlike the graded case, the above description of the parameter space of minimal reductions does
not lead to a closed formula for the core. We only get the following inclusions.

Proposition 2.1. Let Q : J∞ denote the set of elements f ∈ R[u] with fJ n ⊆ Q for some positive
integer n. Then

Ir+1 ⊆ [Q : (Q : Ir+1)] ∩R ⊆ [Q : (IrQ : Ir+1)] ∩R ⊆ (Q : J∞) ∩R ⊆ core(I).

Proof. By the definition of J we have Ir+1J ⊆ IrQ. Therefore J ⊆ IrQ : Ir+1 ⊆ Q : Ir+1. From
this it follows that

Ir+1 ⊆ Q : (Q : Ir+1) ⊆ Q : (IrQ : Ir+1) ⊆ Q : J ⊆ Q : J∞.

It remains to show that (Q : J∞) ∩ R ⊆ core(I). But this can be shown by using the above
description of the parameter space of minimal reductions of I (see [Tru03, Theorem 4.4]).

Corso, Polini and Ulrich [CPU01, Proposition 5.4] have shown that, if R is a Cohen–Macaulay
local ring and I satisfies certain residual conditions (which include the case I is an m-primary ideal),
then core(I) = [Q : (Q : f r+1)] ∩ R for any nonzero-divisor f ∈ I. Since Q : (Q : f r+1) ⊆ Q : (Q :
Ir+1), this implies

core(I) = [Q : (Q : Ir+1)] ∩R = [Q : (IrQ : Ir+1)] ∩R = (Q : J∞) ∩R.
All the above facts have led to the question whether core(I) = (Q : J∞) ∩ R holds in general
[Tru03, § 4]. Using Example 1.10 we can now show that this is not the case.

Example 2.2. Let R = k[x1, x2](x1,x2) where k[x1, x2] := k[X1,X2]/(X2
1X

2
2 ,X

5
2 ). We will first show

that

core(m) = (x4
1, x

3
1x2, x1x

3
2)R.

Observe that k[x1, x2] is the graded algebra A considered in Example 1.10 and that core(A) =
(x4

1, x
3
1x2, x1x

3
2). Since every minimal reduction of A generates a minimal reduction of m, we have

core(m) ⊆ core(A)R = (x4
1, x

3
1x2, x1x

3
2)R. For the converse inclusion, let (c) be an arbitrary minimal

reduction of m. Write c = x + e with x ∈ A1 and e ∈ m2. Then x generates a minimal reduction
of core(A). Hence (x4

1, x
3
1x2, x1x

3
2) ⊆ xA3 = (c − e)A3. Since r(c)(m) � br(m) = br(A) = 4, we

have eA3 ⊂ m5 ⊆ (c). Therefore (c − e)A3 ⊂ (c), which implies (x4
1, x

3
1x2, x1x

3
2)R ⊂ (c). So we get

(x4
1, x

3
1x2, x1x

3
2)R ⊆ core(m). On the other hand, if we put Q = (u1x1 + u2x2)R, where u1, u2 are
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two indeterminates, then the matrix M is the matrix M5 of Example 1.10:

M =



u1 u2 0
0 u1 0
0 0 u2

0 0 u1


 .

Since m5 is generated by three elements, we get J = I3(M) = u2
1(u1, u2). Now it can be easily

checked that

(Q : J∞) ∩R = (x4
1, x

3
1x2, x1x

4
2)R �= (x4

1, x
3
1x2, x1x

3
2)R = core(m).

It is a natural problem to extend the results on the graded core to the core of maximal ideals in
local rings which arise from graded algebras. So we raise the following basic question.

Problem. Let (R,m) be the localization of a standard graded algebra A over an infinite field at its
maximal graded ideal. Is it true that core(m) = core(A)R?

Note that the above formula holds for the local ring of Example 2.2. Now we shall see that this
formula also holds if br(A) � 2.

Proposition 2.3. Let (R,m) be the localization of a standard graded algebra A over an infinite
field at its maximal graded ideal. Assume that br(A) � 2. Then

core(m) = core(A)R.

Proof. Since every minimal reduction of A generates a minimal reduction of m, we always have
core(m) ⊆ core(A)R. For the converse inclusion, let J = (c1, . . . , cd) be an arbitrary minimal
reduction of m, where d := dimA. Write ci = xi + ei with xi ∈ A1 and ei ∈ m2. Let Q be the ideal
generated by the elements x1, . . . , xd. Then Q is a minimal reduction of A. Hence

core(A)2 ⊆ Q2 ⊆ J + (e1, . . . , ed)m ⊆ J + m3.

Since br(m) = br(A) = 2, we have m3 ⊆ J . Therefore core(A)2 ⊂ J . This implies core(A) ⊂ J ,
because core(A) is generated by elements of degree � 2 unless A is a polynomial ring, and core(A)3 ⊂
m3 ⊆ J . So we can conclude that core(A)R ⊆ core(m).

Corso, Polini and Ulrich have asked whether core(IR′) ⊇ core(I)R′ does hold for every flat local
homomorphism R→ R′ of Cohen–Macaulay local rings. We shall use the results in the graded case
to construct a counter-example to this question.

Example 2.4. Let R = R[x1, x2, x3, x4](x1,x2,x3,x4), where

R[x1, x2, x3, x4] = R[X1,X2,X3,X4]/(X2
1X2 +X3

2 −X3
1X3, X

4
2 −X4

1X4).

Then R is a two-dimensional Cohen–Macaulay local ring. Let I = (x1, x2). Since R is defined by
equations which are homogeneous in x1, x2, we can easily check that

F (I) ∼= R[X1,X2]/(X2
1X2 +X3

2 ,X
4
2 ),

which is the graded algebra of Example 1.8. From this it follows that br(I) = br(F (I)) = 2.
Hence I3 ⊆ core(I). Moreover, every minimal reduction of I is generated by an element and this
element has precisely the form x = α1x1 + α2x2 + y with α1 �= 0 and y ∈ mI. Thus, every element
of core(I) can be written both as ax1 and as b(x1 + x2) for some elements a, b ∈ R, and we will
obtain a relation of the form ax1 − b(x1 + x2) = 0. Since R is defined by homogeneous equations of
degree � 3 in x1, x2, we can easily verify that core(I) is contained in I3. So we get core(I) = I3.
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Let R′ = R⊗R C. Similarly as above, we can also show that

F (IR′) ∼= C[X1,X2]/(X2
1X2 +X3

2 ,X
4
2 )

and that core(IR′) is contained in I3R′. Assume that core(IR′) = I3R′. For degree reason, we must
have I3R′ = JI2 for any minimal reduction J of IR′. By the relationship of the minimal reductions
of IR′ and F (IR′), this implies core(F (IR′)) = (X1,X2)3F (IR′). But we have seen in Example 1.8
that

core(F (IR′)) �= (X1,X2)3F (IR′).
So we get a contradiction. Now we can conclude that core(IR′) is strictly contained in core(I)R′ =
I3R′.

3. Core of equimultiple ideals in Cohen–Macaulay local rings

In this section we will concentrate on the core of equimultiple ideals in Cohen–Macaulay local rings
with characteristic-0 residue field. Recall that an ideal I is equimultiple if the minimal reductions
of I are generated by h elements, where h = ht(I). Our aim is to prove Conjecture 0.1 for this case.

First, we will consider the one-dimensional case. We shall need the following observation on the
ubiquity of minimal reductions.

Lemma 3.1. Let (R,m) be a one-dimensional local ring with infinite residue field. Let I be
an m-primary ideal. Let x be an element of I which generates a minimal reduction of I and y an
arbitrary element in I \ mI. Then we can find infinitely many units u ∈ R with different residue
classes in R/m such that (x− uy) is a minimal reduction of I.

Proof. Every element z ∈ I \ mI can be represented by a point α in a projective space over the
field k = R/m. Choose a set of generators x1, . . . , xm of I and write z = u1x1 + · · · + umxm,
where u1, . . . , um are elements of R. Let αi denote the image of ui in the residue field k = R/m.
By Proposition 1.1, there exists a proper projective variety V ⊂ P

m−1
k such that (z) is a minimal

reduction of I if and only if (α1, . . . , αm) �∈ V . If x, y are represented by the points α, β ∈ P
m−1
k ,

then x−uy is represented by the point α− cβ, where c denotes the image of u in k. The conclusion
follows from the fact that the line α− cβ intersects V only at finitely many points.

Using the above lemma we are able to characterize the core of m-primary ideals in a one-
dimensional Cohen–Macaulay local ring R as follows. For a given ideal I of R we will denote by
B(I) the blow-up of I, that is, B(I) =

⋃
n�1(I

n :F In), where F denotes the ring of fractions of R.
The ring B(I) is always in the integral closure of R.

Theorem 3.2. Let (R,m) be a one-dimensional Cohen–Macaulay local ring whose residue field has
characteristic 0. Let I be an m-primary ideal, and let B be the blow-up of I. Set K equal to the
conductor of B into R, and let x be an arbitrary minimal reduction of I. Then core(I) = xK = IK.

Proof. By [BP95, Theorem 1], we have that IK = zK for every element z ∈ R which generates a
minimal reduction of I. This implies that xK = IK ⊆ core(I). Since K =

⋂
r�1(x

r) : Ir, it remains
to prove that, for any element ax ∈ core(I) and any r � 1, we have a ∈ (xr) : Ir. Since the residue
field has characteristic 0, Ir is generated by the rth powers of the elements of I (see e.g. [Hun96,
Exercise 1.11]). Therefore, it is sufficient to show that ayr ∈ (xr) for any element y ∈ I \ mI.
By Lemma 3.1, there exist infinitely many units u ∈ R with different residue classes in R/m such
that (x− uy) is a minimal reduction of I. For such u we can write

ax = bu(x− uy)
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for some element bu ∈ R. Set c = y/x. Then c ∈ B [Nor59, Lemma 1]. Hence, for r large enough,
there is an integral relation

d0 + d1c+ · · · + dr−1c
r−1 + cr = 0

with d0, . . . , dr−1 ∈ R. Since a = bu(1 − uc), we have

a(1 + uc+ · · · + ui−1ci−1) = bu(1 − uici)

for all i � 1. It follows that
r−1∑
i=0

diu
r−i[a(1 + uc+ · · · + ui−1ci−1)] + a(1 + uc+ · · · + ur−1cr−1)

=
r−1∑
i=0

diu
r−ibu(1 − uici) + bu(1 − urcr) =

r−1∑
i=0

diu
r−ibu + bu ∈ R.

So we get the relation

(d0u
r + d1u

r−1 + · · · + dr−1u+ 1)a+ (d1u
r−1 + · · · + dr−1u+ 1)uac+ · · ·

· · · + (dr−1u+ 1)ur−2acr−2 + ur−1acr−1 ∈ R.

Varying u we obtain linear equations in a, ac, . . . , acr−2, acr−1 modulo R. The rows of the coefficient
matrix of r such equations have the form

(d0u
r + d1u

r−1 + · · · + dr−1u+ 1), (d1u
r−1 + · · · + dr−1u+ 1)u,

. . . , (dr−1u+ 1)ur−2, ur−1.

Decomposing the (r − 1)th column we see that the determinant of this matrix is equal to that of
the matrix of the rows

(d0u
r + d1u

r−1 + · · · + dr−1u+ 1), (d1u
r−1 + · · · + dr−1u+ 1)u, . . . , ur−2, ur−1.

Decomposing the other columns we will come to the Vandermonde matrix of the rows 1, u, . . . ,
ur−2, ur−1. By Lemma 3.1, we may choose the elements u in such a way that the determinant of
the Vandermonde matrix is a unit in R, and this proves that ac, ac2, . . . , acr−1 ∈ R. Since r can be
any number large enough, we get acr ∈ R for all r � 1. This implies ayr ∈ (xr), as desired.

The above theorem allows us to give a positive answer to Conjecture 0.1 in the special case in
which R is as in the above theorem. This is due to the following set of equivalences.

Proposition 3.3. Let (R,m) be a one-dimensional local ring with infinite residue field, and let I
be an ideal containing a nonzero-divisor. Let B be the blow-up of I and let K be the conductor of
B into R. Let x be an arbitrary minimal reduction of I with reduction number r. Then

xK = ((xr) : Ir)I = ((xr) : Ir)x = ((xr+1) : Ir),

and so the following are equivalent:

(i) core(I) = xK,

(ii) core(I) = ((xr) : Ir)I,
(iii) core(I) = ((xr) : Ir)x,
(iv) core(I) = ((xr+1) : Ir).

Proof. Observe that every minimal reduction of I, in particular x, is a nonzero-divisor. We first
prove that ((xr) : Ir)I = ((xr) : Ir)x = ((xr+1) : Ir). Clearly ((xr) : Ir)x ⊆ ((xr) : Ir)I and
((xr) : Ir)x ⊆ ((xr+1) : Ir). We prove that ((xr+1) : Ir) ⊆ ((xr) : Ir)I ⊆ ((xr) : Ir)x to prove all
three are equal. Let s ∈ ((xr+1) : Ir). Then, in particular, sxr = txr+1 for some t ∈ R, so that
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as x is a nonzero-divisor, s = xt. As xtIr ⊆ (xr+1), we have that t ∈ ((xr) : Ir), showing that
s ∈ ((xr) : Ir)x ⊆ ((xr) : Ir)I. Finally, let u ∈ ((xr) : Ir)I. Then xr−1u ∈ (xr) which forces u = xv
for some v ∈ R. But then xvIr ⊆ Ir · I((xr) : Ir) = xIr((xr) : Ir) (because Ir+1 = xIr), so that
v ∈ ((xr) : Ir), and u ∈ ((xr) : Ir)x.

It remains to prove that xK is equal to any of the other three ideals. We prove that K =
((xr) : Ir). If b ∈ K, then bIn ⊆ (xn) for all n � 1, since In/xn ⊆ B. Conversely, if w ∈ ((xr) : Ir),
then we claim that w ∈ K. Let b ∈ B. We can write b = a/xn for some a ∈ In. Without loss of
generality we can assume that n � r + 1. Then wa ∈ wIn ⊆ wxn−rIr ⊆ (xn), which implies that
wb ∈ R. Thus K = ((xr) : Ir), finishing the proof.

Corollary 3.4. Let (R,m) be a one-dimensional Cohen–Macaulay local ring whose residue field
has characteristic 0. Let I be an m-primary ideal of R, let x be a minimal reduction of I, and let r
be the reduction number of I with respect to x. Then

core(I) = ((xr) : Ir)I = (xr : Ir)x = ((xr+1) : Ir).

Proof. The corollary follows at once from Theorem 3.2 and Proposition 3.3.

It is easy to find examples which show that Corollary 3.4 does not hold if the ring A is not
Cohen–Macaulay.

Example 3.5. Let A = k[x1, x2](x1,x2) with k[x1, x2] := k[X1,X2]/(X1X2,X
2
2 ). Let I be the maximal

ideal of A. Then (x1) is a minimal reduction of I with reduction number 1. We have (x2
1) : I =

(x1, x2). Since x2 is not contained in (x1), we must have core(I) �= (x2
1) : I.

To pass from the one-dimensional case to the general case we shall need the following result of
Hyry and Smith.

Lemma 3.6 [HS02, Lemma 5.1.3]. Let R be a Cohen–Macaulay local ring. Let I be an equimultiple
ideal of R with h = ht(I) � 1, let J be a minimal reduction of I, and let r be the reduction number
of I. Then the ideal Jr+1 : Ir does not depend on the choice of J .

Now we are able to settle Conjecture 0.1 for equimultiple ideals in Cohen–Macaulay local rings
whose residue field has characteristic 0.

Theorem 3.7. Let R be a Cohen–Macaulay local ring whose residue field has characteristic 0. Let
I be an equimultiple ideal of R with h = ht(I) � 1, let J be a minimal reduction of I, and let r be
the reduction number of I. Then

core(I) = Jr+1 : Ir.

Proof. Since J is generated by a regular sequence, we have Jr+1 : Ir ⊆ Jr+1 : Jr = J . Since
Jr+1 : Ir does not depend on J by Lemma 3.6, this implies Jr+1 : Ir ⊆ core(I). It remains to show
that core(I) ⊆ Jr+1 : Ir. This inclusion is equivalent to the formula

core(I) ⊆ Jn+1 : In

for all n � 0. In fact, we always have Jr+1 : Ir ⊆ Jr+1 : Jr−nIn = Jn+1 : In for n � r and
Jn+1 : In = Jn+1 : Jn−rIr = Jr+1 : Ir for n > r. We will use induction on n and h to prove the
above formula.

If n = 0, it is trivial because core(I) ⊆ J = J : I0. If h = 1, we will go back to the one-
dimensional case. Let Min(Jr+1) denote the set of the minimal associated primes of Jr+1. Since
Jr+1 is an unmixed ideal, we have

Jr+1 =
⋂

P∈Min(Jr+1)

Jr+1AP ∩A.
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By [CPU01, Theorem 4.5] we have

core(I) ⊆
⋂

P∈Min(Jr+1)

core(IP ) ∩A.

Since dimAP = 1, we may apply Corollary 3.4 to core(IP ) and obtain

core(I) ⊆
⋂

P∈Min(Jr+1)

(Jr+1AP : Ir) ∩A

⊆
( ⋂

P∈Min(Jr+1)

Jr+1AP ∩A
)

: Ir = Jr+1 : Ir.

As noted above, this implies the formula core(I) ⊆ Jn+1 : In for all n � 0 when h = 1.
Now let n > 0 and h > 1. Using induction on n we may assume that core(I) ⊆ Jn : In−1. Let

S denote the set of all superficial elements of I which belong to minimal bases of J . Note that all
elements of S are necessarily nonzero-divisors. For an arbitrary x ∈ S let R̄ = R/(x), Ī = I/(x) and
J̄ = J/(x). Then Ā is a Cohen–Macaulay local ring, Ī is an equimultiple ideal with ht(Ī) = h − 1,
and J̄ is a minimal reduction of Ī. Using induction on h we may assume that core(Ī) ⊆ J̄n+1 : Īn.
Let a1, . . . , ah−1 be elements of I such that (a1, . . . , ah−1, x)/(x) is a minimal reduction of Ī. Then
In+1 ⊆ (a1, . . . , ah−1)In+(x) for n� 0. Since x is a superficial element of I, there exists an integer c
such that (In+1 : x) ∩ Ic = In for n� 0. By the Artin–Rees lemma, (x) ∩ In+1 ⊆ xIn−n0 for some
integer n0. Hence

(x) ∩ In+1 = x[(In+1 : x) ∩ In−n0] = x[(In+1 : x) ∩ Ic ∩ In−n0 ] = xIn

for n� 0. These facts imply

In+1 = (a1, . . . , ah−1)In + (x) ∩ In+1 = (a1, . . . , ah−1, x)In

for n� 0. So (a1, . . . , ah−1, x) is a minimal reduction of I. Now it is clear that core(Ī) =
⋂
K/(x),

whereK runs through all minimal reductions of I containing x. Therefore,
⋂
K ⊆ (Jn+1, x) : (In, x).

Since core(I) ⊆ ⋂
K, we get

core(I)In ⊆ Jn ∩ (Jn+1, x) = xJn−1 + Jn+1.

Let G =
⊕

t�0 J
t/J t+1 be the associated graded ring of J . Then G is a Cohen–Macaulay ring with

ht(G+) � 2. Since S corresponds to the complement of a finite union of linear subspaces of J/mJ ,
we can choose elements x1, . . . , xn+1 ∈ S such that their initial forms x∗1, . . . , x

∗
n+1 in G are pairwise

relatively prime. We have (x∗1) ∩ · · · ∩ (x∗n+1) = (x∗1 . . . x
∗
n+1). Since (x∗1 . . . x

∗
n+1)n = 0, we get

core(I) ⊆ (x1J
n−1 + Jn+1) ∩ · · · ∩ (xn+1J

n−1 + Jn+1) = Jn+1.

This proves the formula core(I) ⊆ Jn+1 : In for all n > 0 and h > 1.
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18

https://doi.org/10.1112/S0010437X04000910 Published online by Cambridge University Press

mailto:huneke@math.ukans.edu
mailto:nvtrung@math.ac.vn
https://doi.org/10.1112/S0010437X04000910

	Introduction
	1 Core of graded algebras
	2 Core of ideals in local rings
	3 Core of equimultiple ideals in Cohen--Macaulay local rings
	References

