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INFINITE-DIMENSIONAL SPACES
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Abstract. A martingale problem for pseudo-differential operators on infinite
dimensional spaces is formulated and the existence of a solution is proved.
Applications to infinite dimensional “stable-like” processes are presented.

§0. Introduction

The purpose of this paper is to formulate and solve a martingale prob-

lem for pseudo-differential operators on infinite dimensional state space.

We thus provide a routine machinery to construct (non-trivial) infinite di-

mensional processes which are merely càdlàg and have not been obtained

before by other means. We emphasize, however, that this work is only on

existence of solutions to these martingale problems, not on uniqueness. The

uniqueness, which is known to be already extremely difficult in infinite di-

mensions if we are merely dealing with “differential” (i.e., local) operators,

will be studied in a forthcoming paper. The main motivation of the present

work (see [FuR 97] and also [BRS 96]) is to make a contribution to the

development of a theory of pseudo-differential operators in infinite dimen-

sions, since this theory has proved to be so powerful in finite dimensions,

e.g. in proving index theorems.

The state spaces E treated here are duals to countably nuclear spaces

and the definition of a pseudo-differential operator p( · ,D) on E is taken

from [Hr82, Hr87]. There are several possibilities to introduce pseudo-

differential operators in infinite dimensions. One of them is based on the
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idea to use Fourier transforms of measures as test functions. The approach

to Feynman integrals developed in [AH-K76, AH-K77] was based on this

idea. Earlier in [Fom68] infinite-dimensional differential operators were con-

sidered in the framework of the duality between spaces of functions and

spaces of measures (replacing the finite-dimensional duality between the

Schwartz test function space S and its dual S′). This latter approach was

then further developed by several authors. The most convenient version

for us is that due to A. Yu. Hrennikov (cf. [Hr82] and also [Hr87] and the

references therein). In particular, the domain of p( · ,D) is hence a space of

Fourier transforms of measures. Thus one can avoid the use of a reference

measure, as Lebesgue measure is in finite dimensions (which does not exist

on our state space E if dim E = ∞). We refer to Sections 1 and 2 for

precise details, but emphasize here that it definitely is a natural and direct

way to extend the definition of a pseudo-differential operator to infinite di-

mensions. A further justification for this from a probabilistic point of view

is given by the results of this paper.

After discussing examples (cf. Examples 2.2 below) and giving the nec-

essary probabilistic definitions at the end of Section 2, we then prove the

existence of the solution to the martingale problem for p( · ,D) on E in

Section 3. We thus extend fundamental work of D.W. Stroock (cf. [St75])

and, in particular, the more recent work by W. Hoh (cf. [H92, H94], see

also [H95a, H95b]). The problems in the proof arise in part from the non-

metrizability of E and hence of DE (i.e., the space of càdlàg paths from

R+ to E equipped with the Skorohod topology). But here we benefit a

lot from the tightness results in [M83] resp. [J86], i.e., the characterization

of tightness of laws of càdlàg processes on E in terms of tightness of the

laws of their “one-dimensional component processes.” By these results the

approximation method in [H92, H94] can be shown to extend to the infinite

dimensional case. We particularly concentrate on the problems which arise

from the measure theory on DE which a-priori is much more difficult than

that on D�
n (but was well-analyzed in [J86]). Another substantial difficulty

we had to face in our proof is the lack of “localizing” functions on E with

uniformly bounded images under p( · ,D). The existence of such functions

is crucial in the proof of Hoh (cf. [H92, Lemma 2.10]) in the case E = R
n.

We overcome this difficulty by proving the existence of suitable localizing

functions for “one-dimensional components of the processes” (cf. Claim 1 in

Section 3) which turns out to be sufficient. Finally, it should be emphasized

that the reduction to one-dimensional components in order to prove tight-
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MARTINGALE PROBLEMS IN INFINITE DIMENSIONS 103

ness according to [M83], [J86], unfortunately does not take us back to the

finite (or even one-) dimensional situation which was solved in [H92, H94].

The reason is that these components do not solve a one-dimensional martin-

gale problem, since the operator p( · ,D) obviously introduces interactions

between the different components and since the underlying filtration (Ft)t≥0

has to be the one generated by the full process and not the one generated

by the respective component.

The results of this paper have been announced at conferences in War-

wick and Bielefeld in Summer 1994, as well as in several invited talks e.g. at

the University of California, San Diego, October 1994, and the Mittag-

Leffler-Institute, Stockholm, March 1995.

§1. Definitions, notation and preliminary results

In this paper E will denote the topological dual F ′ of a real count-

ably nuclear Fréchet space F endowed with the strong topology. We equip

the topological dual E′ of E with the topology of uniform convergence on

bounded sets. Then E′ = F (as topological vector spaces; cf. e.g. [GV 64,

p. 61] or [S71, Chap. III, §7 and Chap. IV, §5]). Let B(E), B(E′) denote

the Borel σ-algebras of E, E′ respectively.

Remark 1.1. Since E′ (= F ) is separable (see e.g. [GV 64, p. 73]),

there exist ξn ∈ E′, n ∈ N, separating the points of E. Since E is a Lusin

space (i.e., the continuous one-to-one image of a Polish space, cf. [Sch73]),

by [Sch73, Lemma 18, p. 108] we have that B(E) = σ(ξn|n ∈ N).

Let M := M
�

b (E′) be the space of complex-valued measures on B(E′)
with bounded total variation, and 〈 , 〉 the dualization between E and E′,
i.e.,

〈x, ξ〉 = ξ(x), x ∈ E, ξ ∈ E′.

We recall that the Fourier transform of µ ∈ M is defined by

F(µ)(x) :=

∫

E′
ei〈x,ξ〉µ(dξ), x ∈ E .

We set W := F(M). W will play the role of a “test-function” space (cf. [AH-

K76, AH-K77] and also [Hr82, p. 779]). Since F is one-to-one F−1:W → M

is well-defined. Let Cb(E; C) denote the space of all bounded continuous

complex valued functions on E. The following is standard for the type of

state spaces considered here.
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Lemma 1.2.

W ⊂ Cb(E; C).

Proof. see [Sch73, Theorem 3, p. 239 or Theorem 1, p. 193].

We define the set of cylinder functions FS(E; C) with base functions

in S(Rm; C) (:= the space of complex-valued Schwartz test functions) for

some m ∈ N by

FS(E; C) := {f(ξ1, . . . , ξm) | m ∈ N, f ∈ S(Rm; C), ξ1, . . . , ξm ∈ E′}.

Lemma 1.3. FS(E; C) ⊂ W .

Proof. Let ϕ ∈ FS(E; C), ϕ = f(ξ1, . . . , ξm), m ∈ N, f ∈ S(Rm; C)

and ξ1, . . . , ξm ∈ E′. Then there exists g ∈ S(Rm, C) such that

f(x) =

∫
�

m

ei〈x,y〉 g(y) dy

and νm := g dx is a finite measure on R
m. Let ν be its image measure under

the map Tm: Rm → E′ defined by

Tm(y1, . . . , ym) =

m∑

i=1

yiξi, (y1, . . . , ym) ∈ R
m.

Then one has that ν ∈ M and that

∀x ∈ E F(ν)(x) =

∫

E′
ei〈x,ξ〉ν(dξ)

=

∫
�

m

ei〈x,Tm(y)〉νm(dy)

=

∫
�

m

ei
∑m

i=1
yiξi(x)νm(dy)

= f(ξ1(x), . . . , ξm(x)) = ϕ(x).

Therefore, ϕ = F(ν) ∈ F(M) = W .

The following result is more or less well-known. We include the proof

for the reader’s convenience.

Lemma 1.4. There exists a countable subset W0 of FS(E; C)(⊂ W )

separating the points of E. In particular, σ(W0) = B(E).
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Proof. By the Hahn-Banach theorem E′ separates the points of E,

hence so does FS(E; C). Since E × E is strongly Lindelöf (cf. [Sch73,

Proposition 4, p. 105 and Proposition 3, p. 104.]), there exists a countable

subset thereof with the same property. The last assertion follows by [Sch73,

Lemma 18, p. 108].

§2. Pseudo-differential operators on E and corresponding mar-

tingale problems

We assume that we are given a B(E′)-measurable function A:E′ → R+

such that

(A1) A(0) = 0.

(A2) For each ξ ∈ E′, t 7→ A(tξ) is continuous in 0 ∈ R.

(A3) For any ξ1, . . . , ξm ∈ E′ there exist constants c = c(ξ1, . . . , ξm), q =

q(ξ1, . . . , ξm) > 0 such that

∀t = (t1, . . . , tm) ∈ R
m, A(t1ξ1 + · · · + tmξm) ≤ c(1 + |t|q).

We then set

LA :=

{
ϕ ∈ W

∣∣∣∣
∫

E′
A(ξ) |F−1(ϕ)| (dξ) < +∞

}
.

A map p:E × E′ → R is called an A-symbol if the following conditions are

satisfied:

(C1) For each x ∈ E, ξ 7→ p(x, ξ) is a continuous negative definite function

on E′ (cf. [BeF75], the local compactness assumption made there can

be dropped), and, for each ξ ∈ E′, x 7→ p(x, ξ) is continuous.

(C2) ∀x ∈ E, ∀ξ ∈ E′ |p(x, ξ)| ≤ A(ξ).

Note that by (C2) p(x, 0) = 0, and that p ≥ 0 since it is real-valued,

which also implies that p(x,−ξ) = p(x, ξ) (cf. [BeF75, Chap. II, §7]). We

then define p( · ,D):LA → Cb(E; C) by

p(x,D)ϕ(x) =

∫

E′
p(x, ξ)ei〈x,ξ〉F−1(ϕ)(dξ).
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Remark 2.1. (i) Let λ be a probability measure on B(E). Then

A(ξ) := Real

(
1 −

∫

E

ei〈x,ξ〉λ(dx)

)
, ξ ∈ E′

is a bounded negative definite function on E′ (cf. [BeF75, Chap. II, §7])

such that A(0) = 0. In particular, A(ξ) ≥ 0 for all ξ ∈ E′ and also (A2),

(A3) are satisfied. Clearly, A itself is then an A-symbol (more precisely,

(x, ξ) 7→ A(ξ) is one).

(ii) Obviously, if A satisfying (A1)–(A3) is bounded, then LA = W . More-

over, by (A3) it follows immediately that in any case FS(E; C) ⊂ LA.

Examples. (i) The easiest examples for p are the following. Let n ∈ N

and

p(x, ξ) :=
n∑

i=1

fi(x)Ai(ξ),

where Ai is as A in Remark 2.1 (i) above and fi ∈ Cb(E; C). Also, obvi-

ously, appropriate limits of such p provide examples.

(ii) There is an explicit class of symbols, intensively studied in finite dimen-

sions (cf. [B88], [JaL93], [KN], [N94], [Ts92]) and also occuring in infinite

dimensions, which provides interesting non-trivial examples to which our

main result (cf. Section 3 below) applies. As a consequence we obtain nat-

ural generalizations of the familiar infinite dimensional stable processes in

[W84]. Let α:E → (0, 2] be a continuous function and let σ be a finite

positive measure with compact support K in E. Suppose that α(x) ≥ α0

for all x ∈ E and for some α0 ∈ (0,∞).

Define

p(x, ξ) :=

∫

K

|〈y, ξ〉|α(x)σ(dy), x ∈ E, ξ ∈ E′.

Let us verify that all our conditions are satisfied. Clearly, x 7→ p(x, ξ) is

continuous for every fixed ξ. In addition, ξ 7→ p(x, ξ) is continuous for

every fixed x, since σ has compact support and the topology of E′ is the

topology of uniform convergence on bounded sets in E. We claim that

ξ 7→ p(x, ξ) is negative definite for every fixed x. Indeed, take a finite

collection ξ1, . . . , ξn ∈ E′. Passing to the image of σ under the mapping

y 7→ (ξ1(y), . . . , ξn(y)), we easily see that the claim follows from the negative

definiteness of s 7→ |s|α(x) on R
1. Finally, it has to be shown that there

exists an admissible function A such that |p(x, ξ)| ≤ A(ξ) for all x and all
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ξ. Denote by K1 and K2 the sets of y’s such that |〈y, ξ〉| ≥ 1 and |〈y, ξ〉| ≤ 1

respectively. We have:

∫

K

|〈y, ξ〉|α(x)σ(dy) ≤

∫

K1

|〈y, ξ〉|α(x)σ(dy) +

∫

K2

|〈y, ξ〉|α(x)σ(dy)

≤

∫

K

|〈y, ξ〉|2σ(dy) +

∫

K

|〈y, ξ〉|α0σ(dy).

Clearly, the expression on the right as a function of ξ satisfies conditions

(A1)–A(3). By Theorem 3.1 below we hence have an associated process as

the solution of the corresponding martingale problem for (−p(·,D),LA) and

any initial measure µ. If α is constant this process is one of the well-known

infinite dimensional stable processes in [W84].

Let DE be the set of all E-valued càdlàg paths, i.e.,

DE :=
{
ω: R+ → E

∣∣∣ ∀t ≥ 0 lim
s→t

s>t

ω(s) = ω(t) and ∀t > 0 lim
s→t

s<t

ω(s) exists
}

equipped with the usual (projective limit) Skorohod topology described in

[J86, Sect. 4]. For t ≥ 0, we define

Xt : DE −→ E

Xt(ω) := ω(t), ω ∈ DE ,

and then the filtration

Ft := σ(Xs | 0 ≤ s ≤ t), t ≥ 0

F∞ := σ(Xs | s ≥ 0).

We denote the set of all probability measures on (DE ,F∞) by M1(DE).

Remark 2.2. Note that by [J86, Proposition 5.3 (ii)] F∞ coincides with

the Borel σ-algebra on DE . Furthermore, it immediately follows from [J86,

Propositions 5.3 (i) and 1.6 (ii), (iii)] and the definition of the topology of

DE that DE is a Lusin space. Hence for any countably generated sub-σ-

algebra Σ of F∞ by [StV79, Theorems 1.1.6, 1.1.8] a regular conditional

probability distribution exists.
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Let A:E′ → R+ satisfy (A1)–(A3), let p be an A-symbol and µ a

probability measure on B(E). By a solution to the martingale problem

for (−p( · ,D),LA) with initial measure µ we shall mean a measure P ∈

M1(DE) such that

(i) (X0)∗P (:= P ◦ X−1
0 ) = µ.

(ii) For each ϕ ∈ LA,

ϕ(Xt) +

∫ t

0
(p( · ,D)ϕ)(Xs) ds, (t ≥ 0)

is a P -martingale with respect to the filtration (Ft)t≥0.

§3. The existence theorem

Theorem 3.1. Let A:E′ → R+ satisfy (A1)–(A3) in Section 2, let

p be an A-symbol, and let µ be a probability measure on B(E). Then the

martingale problem for (−p( · ,D),LA) with initial measure µ has a solution.

The proof of Theorem 3.1 will be carried out through a series of lemmas

and propositions. We start with the following easy relation

∀y ∈ R+
ky

y + k
=

∫ +∞

0
(1 − e−sy) k2e−ks ds(1)

which is actually a particular case of the representation theorem on Bern-

stein functions [BeF75, p. 64, Theorem 9.8]. For each x ∈ E and each s ≥ 0,

by Schoenberg’s Theorem e−sp(x, · ) is a positive definite function on E′ (see

[BeF75, Theorem 7.8]; as before the local compactness hypothesis made in

[BeF75] on E is not used there). Therefore, (since ξ 7→ p(x, ξ) is continuous

and p(x, 0) = 0) by the Bochner-Minlos Theorem, there is a probability

measure µs,x on E such that

∀ξ ∈ E′,
∫

E

ei〈y,ξ〉µs,x(dy) = e−sp(x,ξ).

By a monotone class argument we conclude that µs,x(dy), s ∈ R+, x ∈ E

defines a kernel from R+×E to E. Therefore, for each k ∈ N we can define

a kernel µk(x, dy), x ∈ E, from E to E by

µk(x, · ) =

∫ +∞

0
µs,x k2e−ks ds.
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Lemma 3.2. Let k ∈ N, x ∈ E. Then µk(x,E) = k.

Proof. Since each µs,x is a probability measure we have that

µk(x,E) =

∫ +∞

0
µs,x(E)k2e−ks ds = k.

Lemma 3.3. For each k ∈ N, each x ∈ E and each ξ ∈ E′, one has

∫

E

(1 − cos〈y, ξ〉)µk(x, dy) =
kp(x, ξ)

k + p(x, ξ)
.

Proof.
∫

E

(1 − cos〈y, ξ〉)µk(x, dy)

=

∫ +∞

0

(∫

E

(1 − cos〈y, ξ〉)µs,x(dy)

)
k2e−ks ds

=

∫ +∞

0

(∫

E

(
1 −

1

2
ei〈y,ξ〉 −

1

2
e−i〈y,ξ〉

)
µs,x(dy)

)
k2e−ks ds

=

∫ +∞

0

(
1 −

1

2
e−sp(x,ξ) −

1

2
e−sp(x,−ξ)

)
k2e−ks ds

=

∫ +∞

0
(1 − e−sp(x,ξ)) k2e−ks ds

=
kp(x, ξ)

k + p(x, ξ)

where we used (1) in the last step.

As in [H94] we consider pk(x, ξ) := kp(x,ξ)
k+p(x,ξ) and for x ∈ E let τx(z) := z+x,

z ∈ E. Define a kernel of probability measures µ̃k(x, dy) (cf. Lemma 3.2)

by

µ̃k(x, dy) =
1

k
(τx)∗µk(x, dy).

For any ϕ ∈ W and ν := F−1(ϕ) we then have for all x ∈ E that

−pk(x,D)ϕ(x)

= −

∫

E′
ei〈x,ξ〉pk(x, ξ) ν(dξ)
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= −

∫

E′
ei〈x,ξ〉

(∫

E

(1 − cos〈y, ξ〉)µk(x, dy)

)
ν(dξ)

(by Lemma 3.3)

= −

∫

E

(∫

E′
ei〈x,ξ〉(1 − cos〈y, ξ〉)ν(dξ)

)
µk(x, dy)

= −

∫

E

(∫

E′

(
ei〈x,ξ〉 −

1

2
ei〈x+y,ξ〉 −

1

2
ei〈x−y,ξ〉

)
ν(dξ)

)
µk(x, dy)

= −

∫

E

(
ϕ(x) −

1

2
ϕ(x + y) −

1

2
ϕ(x − y)

)
µk(x, dy)

because ϕ = F(ν). But Fµs,x(−ξ) = e−sp(x,−ξ) = e−sp(x,ξ) = Fµs,x(ξ),

therefore the µs,x are symmetric, and so is µk(x, · ). Thus

−pk(x,D)ϕ(x) = −

∫

E

(
ϕ(x) −

1

2
ϕ(x + y) −

1

2
ϕ(x − y)

)
µk(x, dy)

=

∫

E

ϕ(x + y)µk(x, dy) − µk(x,E)ϕ(x)

=

∫

E

ϕ(y) k µ̃k(x, dy) − k ϕ(x)

= k

∫

E

(ϕ(y) − ϕ(x)) µ̃k(x, dy).

Therefore, −pk(x,D) maps real functions into real functions and extends

to a bounded operator on Bb(E). By the arguments of [EK86, Chap. 4,

Proposition 1.7 and Subsection 2, pp. 162-164] (note that the assumption

that E is metrizable is not used here), one has a solution Pk ∈ M1(DE) to

the martingale problem for (−pk( · ,D),LA) and µ. (Here LA can even be

replaced by W since pk is bounded.)

Proposition 3.4. (Pk)k∈ � is tight.

Proof. By a result of Mitoma ([M83, p. 993, Theorem 4.1], cf. also

[J86, Theorem 5.5]) it is sufficient to prove that, for any ξ ∈ E′, the family

((Uξ)∗Pk)k∈ � of measures on D� is tight, where Uξ:DE → D� is defined

by:

∀ω ∈ DE , Uξ(ω) := ξ ◦ ω.

We shall closely follow Hoh’s arguments in [H92, Subsection 2.2] (see also

[H94]). Let χ ∈ C∞
0 (R; R) be a function such that 0 ≤ χ ≤ 1, χ = 1 on
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[−1
2 , 1

2 ], and χ = 0 on R \ ]−1, 1[. There is a measure ν0 on R such that

χ(s) =

∫
�

eiλsν0(dλ), s ∈ R.

(Actually, ν0(dλ) = g(λ)dλ for some g ∈ S(R; C)). Let T1: R → E′ be

defined by T1(λ) := λξ. For R > 0 let jR: R → R be defined by jR(s) :=

s/R, s ∈ R and let νR := (T1 ◦ jR)∗ν0. Clearly, νR ∈ M , hence ϕR :=

F(νR) ∈ W . Let x0 ∈ E and define ϕR,x0 :E → R, by ϕR,x0(x) := ϕR(x −

x0). Then

ϕR,x0 = F(νR,x0) ∈ W,

where νR,x0(dα) = e−i〈x0,α〉νR(dα).

In fact, ∀x ∈ E

ϕR,x0(x) =

∫

E′
ei〈x,α〉e−i〈x0,α〉νR(dα)(2)

=

∫
�

ei〈x−x0,T1(jR(λ))〉ν0(dλ)

=

∫
�

eiξ(x−x0)
λ
R ν0(dλ)

= χ

(
ξ(x) − ξ(x0)

R

)
.

Claim 1.

sup
k∈ �

sup
x,x0∈E

|pk(x,D)ϕR,x0(x)| ≤ c1 sup
|t|≤ 1√

R

A(tξ) + c(ξ)
(c2

R
+

cp(ξ)

Rp(ξ)

)

where cp :=
∫
|λ|pg(λ) dλ for p > 0 and c(ξ), p(ξ) is as in (A3).

Proof of Claim 1.

|pk(x,D)ϕR,x0(x)| =

∣∣∣∣
∫

E′
ei〈x−x0,α〉pk(x, α) νR(dα)

∣∣∣∣

≤

∫

E′
pk(x, α) νR(dα)

≤

∫

E′
A(α) νR(dα)
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=

∫
�

A(T1(jR(λ))) ν0(dλ)

=

∫
�

A
(λξ

R

)
ν0(dλ)

=

∫
�

A
(λξ

R

)
g(λ) dλ.

We split the last integral in two parts, and get

|pk(x,D)ϕR,x0(x)|

≤

∫

|λ|≤
√

R

A
(λξ

R

)
|g(λ)| dλ +

∫

λ>
√

R

A
(λξ

R

)
|g(λ)| dλ

≤
(

sup
|t|≤ 1√

R

A(tξ)
) ∫

�
|g(λ)| dλ + c(ξ)

∫

|λ|>
√

R

(
1 +

|λ|p(ξ)

Rp(ξ)

)
|g(λ)| dλ

≤ c1 sup
|t|≤ 1√

R

A(tξ) + c(ξ)

∫

|λ|>
√

R

(λ2

R
+

|λ|p(ξ)

Rp(ξ)

)
|g(λ)| dλ.

Now we are prepared to prove the following two claims which by [EK86,

p. 128] imply the assertion.

Claim 2. Let T ≥ 0. Then limR→∞ supk∈ � Pk[sup0≤t≤T |ξ(Xt)| >

R] = 0.

Claim 3. Let T ≥ 0. Then for each ε > 0

lim
δ→0

sup
k∈ �

Pk[{w
′( · , δ, T ) > ε}] = 0

where for ω ∈ DE

w′(ω, δ, T ) := inf
Z(δ,T )

sup
s,t∈[ti,ti+1[

i=0,...,m

{t0,...,tm+1}∈Z(δ,T )

|ξ(ω(t)) − ξ(ω(s))|

and Z(δ, T ) denotes the set of all partitions {t0, . . . , tm}, 0 = t0 < t1 <

. . . < tm ≤ T < tm+1, m ∈ N, such that inf i=0,...,m(ti+1 − ti) > δ.
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Proof of Claim 2. Let ε > 0. Since on E every bounded measure is

Radon (see e.g. [Sch73, Theorems 9, 10 on p. 122]), µ is tight. Hence there

is a compact set K ⊂ E with µ(E \ K) ≤ ε
2 . Let R1 ≥ 0 be such that

ξ(K) ⊂ [−R1/2,R1/2], and set for each R ≥ 0

τR := inf{t ≥ 0 | |ξ(Xt)| > R}.

Then τR is an (Ft+)t≥0 stopping time, therefore so is τR∧T (where as usual

Ft+ := ∩s>tFs). By the right continuity of the sample paths we can use

the optional sampling theorem w. r. t. (Ft+)t≥0 to obtain for each R ≥ R1

and all k ∈ N that

EPk

[
1 − ϕR(XτR∧T ) −

∫ τR∧T

0
(pk(x,D)ϕR)(Xu) du

]
(3)

= EPk [1 − ϕR(X0)] =

∫

E

(1 − ϕR) dµ ≤ µ(E \ K) ≤
ε

2
.

By assumptions (A1), (A2) we have that

lim
R→+∞

sup
|t|≤ 1√

R

A(tξ) = 0.

Therefore, by Claim 1 one can find R2 such that

∀R ≥ R2 sup
k

sup
x∈E

|pk(x,D)ϕR(x)| ≤
ε

2T
.

Let R3 := max(R1, R2). Then it follows from (3.3) that for all R > R3

sup
k

EPk [1 − ϕR(XτR∧T )] ≤ ε,

i.e., by (2) with x0 = 0

sup
k

EPk

[
1 − χ

(ξ(XτR∧T )

R

)]
≤ ε

whence

sup
k

Pk

[
sup

0≤t≤T

|ξ(Xt)| > R
]
≤ ε

and Claim 2 is proved.
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Proof of Claim 3. Let ε > 0. By Claim 1 there exists a constant K

(= K(ε)) > 0 such that

sup
k∈ �

sup
x,x0∈E

|pk(x,D)ϕ ε
4
,x0

(x)| ≤ K.(4)

Now (as in [H92]) we define a sequence (τm)m∈ � ∪{0} of (Ft)-stopping times

(depending on ε) as follows. Set τ0 := 0 and for m ∈ N ∪ {0}

τm+1 := inf
{

t ≥ τm

∣∣∣ |ξ(Xt) − ξ(Xτm)| ≥
ε

2
or

(
t > τm and |ξ(Xt−) − ξ(Xτm)| ≥

ε

2

)}
.

(For a proof that each τm is indeed an (Ft)-stopping time see e.g. [H92,

p. 38]). By [StV79, Lemma 1.3.3] (whose proof carries over directly to the

case where E is replacing R
d)

Fτm = σ(Xt∧τm | t ≥ 0), m ∈ N.

The right continuity of (Xt)t≥0 and Remark 1.1 hence imply that each Fτm is

countably generated. Hence by Remark 2.2 regular conditional probabilities

P k
· ,m of EPk [ · | Fτm ], m ∈ N ∪ {0}, exist. If we can show that for all k ∈ N

and Pk-a.e. ω ∈ DE

P k
ω,m[{τm+1 − τm ≤ δ, τm < ∞}] ≤ Kδ(5)

for all δ > 0 and all m ∈ N ∪ {0}, then the assertion of Claim 3 follows in

exactly the same way as in [H92, Lemma 2.15, Satz 2.16] (see also [StV79,

Lemma 1.4.5, Theorem 1.4.6] for the case of continuous sample paths and

also [St75, Appendix]). Fix k ∈ N and let ϕ ∈ LA. Then by [StV79,

Theorem 1.2.10]

ϕ(Xt) +

∫ t

0
(pk( · ,D)ϕ)(Xs) ds, t ≥ 0(6)

for P k-a.e. ω ∈ DE is an (Ft)-martingale after τm(ω) under the measure

P k
ω,m (with the zero set depending on ϕ). But since M is separable w.r.t. the

weak topology (cf. [Sch73, Theorem 7, p. 385]) and since pk ≤ k, we can

choose a P k-zero set Nk ∈ F∞ such that for all ω ∈ DE \ Nk (6) is an

(Ft)-martingale after τm(ω) under P k
ω,m for all ϕ ∈ LA, in particular, for

Φ := ϕ ε
4
,Xτm(ω).
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Let m ∈ N ∪ {0} and fix ω ∈ DE \ Nk such that τm(ω) < ∞. Define

σm := inf
{

t ≥ τm

∣∣∣ |ξ(Xt) − ξ(Xτm)| >
ε

4

}
.

Then each σm is an (Ft+)-stopping time, hence for each fixed ω ∈ DE \Nk

by right-continuity and optional sampling

EP k
ω,m

[
Φ(X(σm∧(τm(ω)+δ))∨τm(ω))(7)

+

∫ (σm∧(τm(ω)+δ))∨τm(ω)

0
(pk( · ,D)Φ)(Xs) ds

]

= EP k
ω,m

[
Φ(Xτm(ω)) +

∫ τm(ω)

0
(pk( · ,D)Φ)(Xs) ds

]

= 1 − EP k
ω,m

[∫ τm(ω)

0
(pk( · ,D)Φ)(Xs) ds

]

where in the last step we used that

τm = τm(ω), Xτm = Xτm(ω), P k
ω,m-a.s.(8)

by the regularity of P k
· ,m. Let δ > 0. Since τm ≤ σm ≤ τm+1 and {σm <

∞} ⊂ {|ξ(Xσm) − ξ(Xτm)| ≥ ε
4}, we have that

{τm+1−τm≤δ, τm<∞} ⊂ {|ξ(X(σm∧(τm+δ))∨τm
)−ξ(Xτm)| ≥

ε

4
, τm < ∞}.

Hence (7), (8) imply that

P k
ω,m[{τm+1 − τm ≤ δ, τm < ∞}]

≤ P k
ω,m

[{
|ξ(X(σm∧(τm(ω)+δ))∨τm(ω)) − ξ(Xτm(ω))| ≥

ε

4

}]

≤ EP k
ω,m

[
1 − Φ(X(σm∧(τm(ω)+δ))∨τm(ω))

]

≤ EP k
ω,m

[∫ (σm∧(τm(ω)+δ))∨τm(ω)

τm(ω)
(pk( · ,D)Φ)(Xs) ds

]

≤ δK

where the last step follows by (4). Thus (5) has been shown if ω ∈ DE \Nk

with τm(ω) < ∞. But if ω ∈ DE such that τm(ω) = ∞, then by (8) inequal-

ity (5) is trivial, hence Claim 3 is proved, and the proof of Proposition 3.4

is complete.
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Now we can complete the proof of Theorem 3.1. By Proposition 3.4

and Prohorov’s theorem (cf. [Sch73, p. 379] for the version needed here) it

follows that {P k | k ∈ N} is relatively compact w.r.t. the weak topology.

Since M1(DE) is Lusin (cf. [Sch73, Theorem 7, p. 385]) and since, therefore,

by [Sch73, Corollary 2, p. 106] {P k | k ∈ N} is metrizable, there exists

a subsequence of (P k)k∈ � , again denoted by (P k)k∈ � for simplicity, such

that it converges weakly to some probability measure P on F∞ (cf. [J86,

Theorem 4.6(ii)]). As in [J86] for f ∈ C(E; R) we define the map

f̃ :DE → D�

by

f̃(ω)(t) := f(ω(t)).

By the remarkable result [J86, Theorem 1.7] the Skorohod topology on DE

is generated by {f̃ | f ∈ C(E; R)}. By [EK86, Chap. III, Lemma 7.7] for any

probability measure Q on B(D� ) there exist a countable set TQ ⊂ R+ such

that ω 7→ ω(t) is continuous for Q-a.e. ω ∈ D� for all t ∈ R+ \ TQ. Hence

if f ∈ C(E; R) by [J86, Theorem 1.7] ω 7→ f(ω(t)) is continuous for P -

a.e. ω ∈ DE for all t ∈ R+ \T
f̃∗(P )

. In particular, this holds for ϕ, p( · ,D)ϕ

replacing f and any ϕ ∈ LA. By a version of the portemanteau theorem on

not-necessarily metric spaces (cf. [VTC87, Theorem 3.5(d), p. 42], which

applies here since DE is Lusin (cf. Remark 2.2) hence every probability

measure is Radon, cf. [Sch73, Theorem 9, p. 122]) we also know that

∫
f dPk −→

∫
f dP, as k → ∞

for every bounded F∞-measurable f :DE → R which is P -a.e. continuous.

Now a straightforward modification of the argument in [EK86, Chap. III,

Lemma 5.1] (see also [H92, Satz 2.17]) implies that P is a solution for the

martingale problem for (−p( · ,D),LA) with initial measure µ and Theo-

rem 3.1 is proved.

Remark 3.5. The reader should note that under some reasonable as-

sumptions the main result of this paper has a natural extension to the case

where E is replaced by an abelian topological group.
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[N94] A. Negoro, Stable-like processes. Construction of the transition density and be-

havior of sample paths near t = 0, Osaka J. Math., 31 (1994), 189–214.

[S71] H. H. Schaefer, Topological vector spaces, Graduate texts in Mathematics,

Springer, Berlin, 1971.

[Sch73] L. Schwartz, Radon measures on arbitrary topological spaces and cylindrical

measures, Oxford University Press, London, 1973.

[St75] D. W. Stroock, Diffusion processes associated with Lévy generators, Z. Wahr-
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