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The Lang—Weil Estimate for
Cubic Hypersurfaces

T. D. Browning

Abstract. An improved estimate is provided for the number of IF;-rational points on a geometrically
irreducible, projective, cubic hypersurface that is not equal to a cone.

1 Introduction

Let k = IF; be a finite field of order g and characteristic p and let X C P} be a
geometrically irreducible projective variety of dimension r and degree d. A well-
known result of Lang and Weil [8] shows that

[#X(k) — q'| < (d—1)(d—2)q " +c(d, r)g "

for a constant ¢(d,r) > 0 depending only on d and r. In the generality with which
it is stated this estimate is essentially best possible, as the consideration of a cone
over a non-singular plane curve shows. Our aim in this note is to discuss available
augmentations in the setting of cubic hypersurfaces X C P}, where r = n — 1.

When X has small singular locus, one can do much better. Let o denote the pro-
jective dimension of this singular locus, with ¢ = —1 if X is non-singular. Then it
follows from work of Hooley [7] that

(1.1) #X(K) — "' < almg™

for a constant ¢;(n) > 0 depending only on n. Hooley’s argument relies crucially on
the resolution of the Weil conjectures due to Deligne [6] and is not specific to cubic
hypersurfaces.

An allied estimate is available through work of Davenport and Lewis [4], which
uses Weyl differencing to estimate certain cubic exponential sums. The methods here
yield

(1.2) X (k) — "' < calm)g" 5

for a constant ¢;(n) > 0, where h is defined to be such that n — h is the greatest
dimension of any linear space contained in X. This is the so-called “h-invariant” of
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the cubic hypersurface and means that X can be defined by a cubic form of the shape
x%0Qo + - -+ + x3—1Qp—; for quadratic forms Q; € k[xo,...,x,]. The estimates in
(1.1) and (1.2) are not entirely straightforward to compare, but it is clear that for the
latter to supersede (1.1) one needs h > 2(n — o). One always has 1 < h < n and
h> %(n — o) since any points with x; = Q; = 0 for 0 < i < h — 1 are contained in
the singular locus of X.

Our goal in the present investigation is to administer an improvement of the Lang—
Weil estimate for cubic hypersurfaces under the most general conditions possible.
This is the object of the following result.

Theorem  Suppose that X C P} is a geometrically irreducible cubic hypersurface that
is not a cone. Then for n > 3 we have

[#X(k) — q" 7" < es(m)q"?

for a constant c;(n) > 0 depending only on n.

The work of Bombieri [1] allows one to take ¢;(n) < 21?"*! in the theorem. In
the light of (1.1) and (1.2) one might try to establish the theorem by studying cubic
hypersurfaces with singular locus of dimension o > n — 3, or those for which the
h-invariant does not exceed 7. We shall follow a different approach, basing our argu-
ment on hyperplane sections as in the work of Lang and Weil [8]. However, rather
than using codimension one slices to reduce the analysis to curves, we will instead
stop the induction procedure at surfaces.

2 Proof of the Theorem

Suppose that X C P} is a geometrically irreducible cubic hypersurface that is not a
cone, with n > 3. We will establish the theorem by induction on . Bertini’s theorem
is valid for g > c4(n) > 0 and ensures that generic hyperplane sections of X produce
geometrically irreducible cubic hypersurfaces in ]P’Zfl that are not cones. Thus the
induction argument developed in [8] goes through unchanged, rendering it sufficient
to focus on the case n = 3 of surfaces.

Let X C PP} be a geometrically irreducible cubic surface that is not equal to a cone
over a cubic curve. Our aim is to establish the existence of an absolute constant ¢ > 0
such that

(2.1) #X(k) — q°| < cq,

which will then suffice for the deduction of the theorem. To achieve this we will take
advantage of the fact that #X(k) = #Y (k) + O(q), for any surface Y that is birationally
equivalent to X over k, since then X and Y may be identified on a non-empty Zariski
open subset. Appealing to the identity #P; (k) = 1+q+¢* we surmise that (2.1) holds
true for k-rational cubic surfaces.

When X is a non-singular cubic surface, (2.1) follows directly from work of Dav-
enport and Lewis [5], which was later refined by Swinnerton-Dyer [9] to affirm the
Weil conjectures for non-singular cubic surfaces. We may therefore suppose that X
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is singular and invoke the classification delineated by Bruce and Wall [2]. Thus it
follows from our hypotheses on X that either it contains < 4 isolated double points
or else it contains a double line. In the latter case the double line must be defined
over k, and so X is birational to ]P’,i X ]P’}( over k. Hence (2.1) holds for such X. When
X contains isolated double points we may appeal to work of Coray and Tsfasman
[3, Lemma 1.1] to conclude that X is k-rational if any of the following come to pass:

e there is a singular point defined over k;
e S=1or4;
e §=3and X(k) # 2.

Since X(k) # @ by the Chevalley—Warning theorem, we deduce that (2.1) holds un-
less & = 2 and X contains a pair of double points that are conjugate to each other over
a quadratic extension of k. The cubic surface need not be k-rational in this case, but
it follows from [3, Proposition 4.8] that X is birational over k to a non-singular cubic
surface with three coplanar k-rational lines and a further pair of coplanar conjugate
lines. Since (2.1) holds for non-singular cubic surfaces, we therefore conclude that
the estimate holds in every case.
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