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Abstract. For each m � 1, um�G� is de®ned to be the intersection of the nor-
malizers of all the subnormal subgroups of defect at most m in G. An ascending
chain of subgroups um;i�G� is de®ned by setting um;i�G�=um;iÿ1�G� � um�G=um;iÿ1�G��.
If um;n�G� � G, for some integer n, the m-Wielandt length of G is the minimal of such
n.

In [3], Bryce examined the structure of a ®nite soluble group with given m-Wie-
landt length, in terms of its polynilpotent structure. In this paper we extend his
results to in®nite soluble groups.

1991 Mathematics Subject Classi®cation. 20E15, 20F22.

1. Introduction and main results. The Wielandt subgroup w�G� of a group G is
de®ned to be the intersection of all normalizers of subnormal subgroups of G. It was
introduced in 1958 by Wielandt [12], who showed that w�G� contains every simple
non-abelian subnormal subgroup, and every minimal normal subgroup which satis-
®es the minimal condition on subnormal subgroups. Thus w�G� is non-trivial if G is
a ®nite non-trivial group. Conversely there exist in®nite groups with trivial Wielandt
subgroup; for example, the in®nite dihedral group.

The Wielandt series of G is de®ned as follows: write w0�G� � 1 and, for i � 1
de®ne wi�G� inductively by the relation wi�G�=wiÿ1�G� � w�G=wiÿ1�G��. If for some
integer n, wn�G� � G, then G is said to have ®nite Wielandt length, the Wielandt
length of G being the minimal n such that wn�G� � G. We denote by Wn the class of
all groups whose Wielandt length is at most n. By the remark above, any ®nite group
has ®nite Wielandt length, while in general this is not true for in®nite groups.

The relation between the Wielandt length and the derived and Fitting length in a
®nite soluble group was ®rst investigated by A. Camina in [4]; more recently R.
Bryce and J. Cossey [2] improved on Camina's results by obtaining best possible
bounds for both the derived and the Fitting length of a ®nite soluble group in terms
of its Wielandt length. Finally C. Casolo in [5] showed that the same bounds hold
for all soluble groups with ®nite Wielandt length.

In 1990, R. Bryce [3] introduced the subgroups um�G�, which are de®ned, for
each m � 1, to be the intersection of the normalizers of all the subnormal subgroups
of defect at most m in G; he de®ned also new series, which we shall call m-Wielandt
series, in the following way: for each m � 1 write um;0�G� � 1 and if i � 1 de®ne
um;i�G� inductively by the relation um;i�G�=um;iÿ1�G� � um�G=um;iÿ1�G��. If, for some
integer n, um;n�G� � G, then G is said to have ®nite m-Wielandt length, and the
minimal such n is called the m-Wielandt length of G. In his paper Bryce proved that
there exist bounds on the derived and Fitting length of a ®nite soluble group in
terms of its m-Wielandt length (m � 2), which are analogous to those expressed in
terms of the Wielandt length, and he determined the best possible bounds. Moreover
he examined very closely the polynilpotent structure of a ®nite soluble group, in
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terms of its m-Wielandt length. Let N c denote the class of nilpotent groups of nil-
potency class at most c. Then, as usual, the product N c1 � � � N ct denotes the class of
groups that have a ®nite ascending series with nilpotent factors of nilpotency class
respectively at most ci, �i � 1; . . . ; t�. A group G which belongs to N c1 � � � N ct is said
to have polynilpotent class row �ct; . . . ; c1�. (See Hanna Neumann [8, p. 14].)

According to Bryce's de®nition, �a1; . . . ; ar� is the minimal class row of G if and
only if the following three conditions are satis®ed.

(i) �a1; . . . ; ar� is a class row of G.
(ii) r is the Fitting length of G.
(iii) ai � bi, for each 1 � i � r, for every class row �b1; . . . ; br� of G.
A class of groups X has minimal class row c � �a1; . . . ; ar� if all groups in X

have class row c and, whenever all groups in X have class row �a01; . . . ; a0s�, then
either r < s or s � r and a0i � ai, �i � 1; . . . ; r�.

For m 6� 3 Bryce determined the minimal class row of the class of ®nite soluble
groups with m-Wielandt length at most n. For m � 3, he proved that the class of
®nite soluble groups with 3-Wielandt length at most n has a minimal class row, but if
n � 3 he was not able to decide which it is between two possibilities.

In this paper we extend Bryce's results to in®nite soluble groups and we
determine the minimal class row of the class of soluble groups with 3-Wielandt
length at most n, even in the case n � 3. Extending Bryce's notation, we denote
by Wm;n, �m � 2; n � 1�, the class of all groups whose m-Wielandt length is at most
n; A denotes the class of all abelian groups, A2 the class of abelian groups of
exponent at most 2. Thus Ar denotes the class of soluble groups of derived length at
most r. Notation used for operations between classes of groups is consistent with
[10].

Our main results are as follows.

Theorem 1. If G is a soluble group in W2;n, (n � 2), then G 2 N 2N nÿ2
3 N 2A.

Theorem 2. If G is a soluble group in Wm,n, (m�3, n�1) , then for n 6� 2
G 2 AN nÿ1

2 A, while G 2 N 2
2A when n � 2.

Theorem 3. If G is a soluble group in W2;n, �n � 2�, then G 2 A2n�1. If n � 1,
then G 2 A2.

Theorem 4. If G is a soluble group in Wm;n, �m � 3, n � 1�, then
(i) G 2 A5n=3 if n � 0 �mod 3�,
(ii) G 2 A5�nÿ1�=3�2 if n � 1 �mod 3�,
(iii) G 2 A5�nÿ2�=3�3A2 if n � 2 �mod 3�.

Clearly Theorems 1 and 2 say that for n � 2 the class W2;n has class row
�1; 2; 3; . . . ; 3|����{z����}

nÿ2
; 2�, while for m � 3 the class Wm;n has class row �1; 2; . . . ; 2|����{z����}

nÿ1
; 1� when

n 6� 2 and (1, 2, 2) when n � 2. By Bryce's results, these are the minimal class rows
for the considered classes.

Finally we prove that in order to conclude that a soluble 2-group is a Hamilto-
nian group it is enough to assume that u4�G� is Hamiltonian. A weaker result is
already known for ®nite 2-groups. Such a group G is Hamiltonian if w�G� is
Hamiltonian. This is a special case of the result of Baer [1, p. 246].
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2. Preliminaries. We begin by listing some general properties of the m-Wielandt
series that have been proved by Bryce in [3].

Lemma 2.1. Let G be a group.
(i) For m � 1, i � 1 the subgroups um;i�G� are characteristic in G,

wi�G� � um;i�G� � umÿ1;i�G� � . . . � u1;i�G� � G and

wi�G� �
\1
m�1

um;i�G�:

Moreover Wn �
T1

m�1Wm;n.
(ii) If N is a normal subgroup of G, for m � 2 and i � 1 we have

um;i�G�N=N � um;i�G=N� and um;i�G� \N � umÿ1;i�N�.
(iii) For m � 2; n � 1 the class Wm;n is closed for quotient groups and

Wm;n � Wmÿ1;n.
(iv) For m � 2 and 1 � i � mÿ 1 every group in Wm;i has the property that its

subnormal subgroups have defect at most i.

A group is said to be a T-group if every subnormal subgroup is normal. The
structure of soluble T-groups has been studied by Zacher [13], GaschuÈ tz [7] and
Robinson [9]; in particular, it is known that the Fitting subgroup of a soluble T-
group (which coincides with the centralizer of the derived subgroup) is a Dedekind
group, and a soluble T-group is metabelian.

Following Bryce's notation in [3], we denote by J the class de®ned as follows:
G 2 J if and only if, whenever C and D are characteristic subgroups of G such that
D � C and C=D is abelian, then every subgroup of G that lies between C and D is
normal in G. It is clear that T-groups belong to J , and that J is closed for char-
acteristic subgroups and factor groups by characteristic subgroups.

Lemma 2.2 ([3, Lemmas 3.6, 3.7]). Let G be a group. For m � 3 the subgroup
um�G� is a T-group, while u2�G� 2 J .

Recall that if A is a group, a power automorphism of A is an automorphism
mapping every subgroup of A onto itself. Cooper in [6] proved that the group of
power automorphisms , PAutA, is an abelian normal subgroup of AutA, and if A is
abelian, PAutA � Z�AutA�.

Finally if G is a group, we denote by F�G� the Fitting subgroup of G.

3. Proof of Theorems 2 and 4. Lemma 2.2 implies that for m � 3; n � 1, if a
group belongs toWm;n, then it has a characteristic series whose factors are T-groups.
Thus Theorems 2 and 4 are particular cases of two more general results valid for
soluble groups with a normal series whose factors are T-groups.

The following proposition may be compared to Lemma 4 in [5].

Proposition 3.1. Let G be a soluble group and let Z be a central subgroup of G
such that G=Z is a T-group. Then the Fitting subgroup F of G is nilpotent of class at
most 2 and �G;AutG� � F.
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Proof. It is clear that we may assume that Z is the centre of G and hence is a
characteristic subgroup of G. We show ®rst that F is nilpotent of class at most 2.
Note that F=Z is actually the Fitting subgroup of G=Z; then G0 � F and F=Z is a
Dedekind group, since G=Z is a soluble T-group. If F=Z is abelian, we get immedi-
ately that F is nilpotent of class at most 2. If F=Z is not abelian, then it is periodic
and it can be written as F=Z � Q=Z� A=Z� B=Z, where Q=Z is the quaternion
group of order 8, A=Z is an elementary abelian 2-group and B=Z is an abelian group
with all the elements of odd order. Then Q � hx; y;Zi where y4 2 Z,
x2 � y2 �modZ� and xyx 2 Z. If D=Z � �F=Z�0, then D � hy2;Zi and y2 centralizes F
modulo Z. We show that actually D lies in the centre of F.

Let b 2 BnZ. Since every element of B=Z has odd order, there exists an odd
integer m such that bm 2 Z. Thus, since �y2; b� 2 Z, we have that

1 � �y2; bm� � �y2; b�m:
On the other hand

1 � �y4; b� � �y2; b�2

and so, since �m; 2� � 1, �y2; b� � 1. If a 2 AnZ, then a2 2 Z and �y; a� 2 Z, whence

1 � �y; a2� � �y; a�2 � �y2; a�:
Finally since y2 � x2z for some z 2 Z, we have

�x; y2� � �x; x2z� � �x; x2� � 1:

Hence y2 2 Z�F�, so that D � Z�F�, and F is nilpotent of class 2.
Now set C � CG�F=D�; then C acts trivially on the series G � F � D � Z � 1

(because G=F and Z are central in G and D=Z has order 2), so that C is a normal
nilpotent subgroup of G and hence C � F. On the other hand F=D is abelian and it is
a characteristic factor of G; hence G acts by conjugation as a group of power auto-
morphisms on F=D and so �G;AutG� � C � F, since power automorphisms of an
abelian group commute with every automorphism. &

Corollary 3.2. Let G be a soluble group, let W / G be a T-group, and let
N � F�W�. Then W=N � Z�G=N�.

Proof. By Proposition 3.1, �W;AutW� � N. Since W is normal in G, G acts on
W as a group of automorphisms and so �W;G� � �W;AutW� � N. &

Notice that the same result has been proved by Casolo [5, Lemma 2] when
W � w�G�.

If G is a group, for every prime number p we denote by Op0 �G� the subgroup of
G generated by the p0-normal subgroups of G.

Theorem 3.3. Let G be a soluble group with a normal series of length n � 1 whose
factors are T-groups. Then G 2 AN nÿ1

2 A, if n 6� 2, while if n � 2, then G 2 N 2
2A.

Proof. Let 1 � G0 � G1 � . . . � Gn � G be the series of G. First of all we show
that in each case G 2 N n

2A. For each i � 1; . . . ; n de®ne the subgroups Ni by means
of the relation Ni=Giÿ1 � F�Gi=Giÿ1�. Then for each i, Gi=Giÿ1 is a soluble T-group
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and so, by Corollary 3.2, Gi=Ni is central in G. Moreover N1 is a Dedekind group
and so it is nilpotent of class at most 2; Ni�1=Ni is nilpotent of class at most 2 for
each i � 1; . . . ; nÿ 1, by Proposition 3.1, and G=Nn is abelian because
�G;AutG� � Nn. Hence G 2 N n

2A as required.
Now if n � 2 we are done. If n � 1, G is a soluble T-group and so G 2 A2. Let

us suppose that n � 3. Since the class AN nÿ1
2 A is residually closed it is enough to

prove the theorem when Op0 �G� � 1, for an arbitrary prime p. First we show that G3

contains a normal subgroup D 2 AN 2
2 such that �G3;G� � D. Since Op0 �G� � 1 then

either N1 is not periodic or N1 is a p-group. If N1 is abelian, by the ®rst part of the
proof we can choose D � N3. Then suppose that N1 is non-abelian; in such a case
p � 2 and this implies (see Robinson [9]) that G1 � N1 is a non-abelian Dedekind 2-
group. If X � Z�G1�, then X is a normal subgroup of G and G1=X is the elementary
abelian group of order 4.

Set C � CG3
�G1=X�; then G3=C is isomorphic to a subgroup of Aut�G1=X� ' S3.

Let L=C be the inverse image of A3 with respect to the embedding of G3=C in S3 and
set D � L \N3. In order to show that �G3;G� � D, observe that L is a normal sub-
group of G of index at most two in G3 and so �G3;G� � L. On the other hand
�G3;G� � N3; thus �G3;G� � D. It remains to show that D 2 AN 2

2. First consider
D=�C \N2�. Since N3=N2 is nilpotent of class at most 2, its derived subgroup, say
R=N2, is a central factor in N3 and so �D;C \ R� � C \N2; that is to say
�C \ R�=�C \N2� � Z�D=�C \N2��; on the other hand D0 � L0 \N03 � C \ R. Hence
D=�C \N2� is nilpotent of class at most 2. Now �C \N2�=G1 is a nilpotent T-group
and G1=X is central in �C \N2�=X. Thus, by Proposition 3.1, we get that �C \N2�=X
is nilpotent of class at most 2, and D 2 AN 2

2.
Now if n � 3 we are done. If n > 3, consider the series D � G3 �

N4 � . . . � Nn � G, where Ni are de®ned as above. Then, by Proposition 3.1, N4=D
is nilpotent of class at most two. Hence G=D 2 N nÿ3

2 A and G 2 AN nÿ1
2 A. &

The following theorem extends the results of Theorem 2 in [5] and uses almost
the same proof given by Casolo. (See [5, p. 333].)

Theorem 3.4. Let G be a soluble group with a normal series of length n � 1,
whose factors are T-groups. Then

(i) if n � 0 �mod 3� we have G 2 A5n=3,
(ii) if n � 1 �mod 3� we have G 2 A5�nÿ1�=3�2,
(iii) if n � 2 �mod 3� we have G 2 A5�nÿ2�=3�3A2.

Proof. Let 1 � G0 � G1 � . . . � Gn � G be the series of G, and proceed by
induction on n. If n � 1 the result follows from Theorem 3.3. If n � 2; 3, notice that
the proof of Lemma 5 in [5] works if we put G1 and G2 in the place of w�G� and
w2�G� respectively. Let n > 3, and let the result be true for all groups with a normal
series of length less than n. Then G=G3 satis®es the inductive hypothesis and so we
deduce the following results:

(i) if n � 0 �mod 3�; then G=G3 2 A5�nÿ3�=3, G3 2 A5, whence G 2 A5n=3,
(ii) if n � 1 �mod 3�; then G=G3 2 A5�nÿ4�=3�2, G3 2 A5, whence G 2 A5�nÿ1�=3�2,
(iii) if n � 0 �mod 3�; then G=G3 2 A5�nÿ5�=3�3A2, G3 2 A5, whence

G 2 A5�nÿ2�=3�3.
&
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Proof of Theorems 2 and 4. Consider the m-Wielandt series of G

1 � um�G� � . . . � um;nÿ1�G� � um;n�G� � G:

By Lemma 2.2 each factor um;i�1�G�=um;i�G� is a T-group. Thus, by applying Theo-
rem 3.3 and Theorem 3.4 respectively, we can conclude the proof. &

4. Proof of Theorems 1 and 3. A direct consequence of Lemma 2.2 is that groups
in W2;n have a characteristic series whose factors belong to J . As in the previous
paragraph we shall state Theorems 1 and 3 as corollaries of more general theorems
which hold for soluble groups with a normal series whose factors lie in J .

Lemma 4.1. Let G be a soluble group in J . Then G has a characteristic nilpotent
subgroup C, with class at most 2, such that �G;AutG� � C.

Proof. Let H=K be an abelian characteristic factor of G: then G acts by con-
jugation on H=K as a group of power automorphisms, and thus �G;AutG� �
CG�H=K�. Let C be the intersection of the centralizers of all the abelian characteristic
factors of G. Then obviously C is a characteristic subgroup of G and �G;AutG� � C.
Moreover the derived series of C is central in C, so that C is nilpotent and


3�C� � �C;C0� � C00 � 
4�C�;

thus 
3�C� � 
4�C� � 1. &

Theorem 4.2. Let G be a soluble group, with a normal series 1 � G0 �
G1 � . . . � Gn � G of length n � 1, whose factors belong to J . Then G 2 N 2N nÿ1

3 A,
and has derived length at most 2n� 1. If also n � 2 and G=Gnÿ1 is a T-group, then
G 2 N 2N nÿ2

3 N 2A.

Proof. By Lemma 4.1, for each i � 0; . . . ; nÿ 1, there exists a subgroup Ci such
that Ci=Gi is a characteristic nilpotent subgroup of Gi�1=Gi with class at most 2, and
Gi�1=Ci is central in G=Ci. Then Ci�1=Ci is nilpotent of class at most 3, for each
i � 0; . . . ; nÿ 2, C0 is nilpotent of class at most 2 and G=Cnÿ1 is abelian. Hence
G 2 N 2N nÿ1

3 A. Moreover since a nilpotent group of class at most 3 is metabelian, it
follows immediately that G 2 A2n�1. Suppose now that n � 2 and G=Gnÿ1 is a T-
group; then, by Proposition 3.1, Cnÿ1=Cnÿ2 has class at most 2. Hence
G 2 N 2N nÿ2

3 N 2A. &

Proof of Theorems 1 and 3. Consider the 2-Wielandt series of G

1 � u2�G� � . . . � u2;nÿ1�G� � u2;n�G� � G:

Then for i � 0; . . . ; nÿ 2, by Lemma 2.2 each factor u2;i�1�G�=u2;i�G� belongs toJ and
G=u2;nÿ1�G� is a T-group. Thus when n 6� 1 by Theorem 4.2 we get the conclusion. If
n � 1, then G � u2�G� is a soluble T-group by Lemma 2.1(iv) and it is metabelian. &

The kern K�G� of a group G is de®ned as the subgroup of all elements that
normalize every subgroup of G. Clearly K�G� is a Dedekind group. Baer in [1]
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showed that if G is a 2-group and K�G� is not abelian, then G � K�G� or equivalently
G is Hamiltonian. Since ®nite p-groups are nilpotent, if G is a ®nite 2-group
w�G� � K�G�, and so w�G� is not abelian if and only if G is Hamiltonian. Bryce
generalized this result proving that if G is a ®nite 2-group such that u3�G� is not
abelian, then G is Hamiltonian. Here we investigate what happens for in®nite
soluble 2-groups.

Theorem 4.3. Let G be a soluble 2-group and let u4�G� be Hamiltonian. Then G is
Hamiltonian.

In order to prove this result we need the following lemma.

Lemma 4.4 ([3, Lemma 5.5]). Let H be a 2-group containing a Hamiltonian sub-
group K of index 2. If K \ u2�H� is non-abelian, then H itself is a Hamiltonian group.

Note that although Bryce's article [3], according to his introduction is about
®nite groups, the proof of Lemma 5.5 works also for in®nite groups, and so it
actually proves our Lemma 4.4.

Proof of Theorem 4.3. Let 1 � G0 � u4�G� � G1 � G2 � . . . � Gn � G be an
abelian normal series of G; we prove by induction on i that Gi is Hamiltonian,
�i � 1; . . . ; n�. If i � 1, G1 � u4�G� and there is nothing to prove. If i > 1, assume
that Giÿ1 is Hamiltonian and let us prove that Gi is Hamiltonian. Let S � Giÿ1 be a
subgroup of Gi such that S=Giÿ1 is ®nite and let Giÿ1 � H0 � H1 � . . . � Ht � S be
part of a chief series of it. Then by Lemma 2.1(ii), u4�G� � u4�G� \ Gi \Hj �
u3�Gi� \Hj � u2�Hj� and so Lemma 4.4 yields that Hj is Hamiltonian provided that
Hjÿ1 is. Thus, by induction, S is Hamiltonian; then Gi is locally Dedekindian and so
Hamiltonian. This completes the initial induction and we can conclude that G � Gn

is Hamiltonian. &

Note that in contrast to what happens for ®nite groups, it is not su�cient to
assume that u4�G� is non-abelian, since there exist in®nite soluble 2-groups that are T-
groups, but they are neither abelian nor Hamiltonian; (see Robinson [9]). By Robin-
son [9], the condition ``u4�G� Hamiltonian'' is equivalent to ``F�u4�G�� non-abelian''.

One can see that if G is a nilpotent 2-group, then u4�G� in Theorem 4.3 can be
replaced by u3�G�; we don't know if this fact holds when G is any soluble 2-group.
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