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ALMOST SPLIT SEQUENCES WHOSE MIDDLE TERM
HAS AT MOST TWO INDECOMPOSABLE SUMMANDS

M. AUSLANDER, R. BAUTISTA, M. I. PLATZECK, . REITEN- AND S. O. SMALY

Introduction. Let A be an artin algebra, and denote by mod A the category
of finitely generated A-modules. All modules we consider are finitely generated.

We recall from [6] that a nonsplit exact sequence 0 - 4 — B é» C—0 in
mod A is said to be almost split if A and C are indecomposable, and given a
map k: X — C which is not an isomorphism and with X indecomposable, there
is some t: X — B such that gt = h.

Almost split sequences have turned out to be useful in the study of represen-
tation theory of artin algebras. Given a nonprojective indecomposable A-
module C (or an indecomposable noninjective A-module A4), we know that

there exists a unique almost split sequence 0 — 4 — B i C — 0 [6, Proposi-
tion 4.3], [5, Section 3]. To an indecomposable nonprojective A-module C there
is hence associated an invariant o (C), which denotes the number of summands
in a direct sum decomposition of B into indecomposable summands. If for
example A is a Nakayama (i.e. generalized uniserial) algebra, it is not hard to
see that «(C) = 2 for each indecomposable nonprojective A-module C (see
[7, Proposition 4.12]). It would be interesting to know if there is some integer K
such that if C is an indecomposable non-projective module over an algebra A
of finite representation type, then «(C) < K. Examples show that if there is
some such K, then K = 4. It would also be interesting to know if for a given
artin algebra A, there is some integer a(A), such that «(C) £ a(A) for each
indecomposable nonprojective A-module C.

We recall from [7] that a map g: B — C in mod A is said to be irreducible
if g is neither a split monomorphism nor a split epimorphism, and whenever
there is some commutative diagram

X
SN
g .
B ———C,
then s is a split monomorphism or ¢ is a split epimorphism. It is not hard to see

that an irreducible map is either a proper epimorphism or a proper mono-
morphism (see [7, Proposition 2.6]). If C is an indecomposable nonprojective
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A-module, then a map ¢': B — (' is irreducible if and only if ¢" is not zero and
there is a map ¢'": B” — C such that we have an almost split sequence

0oAopup 88 o g

And if 4 is an indecomposable noninjective A-module, thenamap f’: 4 — B’
is irreducible if and only if f’ is not zero and there is some map f”: 4 — B”
such that we have an almost split sequence

OﬁAij—)—»B’ﬂB"HCHO

(see [7, Section 3]). We recall from [2, Section 6] that we have an equivalence
relation ~ on the indecomposable objects in mod A, where 4 ~ B if and only
if there is a finite sequence 4 = A4y, A1, ..., 4, = B of indecomposable
modules such that there is some irreducible map from 4; to 4, or from
A1 to Ay, fori=0,...,n — 1. If Cis an indecomposable A-module, [C]
denotes the corresponding equivalence class. If 0 >4 —- B — C —0 is an
almost split sequence, it follows from the connection between almost split
sequences and irreducible maps that (4] = [(C].

The main result in this paper is that for a certain class of artin algebras
containing the algebras stably equivalent to hereditary algebras, in particular
the hereditary algebras, we have a(C) = 2 for each indecomposable module C
such that [C] contains neither projectives nor injectives.

The organization of the paper is the following. In Section 1 we introduce a
condition (4) on an artin algebra A, and show that under this condition
a(C) = 3 when [(C] contains neither projectives nor injectives. We also
investigate the special cases when «(C) = 2 and when there is some C such
that a(C) = 3 more closely.

In Section 2 we consider conditions which imply that «(C) =< 2 when [C]
contains neither projectives nor injectives. In particular, we introduce a new
condition (B) on artin algebras, which together with condition (4) will be
sufficient to get our desired conclusion.

In Section 3 we show that an artin algebra stably equivalent to an hereditary
algebra satisfies conditions (4) and (B). We also include a discussion of the
two questions mentioned in the beginning of this introduction.

The main result of this paper was to a large extent inspired by a talk given
by C. M. Ringel in Oberwolfach in June 1977, where he announced that
a(C) = 2if C is an indecomposable A-module such that [C] contains neither
projectives nor injectives, for a large class of hereditary algebras A. Since
then Ringel has independent of our work extended his work to all hereditary
algebras [13]. Whereas the proofs of our preliminary results in Section 1 are
similar to those of Ringel, the proofs that a(C) = 2 for C indecomposable such
that [C] contains neither projectives nor injectives are completely different.
We use for this, as in Section 1, only the theory of almost split sequences and
irreducible maps, whereas Ringel assumes that the algebra is hereditary and

https://doi.org/10.4153/CJM-1979-089-5 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-089-5

944 M. AUSLANDER, R. BAUTISTA, M. 1. PLATZECK, I. REITEN AND S. O. SMAL@

uses in addition properties of the Coxeter transformations and earlier results
by Dlab and himself on tame hereditary algebras.

If Ais an artin algebra satisfying our conditions (4) and (B), and C is an
indecomposable A-module such that [C] contains neither projectives nor
injectives, we have in addition toa(C) = 2thatif 0 =4 —- B, L B, — C—0
is an almost split sequence where B; and B, are indecomposable and L (B;)
= L(C), then L(By) > L(C). Here L denotes length. Much of the interest in
our results lies in the fact that Ringel has shown (announced in Oberwolfach,
see [13]) that if [C] has the above properties, then the objects in [C] behave
much like uniserial objects. Hence it would be very interesting to find more
general classes of artin algebras satisfying (4) and (B). Actually, we do not
know of any artin algebra which does not satisfy these conditions.

§ 1. Let A be an artin algebra and denote by % the full subcategory of mod
A whose objects X are such that the indecomposable summands B of X have
the property that [B] contains no injectives and no projectives. We point out
that? is empty if A is of finite type, and we conjecture that% is not empty
otherwise. Denote by D the ordinary duality for artin algebras, and by Tr
the transpose. For this we recall thatif C isinmod A and P, = Py — (=0

is a minimal projective presentation of C in mod A, then the A”-module
TrC is given by the exactness of the sequence

Hom 4 (Py, A) = Hom 4 (P, A) - TrC — 0.

Tris not in general a functor from mod A to mod A, but is a functor, and even
a duality, from mod A to mod A%, the module categories modulo projectives.
Consequently DTr is not in general a functor from mod A to mod A, but from
mod A to mod A, and here even an equivalence, where mod A denotes mod A
modulo injectives (see [6]). For f in mod A we denote by f and f the corres-
ponding morphisms in mod A and mod A. B

Iff: M — Nisamapinmod A, thereissome f’: DTrM — DTrN such that
DTr f = f/, but f/ is not in general uniquely determined. However, whether
f’is a monomorphism is independent of the choice of f’, as follows from the
following lemma.

Lemma 1.1. Let A be an artin algebra and M and N objects in mod A with no
nonzero injective summands. If g¢: M — N is @ monomorphism and h: M — N is
such that § = h, then h is also @ monomorphism.

Proof. Since § = h, we have a commutative diagram

where [ is an injective A-module. Since N has no nonzero injective summands,
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we must have f(soc I) = 0, and consequently (¢ — &) (soc M) = 0, where
soc X denotes the socle of X. If x is a nonzero element in soc M, then g(x) # 0,
since g is a monomorphism. Consequently we have k(x) = g(x) ## 0, which
shows that #: M — N is a monomorphism.

It is a consequence of Lemma 1.1 that if f: M — N is a map in mod A, it is
well defined to say that DTrf: DTrM — DTrN is a monomorphism. Similarly
it is well defined to say that TrDf: TrDM — TrDN is an epimorphism.

We shall now introduce the following conditions on an artin algebra A.

(A4) If f: M — N is an irreducible monomorphism and M or N is indecom-
posable and in %, then DTrf: DTr}M — TrDN is a monomorphism.

(A") If f: M — N is an irreducible epimorphism and 1/ or N is indecom-
posable and in %, then TrDf: TrD Al — TrDN is an epimorphism.

We have the following relationship between these conditions.
LeMMa 1.2, For an artin algebra A, the conditions (A) and (A") are equivalent.

Proof. Assume first that (A4 ) holds, and let f: 3 — N be an irreducible epi-
morphism where M or N is indecomposable and in 4. Choose f': TrDM —
TrDN such that f/ = TrDf. Assume to the contrary that f’ is not an epi-
morphism. Since we know from [8, Proposition 1.2] that f’ is irreducible, f’
must then be a monomorphism. We then have DTrf" = DTrTrDf = f, so
that we conclude by condition (4) that f: A/ — N is a monomorphism. This is
a contradiction to the fact that f: M — N is an irreducible epimorphism.
Hence (4’) holds.

It follows similarly that (4’) implies (4).

We shall in this section show that if A satisfies (4) and C is indecomposable
and in %, then we have a(C) £ 3, where a(C) denotes the number of inde-
composable summands of B in an almost split sequence 0 > 4 — B — C — 0.
And we shall further get some more information in the case when a(C) < 2
for all indecomposable C in % and in the case when a(C) = 3 for some inde-
composable C in ¢ .

We start out with some preliminary results.

LemMa 1.3, Let A be an artin algebra, and assume that f: M — N and g:
N — TrDM are irreducible maps and that M or N is indecomposable and in € .
If A satisfies (A), we have the following.

(a) f and g are not both monomorphisms.

(b) f and ¢ are not both epimorphisms.

Proof. (a) If f: M— N and g: N —TrDM are monomorphisms, then
DTrf: DTrM — DTrN and DTrg: DTrN — M are monomorphisms since A
satisfies (4). Since M or N is indecomposable and in %', we have that DTrM
or DTrN is indecomposable, and is in %, since we know thatif 0 - 4 — B —
C — 0 is an almost split sequence, then 4 = DTrC [6, Proposition 4.3] and
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consequently [C] = [DTrC]. It then follows that for all » > 0, DTr’f and
DTr’g are nonzero monomorphisms, so that we get a chain of proper nonzero
monomorphisms DTr’'N — DTr"'N — ... —> DTrN — N. Since r can be
chosen arbitrarily large, this is a contradiction.

(b) Follows in an analogous way.

Lumma 1.4, Let A be an artin algebra satisfying (A), and assume that B is
indecomposable in €. Then we have the following.

(a) If fi: Bi— B and fo: Bo — B are such that (fi,fs): Bi U By — B s
wrreducible, then fy s @ monomorphism if f1 is an epimorphism.

(0) If fi: B— By and fy: B — By are such that (fi, f2): B— By 1L By is
irreducible, then fo is an epimorphism if f1 1s « monomor phism.

Proof. (a) Assume to the contrary that fi: By — B and fs: By — B are both
epimorphisms, and let

0—=DTrB—- 5B, U B, L K—B—0

be an almost split sequence. Letting L denote length, we have that L(B;) >
L(B), and consequently L(DTrB) > L(B:), so that the irreducible map
DTrB — B, is an epimorphism. Since also fs: By — B is an irreducible epimor-
phism and B is in %, we have a contradiction by Lemma 1.3 (b).

(b) is proved in a similar way.

Lemwma 1.5. Let A be an artin algebra satisfying (A). Let B be indecomposable
in € andfi: Bi— B,1 = 1,...,nnonzero maps such that the induced map

B UuBy ... UB,—>B
is wrreducible. If fy: By — Cis an epimorphism, then n < 2.

Proof. Assume that the conclusion is not true. We can then clearly assume
that # = 3 and that B, and Bj; are indecomposable. Consider the almost split
sequence 0 - B, —» C; > TrDB; — 0 for ¢ = 2, 3. Since f;: B; — B is irre-
ducible, we know that B is a summand of C;. Hence

L(B) 4+ L(TrDB,) = L(B) + r,,
where r; 2 0. Consider the almost split sequence
0—-DTrB— B, U B, U B U K—B—0.
We know from [8, Section 2] that we then have an almost split sequence

0—B—=TrDB, U TrDB, UL TrDBy L TrDK — TrDB — 0.

Here we use that TrDB is in %, so that the middle term in the above almost
split sequence has no nonzero projective summands.
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From these exact sequences we obtain
L(WyB) + L(Ui_ TrDB,) + L(K) + L(TrDK) =
= L(DTrB) + L(TrDB) + 2L(B) = L(B)) + L(TrDBy)
+ 2L(B) + 7. + 7y + L(K) + L(TrDK).

Hence L(B;) + L(TrDB,) < L(DTrB) + L(TrDB). But since fi: B, — B
is an epimorphism, it follows by Lemma 1.3 that DTrB — B is an irreducible
monomorphism, and consequently L(DTrB) < L(B;). Further it follows by
condition (4’) that TrDfi: TrDB; — TrDB is an epimorphism, so that
L(TrDB) £ L(TrDB,). We then have a contradiction, and can conclude that
n < 2.

We are now ready to prove the main result in this section. We point out that
by definition (DTr)°C = C = (TrD)°C, and forr > 0 (DTr)~"C = (TrD)"C.

TurorEM 1.6. Let A be an artin algebra satisfying condition (A), and let B be
indecomposable in 4. Then we have the following.
(a) a(B) £ 3.

(b) If a(B) = 2,and 0 — DTrB — E, 4 E2<—‘f—ly——f—‘2—2,B_)O

is an almost split sequence with Fy and E indecomposable, then one of the maps
fi: Ev— B and fo: Es — B ts « monomorphism and the other is an epimorphism.

() If a(B) =3 and 0> DTrB— E, U Es Il E3—>B—0 s an almost
split sequence, then all the induced maps E; — B,1 = 1,2, 3, are monomorphisms,
and all induced maps DTrB — E; are epimorphisms.

Proof. Assume first that we have an almost split sequence
0—-DTrB— Wi, E;— B—0,

where E; is indecomposable and » = 2. If fi: E; — B is an epimorphism, we
have that n» = 2 by Lemma 1.5 and that f,: Ky — B is a monomorphism by
Lemma 1.3. For if fy: Es — B was an epimorphism, DTrB — E; would be an
epimorphism.

If n = 2, then fi: 1 — B and fy: E» — B can not both be monomorphisms,
since then DTrB — E; would be a monomorphism and we would get a con-
tradiction to Lemma 1.3.

We can now assume that f;: £y — B is a monomorphism forz = 1,..., n.
Assume that n = 4. By Lemma 1.5 we then have that (fi, f2): E1 Ul E; — B
is not an epimorphism, and hence a monomorphism since it is irreducible.
Similarly,

(fsy. v fu): Es L ... L E,—B

is also a monomorphism, so that DTrB — E; L Es is a monomorphism. We
then have a contradiction by Lemma 1.3, so that # < 3. We finally point out
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that if » = 3, then the induced maps DTrB — £; must be epimorphisms by
Lemma 1.3. This finishes the proof of the theorem.

We shall now study more closely what we can say when there is some
indecomposable B in % such that a(B) = 3.

ProrositioN 1.7. Let A be an artin algebra salisfying condition (A), und
assume that B is an indecomposable module in 6 and

0—-DIrB—>E, UE, U E;s—B—0

is almost split with the E; indecomposable. Then we have the following.

(a) There is « sequence of irreducible monomor phisms between indecomposable
modules E;py— ... En=E,— B, 1 =1, 2, 3, such that a(FE;;;) =1,
a(k: ;) = 2forj < k.

(h) There is a sequence of irreductble epimorphisms between indecomposable
modales

B—TrDE, —» (TrD)E; v — ... = (TrD)* L, .,

where a (TrDYE, ) = Tand a(TrDIE, ) = 2forj < ki =1,2,3.

(c) All modules in [B] are of the form DTr'E,;, i =1, 2,3, 1 £j =k,
I € Z, or of the form DTr'B, t € Z.

(d) If X is in [B] and there is some finite chain of irreducible maps between
indecomposable modiles

= Eiv];/ —>X1——’X«_>—’. . '_’Xn = X,
then X 1s tsomor phic to some TrD'E,; ;, t = 0 or lo some TrD'B, = 0.

Proof. (a) Since there is an irreducible monomorphism /2, — B, we know
by Theorem 1.6 (a) and (c) that a(f2;) < 2. If «(f£;) = 2, we know by
Theorem 1.6 (b) that there is an irreducible monomorphism X — £.. Con-
tinuing this way, we get our desired chain.

(b) We first observe that we have an irreducible epimorphism 58 — TrDZ,.
Analogous to (a) we get a sequence of irreducible epimorphisms

B —>TI‘I)E, = Ki.1 ... K{,n,fl - Ki,:l,

with a(K;,;) =1, a(K,; ;) = 2 for j < n, So we want to show that n; = k,
and (TrD)’E; ;= K, ;. Assume that for a fixed 7 we have shown this for
7 = Jju < ki We have an irreducible monomorphism £, ;.1 — E; ;,, hence an
irreducible epimorphism £, ;, — TrDI,; ;,1, so that we get an irreducible
epimorphism

TrDIE, j, — TrDI g, .
Since a(TrD7E, ;) = 2, we can now conclude that
TrI)jO‘!—lEi‘j(H_l = Ki,jn+1~

By considering the values of « we now get the desired conclusion.
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(c) Let M be in [B]. Then M =< B or there is a chain of irreducible maps
between indecomposable modules My = M — M, — ... — M, = B, where
M; — M, indicates that there is an irreducible map M;— M, or an
irreducible map M .1 — M,. We shall prove our claim by induction on the
length of the chain. If we have an irreducible map M — B = 1/,, then
M =~ E,, and if we have an irreducible map B — M, then M = TrDZE,. Let
now n > 1. By induction hypothesis we have that M, = (TrD)’E, ; for some
1, j, v or M; = TrD’B for some r. To finish the proof we explain what certain
almost split sequences look like.

Since we have an almost split sequence

0—->DTrB—>E, UE, I E3—B—0,
we have almost split sequences
0—-TrD™'8 > TrD’E, U TrD7E, UL TrD’E; - TrD’B — 0.

We have seen that a(F; ;) = 2 if j < k; and that if also 7 > 1 we have irre-
ducible maps E; ; — E; ;i and E; ; > TrDE, ;;1, so that we have an almost
split sequence

0—-FL;, ;=L ;-1 LTrDE; ;1 = TrDE,; ; — 0.
Similarly we have an almost split sequence
0—>FE,—>B UTrDE,»,—>TrDE;, —0,
and an almost split sequence
0—=FEiy =L, = TrDE,, —0.

Applying (TrD)” for » € Z to the above almost split sequences, we get our
desired result.

(d) Assume that we have a chain of irreducible maps between indecom-
posable modules E;;, = X¢—= X, — ... > X, = X. If n =1, we know by
the proof of (c) that X is of the desired type. It is then easy to see that we get
our desired result by induction, by using the computation of the almost split
sequences in the proof of (c).

We shall illustrate the above theorem by drawing a diagram of the irre-
ducible maps between the indecomposable modules in [B]. We only draw that
part of the diagram corresponding to ¢ = 1. S indicates monomorphism and
— epimorphism.

In the case when there is no C in [B] with «(C) = 3, we have the following
result.

ProrosiTiON 1.8. Let A be an artin algebra satisfying condition (A). Assume
that B is indecomposable in 7, and that «(C) < 2 for all C in [B). Then we have
the following.
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. TrDf -y, TrDR
DTrE o0 Eig TrDF= L

S 7
N -

Eyy TriE, ,
A 0N A S
DTrEy . Ei» TrDE, » TrD2E, TrD3E, 5
AN AN SN A L A S
DTrE, , DTrE, Eyq TrDE; TrDE, TrD3E, 4
A N A VP B VI VU S W SN
DTriB DTr2B DTrB B TrDB TrD2B TrD*B

(a) There is some By in [B] such that «(By) = 1 and an infinite chein of
trreducible monomor phisms belween indecomposuble modules By — By — By
— . ..o B> .. wherea(B)) = 2for1 > 1.

(b) For euch 1 there is « chain of irrediucible epimorphisms

B;—=TrDB,_,— ... —>TrD=1B,.

(c) Every Cin [B]1is of the type D'Tr" B, for some 1 = 1,7 ¢ Z.
(d) The almost split sequences are of the form

00— DTr'B, - DTr'B, — DTr'B; — 0 und
0—->DTrB, - DTr'B;y; ULDTr='B,_;, — DTr'B;, =0, fori > 1.

Proof. (a) If Cis in [B], then either a(C) = 1, or there is some irreducible
monomorphism €’ — C. This shows the existence of some B, in [B] with
a(By) = 1. Given C in [B], there is always an irreducible monomorphism
C — C’. Hence we get our desired chain of irreducible monomorphisms
Bi—By—>By—...B;,— ... . Clearly a(B,) = 2fori > 1.

(bh) Since we have an irreducible monomorphism B, , — B, for ¢ > 1, we
have an irreducible epimorphism B; — TrDZB,_;. Our claim is then easily
proved by induction.

(c) follows easily by induction.

(d) is trivial.

We shall illustrate this result in the diagram below of irreducible maps.
We point out the following result, which gives some extra information on
algebras satisfying (4), and which follows from our discussion so far.

ProprosITION 1.9. Let A be an artin algebra satisfying condition (A). If
fi M — N s an wrreductble epimor phism where M or N is indecomposuble and in
@, then D'Trf: DTrM — DTrN is an epimorphism (for any choice of DTrf).
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If f: M — N is an irreducible monomor phism where M or N is indecomposable
and in €, then TrDf: TrDM — TrDN s « monomorphism (for any choice of

TrDf).
DTrB,; B TrDB,; TrD2B, TrD*B,;
A N J VR R VI
DTrB, B, TrDB, TrD2B,
A8 AN AN AN
DTr2B; DTr B, B; TrDB; TrD2B,
/' % /’ \ /' \ /' \ /' \

We end this section with the following interesting observation.

ProrositionN 1.10. Let A be an artin algebra satisfying condition (A). Assume
that X is indecomposable in €, and that a(YV) £ 2 for all Yin [X). If f: A — B
is an irreducible monomorphism with A and B indecomposable and in [X), then

= Coker f1s in [X].

Proof. Let C be an indecomposable A-module such that C = Coker f for
some irreducible monomorphism f: 4 — B, where 4 and B are indecomposable
and in [X]. Choose f: 4 — B such that B has as short length as possible. If

0——>A[—>B—>C—>O

is an almost split sequence, then Cis in [ X]. If

O—>Ai>B—->C——>O

is not an almost split sequence, we know by our assumption and Lemma 1.4
that we have an almost split sequence

04 LS g @8 g o,

where f': 4 — B’ is an irreducible epimorphism with B’ indecomposable. It is
then not hard to see that we have an exact sequence

0— B 5 TrDA — € — 0,

where g’: B' — TrDA is an irreducible monomorphism and B’ and TrDA are
indecomposable and in [X]. Since we have L(TrDA4) < L(B), we then get a
contradiction to the minimality of the length of B. This finishes the proof.

§ 2. Let A be an artin algebra. In this section we shall give sufticient condi-

tions for a(C) < 2, for all indecomposable objects C in €, by using our results
from Section 1.
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We shall start out with some preliminary results.

LumMma 2.1, Let A be un artin algebra, and K a positive integer. Then there are
integers K' and K" such that iof ¢ B— C and h: C — A are irreductble maps
between indecomposable nonprojective noninjective moditles, and L(C) < K, then
L(B) < K'and L(4) < K".

Proof. Let C be an indecomposable nonprojective A-module such that
L(C) < K, and consider the almost split sequence 0 — DTrC — E — C — 0.
Let Py — Py— C — 0 be a minimal projective presentation of C in mod A,
and consider the exact sequence

Homy (Py, A) — Homy (P, A) = TrC — 0.

Then there is clearly some integer K; such that L(Tr(C) < K, and conse-
quently L(DTrC) < K;. Since g: B — C is irreducible, we know that B is a
summand of E [7, Theorem 2.4, Proposition 3.1]. Letting K’ = K 4+ K, we
then have that L(B) < K'.

The second half of the lemma is proved similarly.

LEMMA 2.2, Let A be an artin algebra satisfying condition (A ). Assume that C
1s an indecomposable A-module in € such that there is some integer K such that
L(DTr'C) < K for all v € Z. (T'his is the case for example if C 1s DTr-
periodic.) Then a(X) = 2 for all indecomposable X in [C).

Proof. Assume to the contrary that there is some B in [C] such thata(B) = 3.
By Proposition 1.7(c) and repeated application of Lemma 2.1 there is then
some integer K’ such that 2 (X) < K’ for all X in [(]. Since we know from
[2, Section 6] that [B] contains indecomposable modules of arbitrarily large
length, we have a contradiction, and the proof is complete.

PRrROPOSITION 2.3. Let A be an artin algebre satisfying condition (4). Assume
that there is an indecomposable A-module Cin G such that there is some integer K
such that L(DTr'C) < K for an infinite number of v € Z. Then a(X) = 2 for
all X in [C].

Proof. Assume to the contrary that there is some indecomposable B in [%]
such that a(B) = 3. Choose B such that B = C or there is a finite chain of
irreducible maps between indecomposable modules C — C; — ... — (C, = B,
and let

0—-DTrB—FL, UL I ULE;—B—0

be an almost split sequence. Since we know by Theorem 1.6 (¢) that £, — B
is a monomorphism forz = 1,2, 3, DTrB — E; 1L E,is a monomorphism, and
the composite map

DTtB—FE, UL Es—DB UL B=B?
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is a monomorphism. By considering the almost split sequences
0 - TrDB — TrD*'E, U TrDE, U TrD™E; — TrD 'R -0,

we get in the same way an induced monomorphism TrD!B — (TrD*!B)2
Hence we get a sequence of monomorphisms

B— (TrDB)?—...— ((TrD)'B)* — ...,
and similarly for each 7 > 0 a sequence of monomorphisms
DTriB — (DTr=1B)2 — ... — (DTrB)¥ — B¥*!,

By Lemma 2.2 we can assume that B is not DTr-periodic. Then for any ¢ > 0
we have sequences of maps which are not isomorphisms between indecom-
posable modules

(DTr)iB— (DTr)='B—...— B and B—->TrDB—...— (TrD)B,
such that the composite is not zero.
We now use the following result [11, Lemma 12].

Lemva 2.4, Let R be a ring and { M i} =0 « family of indecomposable R-modules
of finite length, f; M;— My for i = 0 maps which are not isomorphisms, n an
integer such that L(M ) < n for all 1. Then there is some integer ngy such that the
composition f, ... f11is zero.

Since C >~ B or there is a finite sequence of irreducible maps between
indecomposable modules C —...— B, we get by Lemma 2.1 that there
exists an integer K’ such that L(DTr’B) < K’ for an infinite number of » € Z.
By considering the two sequences of maps

(DTr)B—...—»B and B—-TrDB—...— (TrD)B,

we then get a contradiction using Lemma 2.4. This finishes the proof of Propo-
sition 2.3.

The following lemma will be useful.

Lemma 2.5, Let A be an artin algebra, and assume that C is an indecom-
posable module such that [C] contains no injectives. If X 1s in [C], there 1s an
infinite number of YV in [C] such that there is a nonzero map from X to Y.

Proof. Assume to the contrary that there is some X in [C] such that there is
only a finite number of ¥ in [C] such that there is a nonzero map from X to Y.
We then know from [9, Section 1] that if there is some nonzero map f: X — Z
with Z indecomposable, then X = Z or there is a finite chain of irreducible
maps between indecomposable modules from X to Z, and consequently Z is in
[X] = [C]. Since there is some nonzero map g: X — [ for an indecompoasble
injective module I, we then get a contradiction to our hypothesis. This finishes
the proof of the lemma.
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To prove our main theorem we need to introduce a new condition on an
artin algebra A. But first we shall recall some results from [5, Section 3].

Consider the category of additive covariant functors (mod A, Ab) from mod A
to abelian groups. For X in mod A, denote by (X, ) the corresponding repre-
sentable functor. A functor [ is finitely presented if we have an exact sequence
(X,)— (¥,) > F—0with X and ¥ in modA. For a finitely presented func-
tor F, rF is defined to be the intersection of the maximal subfunctors of I
rF is again finitely presented, and we define inductively r™*'/ = r(r'[). We
denote NG 7'F by r”F.
We now introduce the following condition on an artin algebra.

BYIf f: A =4y—>4,—...— A, = B is a composition of irreducible
maps between indecomposable modules in %" such that f is a monomorphism
and Im(f,) Z r®(4,), then L(DTr'4) £ L(DTr'B) forall 7 > 0.

Before we go on we point out some conditions which easily imply () and
whose statements do not involve any functor category.

Bt fi 4 =4,>4,—...—> 4, =B is a composition of irreducible
maps between indecomposable modules in %" such that f is a monomorphism,
then DTrf: DTrd — DTrB is a monomorphism.

(B,) If A and B are indecomposable in 4" and there is some monomorphism

f+ 4 — B, then there is some monomorphism f’: DTr4 — DTrB.
We also have the following dual condition to (B).

B f: 4 =4,—>4,—...—> A4, =B is a composition of irreducible
maps between indecomposable modules in %" such that f is an epimorphism
and Im(f, ) Z r® (4, ), then L(TrD4) = L(TrDB) forall 7 > 0.

It is not hard to see that in the following main result (B) can be replaced
by (B*).

TurOREM 2.6. Let A be an artin algebra satisfying conditions (A) and (B).
Then a(C) < 2 for each indecomposable C in € .

Proof. Assume to the contrary that there is some indecomposable B in @
such that «(B) = 3, and consider, in the notation of Section 1, the sequences
of irreducible monomorphisms

Eiy;“ — 121,);1'_] —_ ... ]2‘1"1 — B for 1= 1, 2, 3.

By possibly replacing B by some DTr/B, j € Z, and possibly changing the
numbering, we may assume that £ = £, has minimal length in [B]. Since
[E] contains no injectives, we know by Lemma 2.5 that there is an infinite
number of indecomposable modules ¥ such that there is some nonzero map ¢:
E — Y. We then know that there is an infinite number of indecomposable
modules 4 ; together with maps f;: £ — A, such that f; is a composition of
irreducible maps between indecomposable modules and Im(f,, )  r(%,)
({11, 9, Proposition 1.5]). For each f;: £ — A, consider the diagram
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E ——ﬁ—> A;
N
fi(E)

Since Im(fy, ) Z r=(L2,), we have Im(u, ) C r°(fi(E),) by elementary
properties of the radical (see [5, Section 3]). Hence for some indecomposable
summand X of f;(£) there is some chain of irreducible maps between inde-
composable modules X - X; - X, —> ... —> X, = 4, [9, Proposition 1.5],
so that X € [B]. Since £ has minimal length in [B], f;: £ — A4; must be a
monomorphism. By Proposition 1.7 (d) we have for a B, which is either one of
the modules £, ; or B that an infinite number of A, is of the form (TrD)"iB,,
7; 2 0. Hence we have monomorphisms f,,: ££— (TrD)"B, such that f, is a
composite of irreducible maps between indecomposable modules and
Im(f,,,) T r*(L,). By condition (B) we then have that L(DTr"E) < L(B,).
We are then done by applying Proposition 2.3.

<o
It
Ut

We end this section with another sufficient condition.

Prorositiox 2.7. Let A be an artin algebra satisfying condition (A). Let B
be indecomposable in € and assume that there is some r ¢ Z such that

L(DTr'B) z 2L(DTr='B) or L(DTr—'B) = 2L(DTr"B).
Then we have a(B) £ 2.

Proof. Assume to the contrary that a(B) = 3. Then we have an almost
split sequence

0—-DTrB—=E, UL E, Il E3— B—0,
and consequently an almost split sequence
0—->DTr'B—-DTr £, U DTr='E, 1 DTy — DTr '8 — 0.

We know by Theorem 1.6(c) that the induced maps DTr'B — DTr—1E,,
1 =1, 2, 3 are epimorphisms, so that L(DTr’B) > L(DTr"'E,), and the
maps DTr='E; — DTr’~!'5B are monomorphisms, so that

L(DTr='B) > L(DTr—E,).
We further know that

DTr'B — DTr—'E; 1L DTr'E,
1s a monomorphism. It follows that

LDTrB) < L(DTr—Ey) + L(DTr—1E.) < 2L(DTr™'B)
and similarly

L(DTr1B) < L(DTr—1(£, U Ey)) < 2L(DTr’B).

This contradicts the hypothesis, so we conclude that «(B) < 2.
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§ 3. In this section we shall discuss which algebras satisfy conditions (4)
and (B). If A is an indecomposable algebra of finite representation type, then
there is only one equivalence class of indecomposable modules, which hence
must contain projectives [2, Section 6]. We do not know of any artin algebras
which do not satisfy the conditions, and it would be interesting to know if they
all do. (J. Alperin has found an algebra which does not satisfy (A) or (B), and
C. M. Ringel has shown that «(C) > 2 in% can occur.)

An important class of artin algebras which we can show satisfy the condi-
tions is the artin algebras stably equivalent to hereditary algebras, in par-
ticular the hereditary algebras. We recall that two artin algebras A and A’
are stably equivalent if mod A and mod A’ are equivalent categories (sec [4]).
For hereditary algebras this is a direct consequence of the following well
known result.

Leymya 3.1. Let A be an hereditary artin algebra and f: A — B « mono-
morphism in mod A, g: £ — Fan epimor phism in mod A.*Then DTrf: DTrd —
DTrB is a monomorphism and TrDg: TrDE — TrD Fis an epimorphism.

Proof. Considering the definition of Tr, it is not hard to see that for an
hereditary algebra A, Tr is a functor from mod A to mod A%, which is isomor-
phic to Ext'(, A). Tr is hence right exact, so that DTr is left exact and TrD
1s right exact. This gives our desired result.

To get the result for algebras stably equivalent to hereditary algebras we
shall also need the following.

Levma 3.2 Let A be an artin «lgebra stubly equivalent to an hereditary
algebra. If f+ A — B 1s « monomorphism with A und B in @, then there is some
monomorphism DTrd — DTrB.

Proof. Let T be an hereditary algebra such that we have an equivalence of
categories y: mod A — mod I'. We also denote by v the induced correspondence
between the modules with no nonzero injective summands. Let f: 4 — B be a
monomorphism, where 4 and B are in 4. Since 4 has no nonzero injective
summands, we know from [4, Chapter IV, Proposition 1.2] thatif f': y(A) —
v(B) is such that y(f) = f/, then f’ is a monomorphism in modI'. Since
I is hereditary, DTrf’: DTry(4) — DTry(B) is a monomorphism by Lemma
3.1. Since 4 and B are in %, it follows from [9, Theorem 3.1] that DTry(4)
>~ ~y(DTrd) and DTry(B) = y(DTrB). Hence we have a monomorphism
s:y(DTrd) —-v(DTrB). Letting {: DTr4d — DTrB in modA be such that
v(f) =5, we get again by [4, Chapter IV, Proposition 1.2] that {: DTr4 —
DTrB is a monomorphism.

As a direct consequence of these preliminary results we now get the following,
using that if f: X - V with X, V in % is irreducible and L(DTrX)
< L(DTrY), then DTrf: DTrX — DTrV is a monomorphism.
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ProPOSITION 3.3. If A @5 an artin «lgebra stably equivalent to an hereditury
algebra, then A satisfies conditions (A) und (B).

Another sufficient condition for an artin algebra to satisfy our conditions
is given in the following result.

ProrosiTiON 3.4. Let A be an hereditary artin algebra and A « twosided ideal
in A such that DTry oM = Hom s (A/A, DTrd) for all A/AN-modules M in
C s . Then A/ satisfies conditions (A) and (B).

Proof. Let f: M — N be a monomorphism where 1/ and N are in 7, .
Since A is hereditary, we have by Lemma 3.1 a monomorphism DTrf:
DTryM — DTraN. Hence we have a monomorphism Hom, (A/, DTrM) —
Hom, (A/3, DTrN). By our assumption it then follows that we have a mono-
morphism DTry ,gqM — DTry oV. It follows from this that A/ satisfies (A)
and (B).

We point out that in [8, Corollary 4.4] are given several statements equiva-
lent to the condition

DTry oM = Homy (A/A, DTrM)

for a A/-module M.
We shall now show that we can use our results to get some information on
the following two questions which we mentioned in the introduction.

(1) If Aisanartin algebra, is there an integer N = «(A) such thata(C) £ N
for each indecomposable nonprojective A-module C?

(2) Is there some integer K such that if A is an artin algebra of finite
representation type, then a(A) £ K? And if there is such a K, what is the
least possible value for K?

Trivially, (1) holds for an artin algebra A of finite representation type. We
shall now show that (1) also holds for an artin algebra stably equivalent to an
hereditary algebra. IFor this the following two lemmas will be useful.

LeMMA 3.5. Let A be an artin algebra and <7 a full subcategory of mod A, such
that there is « finite number of indecomposable modules Ay, ..., A,, with the
property that every indecomposable module in .7 is of the form Tr1)iA; for some
i CZ, j=1,...,n Then the set of a(A) with A indecomposable in </ is
bounded.

Proof. Since for an indecomposable A-module X there is only a finite
number of indecomposable A-modules ¥ such that there is an irreducible map
X — 7V, there are only a finite number of almost split sequences in mod A
whose middle term has a nonzero projective or a nonzero injective summand.
We further know thatif 0 > 4 — B — C — 0 is an almost split sequence and
0—A4"— B"— DTrC — 0 is an almost split sequence, the number of non-
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projective indecomposable summands of B is the same as the number of
noninjective indecomposable summands of B’ [8, Section 2]. If 0 — A" — B”
— TrDC — 0 is an almost split sequence, the number of indecomposable
noninjective summands of B is the same as the number of indecomposable
nonprojective summands of B”’. From these observations our claim follows.

LemMa 3.6, Let A and A be stably equivalent artin algebras. If a(A) exists,
then a(A") exists.

Proof. Let 8: mod A — mod A’ be an equivalence, and denote also by 8 the
induced correspondence between the modules with no nonzero projective
summands. If 0 > 4 — B — C — 0 is an almost split sequence in mod A and
0—>A4"— B — BC — 0 an almost split sequence in modA’, we know from
[8, Sections 1 and 2] that the number of indecomposable nonprojective
summands is the same for B and B’. Since we have already seen that there
is only a finite number of almost split sequences whose middle term has a
nonzero projective summand, we are done.

We can now prove the following result.

ProrositionN 3.7. If A is an artin algebra stably equivalent to an hereditary
algebra, then a(A) exists.

Proof. By LLemma 3.6 we can assume that A is hereditary. Let C be an
indecomposable A-module. If Cis in % we know by Theorem 2.6 and Lemma
3.1 that «(C) < 2. If Cis not in %, then [C] contains a projective or an in-
jective module. If [C] contains a projective module, it follows as in [3, Section
1] that C = TrD'P for some indecomposable projective A-module P and
some 7 = 0, and if [C] contains an injective module that ¢ = )T'r’/ for some
indecomposable injective A-module I and some j = 0. We are then done by
using Lemma 3.5.

We remark that it is possible to prove that if A is an artin algebra stably
equivalent to an hereditary algebra A’, then «(C) £ 2 for all indecomposable
Cin %, by using the corresponding result for hereditary algebras. For denote
by B: modA — mod A’ a stable equivalence and also the induced correspon-
dence between the modules with no nonzero projective summands. It can be
proved by using [4, Proposition 1.2] and [8] that if for an indecomposable
nonprojective A-module C, [C] contains no projectives or injectives, then the
same is the case for [8C]. As in the proof of Lemma 3.6 we then get
a(C) = a(BC) = 2.

With respect to question (2), we list the following information.

ProrosiTioN 3.8. If A is an hereditary artin algebra of finite representation
type, then a(A) < 3.

Proof. Assume that A is an hereditary algebra of finite type, and let C be an
indecomposable nonprojective A-module. If P is an indecomposable projective
noninjective A-module, we know from [8, Proposition 2.4] that we have an
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almost split sequence
0P —->TrD@P) L Q—TrDP —0,

where () is projective, and 7 denotes the radical of A. By considering the dia-

grams associated with the hereditary algebras of finite type listed in [10], it is
not hard to see that a(TrDP) =< 3. Since C must be of the type TrD'P for
some 7 = 0 and some indecomposable projective A-module P [3, 10], and since
in an almost split sequence 0 - 4 — B — C — 0, B has no nonzero projective
summands unless 4 is projective, we get that a(A) < 3.

We point out that there are artin algebras A of finite type such that
a(A) = 4, but we do not know if any higher value of a(A) can occur for
algebras of finite type.

Example. Let A be a selfinjective algebra with 73 = 0 of finite type such that
A/r? is hereditary, and such that there is an indecomposable projective
A-module P such that rP/socP = S, U S, 11 S;, S; simple. It is not hard to
find such an algebra (see [12]). We know from [7, Proposition 4.11] that we
have an almost split sequence

0—rP— P Il rP/socP — P/socP — 0

in mod A, and consequently a(P/socP) = 4. If Q is an arbitrary indecom-
posable projective A-module, we have an almost split sequence
0—rQ— Q L rQ/socQ — Q/socQ — 0.

Since A/r? is hereditary of finite type, we know from [10]{12] that 7Q/socQ
has at most three indecomposable summands, so that a(Q/socQ) < 4. Let
now C be indecomposable in modA and not isomorphic to Q/socQ for any
indecomposable projective A-module Q. Then C is an indecomposable non-
projective A/r?-module, so we have an almost split sequence 0 > 4 — B —
C — 0 in mod A/r?. Since the only indecomposable A-modules which are not
A/r2-modules are the indecomposable projective A-modules, it follows that the
above sequence is almost split also in mod A. Since A/r? is hereditary, it follows
from Proposition 3.8 that «(C) = 3. We have now shown that a(A) = 4.

We end this section by stating without proof two other conditions which
can replace condition (B) in our main result Theorem 2.6. One condition is
based upon the following result whose proof we omit.

ProrosiTioN 3.9. Let A be an artin algebra and f: A — B a map in mod A
with A and B in €. Then Im(f,) Cr*(A4,) if and only if Im(DTrf,) C
r®(DTrA, ) for all choices of DTrf.

On the basis of this result we get that the following condition (Bj) can
replace our condition (B).

(B3) If f: A — B is a monomorphism where 4 and B are indecomposable and
in%,and Im(f,) Z r°(4, ), then DTrf: DTr4 — DTrB is a monomorphism.
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Further, we have the following result which we also state without proof.

TaEOREM 3.10. Let A be an artin algebre satisfying condition (A), and let C
be indecomposable in €. Then a(X) < 2 for all indecomposable X in [C) if and
only if some indecomposable B of minimal length in | C] has the property that B is
pertodic or

Hom (B, TrD'B) = r=(B, ) (TrDB)
for all © > 0.

In other words, we have the following condition, which together with ()
is implied by all our conditions (B), (B:), (B2) and (B3;).

(B,) There is some indecomposable module B in % of minimal length in
| B] such that either

Hom (B, TrD'B) = r*(B, )((TrDB) for all i > 0
or B is periodic.
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