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The problem of storage in an infinite dam with a continuous release has
been studied by a number of authors ([5], [3], [2]), who have formulated it in
probabilistic terms by supposing the input to be a continuous time stochastic
process. These authors have encountered difficulties which they have over-
come by regarding the continuous time problem as a limit of discrete time
analogues. The purpose of this paper is to suggest that these difficulties are
the result of an unfortunate specification of the problem, and to show that
the adoption of a slightly different (and more realistic) formulation avoids
the difficulties and allows a treatment which does not have recourse to
discrete time analogues.

The input to the dam (in t > 0) is completely determined by the
function X(t), where X(t) is the total input during the time interval (0, t].
It is usual to describe the fluctuations in the input by supposing X(t)
to be a realisation of a stochastic process, but for most of the analysis of this
paper this is an irrelevant complication, and we shall regard X(t) simply as a
function of t. From its definition, X(t) must be right-continuous and non-
decreasing in t ^ 0, and must satisfy X(0) = 0; we make no further assump-
tions about its behaviour.

Except when the dam is empty, there is a release which we shall suppose
to be at constant rate a > 0. The content of the dam at time t will be denoted
by Z(t), and we shall write Z(0) = z0. It will be convenient to define a
function C(t) by

(1) f (0 = 1 if Z{t) = 0, £(t) = 0 if Z(t) > 0.

Thus the values of t for which f (t) = 1 are exactly the instants at which the
dam is empty.

It is reasonable to suppose that, for any t > 0, the value of Z{t) should
depend only on z0, a, and the values of X(s) for s ^L t, and the first problem
is to determine the form of this dependence. In [2], Gani and Prabhu attempt
to do this by remarking in effect that, since during the interval (t, t+dt]
the dam is non-empty for a time
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and since therefore the amount released in this interval is equal to ar, the
content Z(f) must satisfy

This equation, which is equation (1.1) of [2], is clearly equivalent to

Z{t)-zo = X(t)-^fo{l-
and so also, if we put

(2) Y(t) = X(t)-*t,

to

(3)

Because f is defined in terms of Z by (1), this is a non-linear integral
equation for Z, which one might hope to have exactly one solution. This
solution could then very plausibly be taken to represent the content of the
dam. Unfortunately, however, there are quite simple inputs for which (3)
has no solution at all. Take, for example, X(t) = \vi, so that (3) becomes

(4)

and suppose that (4) has a (non-negative measurable) solution Z{t). Then Z
is differentiate almost everywhere, with

Z'(t) =

for almost all t. Now suppose that this holds for some t for which C(t) = 1.
Then

Z{t) = 0, Z'(t) = fa,

which contradicts the non-negativity of Z. Thus £(/) = 0 for almost all t,
and substituting back into (4), we get

Z{f) = *o-fotf,

which again contradicts Z 22 0. Hence (4) has no (non-negative measurable)
solution.

The reason why (3) breaks down when X (t) = fa* can be seen by con-
sidering the behaviour of the dam for this case. While the dam is non-empty,
there is an input at constant rate fa and an output at constant rate a, so
that the content of the dam decreases steadily at rate fa. When the dam
becomes empty, however, the release ceases, and the content rises at rate fa.
Thus instantaneously the dam becomes non-empty, and the release starts
again. We therefore have the picture of a rapid alternation between the states
of emptiness and non-emptiness, a picture which is clearly unrealistic and
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which not surprisingly leads to difficulties in the mathematical treatment.
It is surely more natural to suppose that, for this input, the dam content

decreases at rate \a. until it becomes zero, and that thereafter it remains
equal to zero, the input rate fa being exactly balanced by an equal release
rate. For general inputs, it seems reasonable to assume that, when the dam
is empty, the release does not entirely cease, but continues at a rate equal
to the input rate, so long as this does not exceed a.

Thus suppose that there is an input rate R{t), so that

(5) X{t)=j*oR[s)ds.

Then we assume that the release rate is equal to a if Z > 0 and to min(a, R)
if Z = 0. Then it is easy to see that (3) must be replaced by

Z(t) = *0+Y(0 + Jo'c(s)[a-min(a, R(s))]ds,

= zo+Y{t)+jt
Qt{s)[R(s)-*]-ds.

where x+ = max (x, 0), x~ = (—x)+.
If A (t) is any function of bounded variation in 0 ^ t < T for every T,

we shall write A+(t) and A_(t) for the total positive and negative variations
of A in (0, (]. Then, since

Y(0 =

we have

Y_ (*)=

and hence the equation for Z{t) can be written in the form

(6)

We now go on to prove that this modification of the Gani-Prabhu
equation (3) has, for any input X(t), a unique solution which can be expressed
quite explicitly in terms of X(t), and which can usefully be taken to represent
the content of the dam. Thus by using (6) we avoid the difficulties inherent
in (3).

The function Yif) is necessarily right-continuous and of bounded varia-
tion, has no downward jumps, and satisfies Y(0) = 0. More general
release rules than those considered here also lead to equations of the form
(6) with a function Y{t) having these properties, and we shall therefore
formulate our results in such a way as not to assume that Y(t) is expressible
in the form (2). The assumption that Y has no downward jumps is, however,
essential; if it is not satisfied equation (6) must be modified.

We first prove a lemma about functions of bounded variation. This has
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some connection with some results of Reich [6], but is almost trivial under
the very strong conditions which Reich imposes on his functions.

LEMMA 1. Let A(t) be a right-continuous function of bounded variation in
0 5S t < T which has no upward jumps (i.e. A (t) g A (t—)), and suppose that
A (0) g 0. Write

(7) s/{t) = [supA(s)]+, E = {

Then, for all t in [0, T],

(8) st{t) = f dA + (s).

PROOF. We take A{t) = O for t < 0, so that

= sup^(s).

Then, since A has no upward jumps, stf must be continuous. If t belongs to
the (countable) discontinuity set D of A, then

A{t) <A(t-) ^s/(t-) =s/(t),

and so t£ E. Hence E and D are disjoint, and it follows that, if we write

E^ltelO.T); A(t-) = s/(t)},

then E1 = Ev D1, where £>x is a subset of D, given by Dx = Dn E1.
If t $ Elt then A (t) ;S A (t—) < £?{t), and hence there exists an open

interval / containing t in which A (s) < sf(t). It follows that s/(s) = gf(t)
(s e/) , and so A (s) < ^(s ) (s el), showing that / is disjoint from Ex. Hence
since 0 e E1 the complement E\ of E1 in [0, T) is open, and every point of
E\ has a neighbourhood on which jtf is constant. Thus &/ is constant on each
connected component of E[. But the connected components of E\ form an at
most countable family {/„} of open intervals /„ = (an,bn). Since sJ is
continuous everywhere and constant on /„, we have si/(an) = s/(bn),
and since an, bH e Et,

A(a,-) = s/(aH) = s/(bH) = A{bn~).

Suppose that teD1 = DnEx. Then A (t) < A (t—) = s/(t), and hence,
for all sufficiently small n > 0, A(t+n — )<$/(t)^s/(t+u), so that
t+ueE{. Thus / is the left end-point of an open interval lying in E{,
and hence, since teElt we must have t = an for some n. Hence Dj C {«„} Q Et,
from which it follows that

We can therefore write

[0, T) = EuDluE\ = EJKJoflluU/. = £
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where

/ , = KA) if *niD,

= [an,bn) if aneD.

Also

J dA(s) = f dA(s) = A{bn-)-A(an~) = 0.

If if 6 £ 1 ( write iV(0 = {»; &„ ^ /}. Then, since ^ (0—) = 0,

j>/(t)=A(t-)=\ dA(s)={ dA(s)+y\ dA(s) = { dAls).

On the other hand, if t $ Ex, then t e /„ for some n, and so

s/{t) = st{an) = f ^ ( s ) = f dA{s),

since (an, t) is disjoint from E, and «„ ^ E if aneD, Using the fact that
0 e E only if A (0) = 0, we see that, for all / e [0, T),

(9) •&{*)={ dA(s).

Since ^ / is non-decreasing (9) implies that the restriction to E of the
Stieltjes measure a determined by A is positive. Hence, if a = a+—a~ is the
Jordan decomposition of a, we must have a~(E) = 0. Therefore

= J*J*n<o.«>
and the proof is complete.

THEOREM 1. Let Y{t) be a right-continuous function of bounded variation
in every finite subinterval of t^0, which has no downward jumps and satisfies
Y (0) = 0, and let z0 ^ 0. Then the unique non-negative measurable solution of

(6')

where f (/) = 1 if Z{t) = 0 and £(t) = 0 if Z(t) > 0, is given by

(!0) Z(t) = max [ sup {Y(i)-Y(s)}, Y(t)+z0].

PROOF. If we denote the right hand side of (10) by 2(t), then 2i is non-
negative and measurable. The function A(t) = ~Y{t)—z0 satisfies the
conditions of Lemma 1, and

= Zo+Y{t)+\
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But dA + (s) = dY_(s), and E = {t\J*(t) = -Y(t)-z0) = {t; 2(t) = 0} =
{t; l{t) = 1} so that

= zo+Y(t)+ fjis) dY_(s),

showing that 2i is a solution of (6').

Now let Z be any other non-negative measurable solution of (6'). Then

Z(t) ^ zo+Y(t).

Moreover, for any s ̂  t,

Z(t)-Z(s) = Y(t)-Y(s) + fj(u)dY_(u) ^ Y(t)-Y(s),

and hence

It follows that Z(t) ^2(t). Thus Z(t) £ l{t), and so

Z(t) = v

showing that Z(t) = Z)(t) and completing the proof.
We shall therefore take equation (6), with its unique solution (10),

as the complete specification of the storage problem for an infinite dam with
constant release. The solution (10) has been used by Gani and Pyke [3],
who derived it by analogy with simpler models. Thus Gani and Pyke were,
in effect, solving the problem with the release rule formulated here.

A consequence of equation (9) and of the proof of Theorem 1 is that Z(t)
satisfies

(11)

This equation does not, however, have a unique solution, and therefore
cannot be used to specify the problem.

Equation (6) is equivalent to the original Gani-Prabhu equation (3) if
and only if Y_(t) = xt. By virtue of (2), this occurs if and only if the Stieltjes
measure determined by X is singular with respect to Lebesgue measure, i.e.
if and only if

(12) X'{t) = 0 for almost all t.

This will occur, for instance, if X increases only in jumps.
In connection with a related problem in the theory of queues, BeneS [1]

has given a simple but useful identity, which can be generalised to the situa-
tion considered here. This we do in the following theorem.

THEOREM 2. Under the conditions of Theorem 1, and for any 0, we have

(13) e-o2® = *-*•-»*•<« _ 6 V
Jo
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PROOF. Write

so that C is continuous, and

Z(t) = zo+Y(t)+C(t).

Then

But, when £(s) ̂  0, we have Z(s) = 0, and so C{s) = —?0—Y(s). Therefore

(14) <rec<'> = 1-0

and so

e-ozw _ e-fl«0-tfy(«)-»c(«) _ e-e«0-«y(i) _ g f'
Jo

Hence the theorem is proved.
It now remains only to show how the analysis of the preceding section

can be applied to the situation in which X(t) is regarded as a stochastic pro-
cess. We restrict attention to the case considered in [2] and [3], where X(t)
is a process with stationary independent increments having no deterministic
component, and we write

(15) E{e-ex[t)} = e-tm,

where, by the Levy-Khinchin representation theorem, f(0) has the form

(16) £(0) = J~ (l-e-O')dL(x),

L being a non-decreasing function.
It is a consequence of the Levy-It5 theorem ([4], p. 553), that, with

probability one, X{t) increases only in jumps, of which there are finitely
many in every finite interval if and only if

(17) j™dL(x) < °°-
If the last condition is not satisfied, and in particular if the input is of
Moran's gamma type [5], then the realisations of the process X(t) are non-
decreasing functions of quite a complex type. This is one of the reasons why
Theorem 1 was proved for completely general inputs.

In any case, since X(t) increases only in jumps, it must satisfy (12), so
that Y_(() = ed and the identity (13) becomes

(18) e-
ezW = e-

ez«e-eYm- a0 jV9<y!«>-y<«»f (s)ds.
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The process Y(t) has stationary independent increments, and satisfies

(19) E{e~mt)} = e-">w,

where

(20) V{6) = f (0) -oO.

Now £(s) is determined by Y(u)(u ^ s), and is hence independent of Y(t)—
Y(s). Thus, if 0 2g 0, we may take expectations in (18) to give

E{e-em) = e-6^E{ ^

or equivalently

(21) E{e~ezm} = «-*•-•»<«> - oO JV( f-s" l 9>P{Z(s) =

This equation is exactly equivalent to equation (4.6) of [2], and we can now
proceed as in that paper to determine the distribution of Z(t). The resulting
argument avoids any appeal to discrete time analogues, treating the prob-
lem throughout as one in continuous time.

I am greatly indebted to Mr. N. U. Prabhu and Dr. A. P. Robertson for
stimulating discussions on the subject of this paper.
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