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Abstract

When k � 4 and 0 � d � (k − 2)/4, we consider the system of Diophantine equations

xj
1 + . . .+ xj

k = yj
1 + . . .+ yj

k (1 � j � k, j �= k − d).

We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal
positive integral solutions. Our quantitative estimates are particularly sharp when d =
o
(
k1/4

)
.

2020 Mathematics Subject Classification: 11D45 (Primary); 11P05 (Secondary)

1. Introduction

Recent progress on Vinogradov’s mean value theorem has resolved the main conjecture
in the subject. Thus, writing Js,k(X) for the number of integral solutions of the system of
equations

xj
1 + . . .+ xj

s = yj
1 + . . .+ yj

s (1 � j � k), (1·1)

with 1 � xi, yi � X (1 � i � s), it is now known that whenever ε > 0, one has

Js,k(X) � Xs+ε + X2s−k(k+1)/2 (1·2)

(see [1] or [13, 14]). Denote by Ts(X) the number of s-tuples x and y in which 1 � xi, yi � X
(1 � i � s), and (x1, . . . , xs) is a permutation of (y1, . . . , ys). Thus Ts(X) = s!Xs + O(Xs−1).
A conjecture going beyond the main conjecture (1·2) asserts that when 1 � s< 1

2 k(k + 1),
one should have

Js,k(X) = Ts(X) + o(Xs). (1·3)

This conclusion is essentially trivial for 1 � s � k, in which circumstances one has the defini-
tive statement Js,k(X) = Ts(X). When s � k + 2, meanwhile, the conclusion (1·3) is at present
far beyond our grasp. This leaves the special case s = k + 1. Here, one has the asymptotic
relation

Jk+1,k(X) = Tk+1(X) + O
(

X
√

4k+5
)

(1·4)
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established in joint work of the author with Vaughan [10, theorem 1]. An analogous con-
clusion is available when the equation of degree k − 1 in the system (1·1) is removed, but
in no other close relative of Vinogradov’s mean value theorem has such a conclusion been
obtained hitherto. Our purpose in this paper is to derive estimates of strength paralleling
(1·4) in systems of the shape (1·1) in which a large degree equation is removed.

In order to describe our conclusions, we must introduce some notation. When k � 2
and 0 � d< k, we denote by Ik,d(X) the number of integral solutions of the system of
equations

xj
1 + . . .+ xj

k = yj
1 + · · · + yj

k (1 � j � k, j �= k − d), (1·5)

with 1 � xi, yi � X (1 � i � k). Also, when k � 3 and d � 0, we define the exponent

γk,d = min
2�r�k

(
r + k

r
+

r∑
l=1

max{d − l + 1, 0}
)

. (1·6)

THEOREM 1·1. Suppose that k � 3 and 0 � d< k/2. Then, for each ε > 0, one has

Ik,d(X) − Tk(X) � Xγk,d+ε.

When k is large and d is small compared to k, the conclusion of this theorem provides
strikingly powerful paucity estimates.

COROLLARY 1·2. Suppose that d �
√

k. Then

Ik,d(X) − Tk(X) � X
√

4k+1+d(d+1)/2.

In particular, when d = o
(
k1/4

)
, one has

Ik,d(X) = Tk(X) + O
(

X(2+o(1))
√

k
)

.

Although for larger values of d our paucity estimates become weaker, they remain non-
trivial whenever d< (k − 2)/4.

COROLLARY 1·3. Provided that d � 1 and k � 4d + 3, one has

Ik,d(X) = k!Xk + O
(

Xk−1/2
)

.

Moreover, when 1 � d � k/4, one has

Ik,d(X) − Tk(X) � X
√

4k(d+1)+(d+1)2
,

so that whenever η is small and positive, and 1 � d � η2k, then

Ik,d(X) = Tk(X) + O
(

X3ηk
)

.

Previous work on this problem is confined to the two cases considered by Hua [4, lemmata
5·2 and 5·4]. Thus, the asymptotic formula (1·4) derived by the author jointly with Vaughan
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[10, theorem 1] is tantamount to the case d = 0 of Theorem 1·1. Meanwhile, it follows from
[10, theorem 2] that

Ik,1(X) = Tk(X) + O
(

Xγk,1−1+ε) ,

and the error term here is slightly sharper than that provided by the case d = 1 of
Theorem 1·1. The conclusion of Theorem 1·1 is new whenever d � 2. It would be interesting
to derive analogues of Theorem 1·1 in which more than one equation is removed from the
Vinogradov system (1·1), or indeed to derive analogues in which the number of variables is
increased and yet one is able nonetheless to confirm the paucity of non-diagonal solutions.
We have more to say on such matters in Section 5 of this paper. For now, we confine our-
selves to remarking that when many, or even most, lower degree equations are removed, then
approaches based on the determinant method are available. Consider, for example, natural
numbers d1, . . . , dk with 1 � d1 < d2 < . . . < dk and dk � 2s − 1. Also, denote by Md,s(X)
the number of integral solutions of the system of equations

x
dj
1 + · · · + x

dj
s = y

dj
1 + . . .+ y

dj
s (1 � j � k),

with 1 � xi, yi � X (1 � i � s). Then it follows from [7, theorem 5·2] that whenever
d1 · · · dk � (2s − k)4s−2k, one has

Md,s(X) = s!Xs + O
(

Xs−1/2
)

.

The proof of Theorem 1·1, in common with our earlier treatment in [10] of the Vinogradov
system (1·1), is based on the application of multiplicative polynomial identities amongst
variables in pursuit of parametrisations that these days would be described as being of tor-
sorial type. The key innovation of [10] was to relate not merely two product polynomials,
but instead r � 2 such polynomials, leading to a decomposition of the variables into (k + 1)r

parameters. Large numbers of these parameters may be determined via divisor function esti-
mates, and thereby one obtains powerful bounds for the difference Jk+1,k(X) − Tk+1(X). In
the present situation, the polynomial identities are more novel, and sacrifices must be made
in order to bring an analogous plan to fruition. Nonetheless, when d< k/2, the kind of
multiplicative relations of [10] may still be derived in a useful form.

This paper is organised as follows. We begin in Section 2 of this paper by deriving
the polynomial identities required for our subsequent analysis. In Section 3 we refine this
infrastructure so that appropriate multiplicative relations are obtained involving few aux-
iliary variables. A complication for us here is the problem of bounding the number of
choices for these auxiliary variables, since they are of no advantage to us in the ensuing
analysis of multiplicative relations. In Section 4, we exploit the multiplicative relations by
extracting common divisors between tuples of variables, following the path laid down in
our earlier work with Vaughan [10]. This leads to the proof of Theorem 1·1. Finally, in
Section 5, we discuss the corollaries to Theorem 1·1 and consider also refinements and
potential generalisations of our main results.

Our basic parameter is X, a sufficiently large positive number. Whenever ε appears in a
statement, either implicitly or explicitly, we assert that the statement holds for each ε > 0. In
this paper, implicit constants in Vinogradov’s notation � and � may depend on ε, k, and s.
We make frequent use of vector notation in the form x = (x1, . . . , xr). Here, the dimension r
depends on the course of the argument. We also write (a1, . . . , as) for the greatest common
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divisor of the integers a1, . . . , as. Any ambiguity between ordered s-tuples and correspond-
ing greatest common divisors will be easily resolved by context. Finally, as usual, we write
e(z) for e2π iz.

2. Polynomial identities

We begin by introducing the power sum polynomials

sj(z) = zj
1 + . . .+ zj

k (1 � j � k).

On recalling (1·5), we see that Ik,d(X) counts the number of integral solutions of the system
of equations

sj(x) = sj(y) (1 � j � k, j �= k − d)

sk−d(x) = sk−d(y) + h,

}
(2·1)

with 1 � x, y � X and |h|� kXk−d. Our first task is to reinterpret this system in terms
of elementary symmetric polynomials, so that our first multiplicative relations may be
extracted.

The elementary symmetric polynomials σj(z) ∈Z[z1, . . . , zk] may be defined by means of
the generating function identity

1 +
k∑

j=1

σj(z)(−t)j =
k∏

i=1

(1 − tzi).

Since

k∑
i=1

log(1 − tzi) = −
∞∑

j=1

sj(z)
tj

j
,

we deduce that

1 +
k∑

j=1

σj(z)(−t)j = exp

⎛⎝−
∞∑

j=1

sj(z)
tj

j

⎞⎠ .

When n � 1, the formula

σn(z) = (−1)n
∑

m1+2m2+...+nmn=n
mi�0

n∏
i=1

(−si(z))mi

imimi! (2·2)

then follows via an application of Faà di Bruno’s formula. By convention, we put σ0(z) = 1.
We refer the reader to [5, equation (2·14′)] for a self-contained account of the relation (2·2).

Suppose now that 0 � d< k/2, and that the integers x, y, h satisfy (2·1). When 1 � n<
k − d, it follows from (2·2) that

σn(x) = (−1)n
∑

m1+2m2+...+nmn=n
mi�0

n∏
i=1

(−si(y))mi

imimi! = σn(y). (2·3)
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When k − d � n � k, on the other hand, we instead obtain the relation

σn(x) = (−1)n
∑

m1+2m2+...+nmn=n
mi�0

(−sk−d(y) − h)mk−d

(k − d)mk−d mk−d!
∏

1�i�n
i �=k−d

(−si(y))mi

imimi! .

Since d< k/2, the summation condition on m ensures that mk−d ∈ {0, 1}. Thus, by isolating
the term in which mk−d = 1, we see that

σn(x) = σn(y) + hψn(y), (2·4)

where, by (2·2),

ψn(y) = (−1)n+1

k − d

∑
m1+2m2+...+(n−k+d)mn−k+d=n−k+d

mi�0

n−k+d∏
i=1

(−si(y))mi

imimi!

= (−1)k−d+1

k − d
σn−k+d(y).

We deduce from (2·3) and (2·4) that

k∏
i=1

(t − xi) −
k∏

i=1

(t − yi) = (−1)k
k∑

n=0

(σn(x) − σn(y))(−t)k−n

= (−1)d−1 h

k − d

d∑
m=0

σm(y)(−t)d−m. (2·5)

Define the polynomial

τd(y; w) = (−1)d−1
d∑

m=0

σm(y)(−w)d−m. (2·6)

Then we deduce from (2·5) that for 1 � j � k, one has the relation

(k − d)
k∏

i=1

(yj − xi) = τd(y; yj)h. (2·7)

By comparing the relation (2·7) with j = s and j = t for two distinct indices s and t
satisfying 1 � s< t � k, it is apparent that

τd(y; yt)
k∏

i=1

(ys − xi) = τd(y; ys)
k∏

i=1

(yt − xi). (2·8)

Furthermore, by applying the relations (2·3), we see that σm(y) = σm(x) for 1 � m � d, and
thus it is a consequence of (2·6) that

τd(y; yj) = τd(x; yj) (1 � j � k). (2·9)
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We therefore deduce from (2·8) that for 1 � s< t � k, one has

τd(x; yt)
k∏

i=1

(ys − xi) = τd(x; ys)
k∏

i=1

(yt − xi). (2·10)

These are the multiplicative relations that provide the foundation for our analysis. One addi-
tional detail shall detain us temporarily, however, for to be useful we must ensure that all of
the factors on left- and right-hand sides of (2·8) and (2·10) are non-zero.

Suppose temporarily that there are indices l and m with 1 � l, m � k for which xl = ym. By
relabelling variables, if necessary, we may suppose that l = m = k, and then it follows from
(2·1) that

xj
1 + . . .+ xj

k−1 = yj
1 + . . .+ yj

k−1 (1 � j � k, j �= k − d).

There are k − 1 equations here in k − 1 pairs of variables xi, yi, and thus it follows from [9]
that (x1, . . . , xk−1) is a permutation of (y1, . . . , yk−1). We may therefore conclude that in the
situation contemplated at the beginning of this paragraph, the solution x, y of (2·1) is counted
by Tk(X), with (x1, . . . , xk) a permutation of (y1, . . . , yk). In particular, in any solution x, y
of (2·1) counted by Ik,d(X) − Tk(X), it follows that xl = ym for no indices l and m satisfying
1 � l, m � k. In view of (2·7) and (2·9), such solutions also satisfy the conditions

h �= 0 and τd(y; yj) = τd(x; yj) �= 0 (1 � j � k). (2·11)

We summarise the deliberations of this section in the form of a lemma.

LEMMA 2·1. Suppose that x, y is a solution of the Diophantine system (2·1) counted by
Ik,d(X) − Tk(X). Then the relations (2·8), (2·10) and (2·11) hold.

3. Reduction to efficient multiplicative relations

We seek to estimate the number Ik,d(X) − Tk(X) of solutions of the system (2·1), with
1 � x, y � X and |h|� kXk−d, for which (x1, . . . , xk) is not a permutation of (y1, . . . , yk). We
divide these solutions into two types according to a parameter r with 1< r � k. Let V1,r(X)
denote the number of such solutions in which there are fewer than r distinct values amongst
x1, . . . , xk, and likewise fewer than r distinct values amongst y1, . . . , yk. Also, let V2,r(X)
denote the corresponding number of solutions in which there are either at least r distinct
values amongst x1, . . . , xk, or at least r distinct values amongst y1, . . . , yk. Then one has

Ik,d(X) − Tk(X) = V1,r(X) + V2,r(X). (3·1)

The solutions counted by V1,r(X) are easily handled via an expedient argument of circle
method flavour.

LEMMA 3·1. One has V1,r(X) � Xr−1.

Proof. It is convenient to introduce the exponential sum

f (α) =
∑

1�x�X

e

⎛⎜⎜⎝ ∑
1�j�k
j �=k−d

αjx
j

⎞⎟⎟⎠ .
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In a typical solution x, y of (2·1) counted by V1,r(X), we may relabel indices in such a
manner that xj ∈ {x1, . . . , xr−1} for 1 � j � k, and likewise yj ∈ {y1, . . . , yr−1} for 1 � j � k.
On absorbing combinatorial factors into the constant implicit in the notation of Vinogradov,
therefore, we discern via orthogonality that there are integers ai, bi (1 � i � r − 1), with
1 � ai, bi � k, for which one has

V1,r(X) �
∫

[0,1)k−1

(
r−1∏
i=1

f (aiα)f (−biα)

)
dα.

An application of Hölder’s inequality shows that

V1,r(X) �
r−1∏
i=1

I(ai)
1/(2r−2)I(bi)

1/(2r−2),

where we write

I(c) =
∫

[0,1)k−1
|f (cα)|2r−2 dα.

Thus, by making a change of variables, we discern that

V1,r(X) �
∫

[0,1)k−1
|f (α)|2r−2 dα.

By orthogonality, the latter mean value counts the integral solutions of the system

xj
1 + . . .+ xj

r−1 = yj
1 + . . .+ yj

r−1 (1 � j � k, j �= k − d),

with 1 � x, y � X. Since the number of equations here is k − 1, and the number of pairs
of variables is r − 1 � k − 1, it follows from [9] that (x1, . . . , xr−1) is a permutation of
(y1, . . . , yr−1), and hence we deduce that

V1,r(X) � Tr−1(X) ∼ (r − 1)!Xr−1.

This establishes the upper bound claimed in the statement of the lemma.

We next consider the solutions x, y, h of the system (2·1) counted by V2,r(X). Here, by
taking advantage of the symmetry between x and y, and if necessary relabelling indices, we
may suppose that y1, . . . , yr are distinct. Suppose temporarily that the integers yt and xi − yt

have been determined for 1 � i � k and 1 � t � r. It follows that yt and xi are determined for
1 � i � k and 1 � t � r, and hence also that the coefficients σm(x) of the polynomial τd(x; w)
are fixed for 0 � m � d. The integers ys for r< s � k may consequently be determined from
the polynomial equations (2·10) with t = 1. Here, it is useful to observe that with y1 and
x1, . . . , xk already fixed, and all the factors on the left- and right-hand side of (2·10) non-
zero, the equation (2·10) becomes a polynomial in the single variable ys. On the left-hand
side one has a polynomial of degree k, whilst on the right-hand side the polynomial has
degree d = degy(τd(x; y))< k. Thus ys is determined by a polynomial of degree k to which
there are at most k solutions. Given fixed choices for yt and xi − yt for 1 � i � k and 1 � t � r,
therefore, there are O(1) possible choices for yr+1, . . . , yk.

Let Mr(X; y) denote the number of integral solutions x of the system of equations (2·10)
(1 � s< t � r), satisfying 1 � x � X, wherein y = (y1, . . . , yr) is fixed with 1 � y � X and
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satisfies (2·11). Then it follows from the above discussion in combination with Lemma 2·1
that

V2,r(X) � Xr max
y

Mr(X; y), (3·2)

in which the maximum is taken over distinct y1, . . . , yr with 1 � y � X.
Consider fixed values of y1, . . . , yr with 1 � yi � X (1 � i � r). We write Nr(X; y) for the

number of r-tuples

(τd(y1, . . . , yk; y1), . . . , τd(y1, . . . , yk; yr)), (3·3)

with 1 � yj � X (r< j � k). It is apparent from (2·6) and (2·11) that in each such r-tuple, one
has

1 � |τd(y; yj)| � Xd, (3·4)

and thus a trivial estimate yields the bound

Nr(X; y) � Xrd. (3·5)

On the other hand, we may consider the number of d-tuples

(σ1(y1, . . . , yk), . . . , σd(y1, . . . , yk)),

with 1 � yj � X (1 � j � k). Since |σm(y)| � Xm (1 � m � d), the number of such d-tuples is
plainly O(Xd(d+1)/2). Recall that σ0(y) = 1. Then for each fixed choice of this d-tuple, and
for each fixed index j, it follows from (2·6) that the value of τd(y1, . . . , yk; yj) is determined.
We therefore infer that

Nr(X; y) � Xd(d+1)/2. (3·6)

These simple estimates are already sufficient for many purposes. However, by working
harder, one may obtain an estimate that is oftentimes superior to both (3·5) and (3·6). This
we establish in Lemma 3·3 below. For the time being we choose not to interrupt our main
narrative, and instead explain how bounds for Nr(X; y) may be applied to estimate V2,r(X).

When 1 � j � r, we substitute

u0j = τd(x; yj)
−1

r∏
i=1

τd(x; yi). (3·7)

Observe that there are at most Nr(X; y) distinct values for the integral r-tuple (u01, . . . , u0r).
Moreover, in any such r-tuple it follows from (3·4) that 1 � |u0j| � Xd(r−1). There is conse-
quently a positive integer C = C(k) with the property that, in any solution x, y counted by
Mr(X; y), one has 1 � |u0j|� CXd(r−1).

Next we substitute

uij = xi − yj (1 � i � k, 1 � j � r).

Then from (2·10) we see that Mr(X; y) is bounded above by the number of integral solutions
of the system

k∏
i1=0

ui11 =
k∏

i2=0

ui22 = . . .=
k∏

ir=0

uirr, (3·8)
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with

y1 + ui1 = y2 + ui2 = . . .= yr + uir (1 � i � k), (3·9)

1 � |uij|� X (1 � i � k, 1 � j � r), (3·10)

and with u0j given by (3·7) for 1 � j � r. Denote by W(X; y, u0) the number of integral
solutions of the system (3·8) subject to (3·9) and (3·10). Then on recalling (3·2), we may
summarise our deliberations thus far concerning V2,r(X) as follows.

LEMMA 3·2. One has

V2,r(X) � Xr max
y

(
Nr(X; y) max

u0
W(X; y, u0)

)
,

where the maximum with respect to y = (y1, . . . , yr) is taken over y1, . . . , yr distinct with
1 � yj � X (1 � j � r), and the maximum over r-tuples u0 = (u01, . . . , u0r) is taken over

1 � |u0j|� CXd(r−1) (1 � j � r).

Before fulfilling our commitment to establish an estimate for Nr(X; y) sharper than the
pedestrian bounds already obtained, we introduce the exponent

θd,r =
r∑

l=1

max{d − l + 1, 0}. (3·11)

LEMMA 3·3. Let d and r be non-negative integers and let C � 1 be fixed. Also, let

Ad =
{

(a0, a1, . . . , ad) ∈Z
d+1 : |al|� CXd−l(0 � l � d)

}
.

Finally, when a ∈Ad, define

fa(t) = a0 + a1t + . . .+ adtd.

Suppose that y1, . . . , yr are fixed integers with 1 � yi � X (1 � i � r). Then one has

card{fa(yi) : a ∈Ad and 1 � i � r} � Xθd,r .

Proof. We proceed by induction on d. Note first that when d = 0, the polynomials fa(t) are
necessarily constant with |a0|� C, and thus

card{fa(yi) : a ∈A0 and 1 � i � r}� (2C + 1)r � 1.

Since θ0,r = 0, the conclusion of the lemma follows for d = 0. Observe also that when r = 0
the conclusion of the lemma is trivial, for then one has θd,0 = 0 and the set of values in
question is empty.

Having established the base of the induction, we proceed under the assumption that the
conclusion of the lemma holds whenever d<D, for some integer D with D � 1. In view
of the discussion of the previous paragraph, we may now restrict attention to the situation
with d = D � 1 and r � 1. Since 1 � yr � X and yr is fixed, we see that whenever a ∈AD

one has

|fa(yr)|� |a0| + |a1|yr + . . .+ |aD|yD
r � (D + 1)CXD. (3·12)
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Put

ga(yr, t) = fa(yr) − fa(t)

yr − t
, (3·13)

so that

ga(yr, t) =
D∑

l=1

al

(
tl−1 + tl−2yr + . . .+ yl−1

r

)
.

Then one sees that whenever a ∈AD, one may write

ga(yr, t) = Fb(t), (3·14)

where

Fb(t) = b0 + b1t + . . .+ bD−1tD−1,

and, for 0 � l � D − 1, one has

|bl|� |al+1| + |al+2|yr + . . .+ |aD|yD−l−1
r � CDXD−l−1.

Put

BD−1 = {
(b0, b1, . . . , bD−1) ∈Z

D : |bl|� CDXD−1−l(0 � l � D − 1)
}

.

Then the inductive hypothesis for d = D − 1 implies that

card{Fb(yi) : b ∈BD−1 and 1 � i � r − 1} � XθD−1,r−1 . (3·15)

On recalling (3·13) and (3·14), we see that

fa(yi) = fa(yr) − (yr − yi)Fb(yi) (1 � i � r − 1).

The values of yi (1 � i � r − 1) are fixed, and by (3·15) there are O(XθD−1,r−1) possible
choices for Fb(yi) (1 � i � r − 1). Then for each fixed choice of fa(yr), there are O(XθD−1,r−1 )
choices available for fa(yi) (1 � i � r − 1). We therefore deduce from (3·12) that

card{fa(yi) : a ∈AD and 1 � i � r} � XD · XθD−1,r−1 .

Since, from (3·11), one has

θD−1,r−1 + D = D +
r−1∑
l=1

max{(D − 1) − l + 1, 0}

=
r∑

l=1

max{D − l + 1, 0} = θD,r,

we find that

card{fa(yi) : a ∈AD and 1 � i � r} � XθD,r .

The inductive hypothesis therefore follows for d = D and all values of r. The conclusion of
the lemma consequently follows by induction.
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On recalling (2·6), a brief perusal of (3·3) and the definition of Nr(X; y) leads from
Lemma 3·3 to the estimate Nr(X; y) � Xθd,r . We may therefore conclude this section with
the following upper bound for Ik,d(X) − Tk(X).

LEMMA 3·4. One has

Ik,d(X) − Tk(X) � Xr−1 + Xr+θd,r max
y,u0

W(X; y, u0),

where the maximum is taken over distinct y1, . . . , yr with 1 � yj � X and over 1 � |u0j|�
CXd(r−1) (1 � j � r).

Proof. It follows from Lemma 3·2 together with the bound for Nr(X; y) just obtained
that

V2,r(X) � Xr+θd,r max
y,u0

W(X; y, u0).

The conclusion of the lemma is obtained by substituting this estimate together with that
supplied by Lemma 3·1 into (3·1).

4. Exploiting multiplicative relations

Our goal in this section is to estimate the quantity W(X; y, u0) that counts solutions
of the multiplicative equations (3·8) equipped with their ancillary conditions (3·9) and
(3·10). For this purpose, we follow closely the trail first adopted in our work with Vaughan
[10, Section 2].

LEMMA 4·1. Suppose that y1, . . . , yr are distinct integers with 1 � y � X, and that u0j

(1 � j � r) are integers with 1 � |u0j|� CXd(r−1). Then one has W(X; y, u0) � Xk/r+ε.

Proof. We begin with a notational device from [10, section 2]. Let I denote the set of
indices i = (i1, . . . , ir) with 0 � im � k (1 � m � r). Define the map ϕ : I → [0, (k + 1)r) ∩Z

by putting

ϕ(i) =
r∑

m=1

im(k + 1)m−1.

The map ϕ is bijective, and we may define the successor i + 1 of the index i by means of the
relation

i + 1 = ϕ−1(ϕ(i) + 1).

We then define i + h inductively via the formula i + (h + 1) = (i + h) + 1. Finally, when
i ∈ I , we write J (i) for the set of indices j ∈ I having the property that, for some h ∈N, one
has j + h = i. Thus, the set J (i) is the set of all precursors of i, in the natural sense.

Equipped with this notation, we now explain how systematically to extract common
factors between the variables in the system of equations (3·8). Put

α0 = (u01, u02, . . . , u0r),
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noting that by hypothesis, this integer is fixed. Suppose at stage i that αj has been defined
for all j ∈J (i). We then define

αi =
(

ui11

β
(1)
i

,
ui22

β
(2)
i

, . . . ,
uirr

β
(r)
i

)
,

in which we write

β
(m)
i =

∏
j∈J (i)
jm=im

αj.

As is usual, the empty product is interpreted to be 1. As a means of preserving intuition
concerning the numerous variables generated in this way, we write

α̃±
lm = ±

∏
j∈I
jm=l

αj (0 � l � k, 1 � m � r).

Then, much as in [10, section 2], it follows that when 0 � l � k and 1 � m � r, for some
choice of the sign ±, one has ulm = α̃±

lm. Note here that the ambiguity in the sign of ulm

relative to |̃α±
lm| is a feature overlooked in the treatment of [10], though the ensuing argument

requires no significant modification to be brought to play in order that the same conclusion be
obtained. At worst, an additional factor 2r(k+1) would need to be absorbed into the constants
implicit in Vinogradov’s notation.

With this notation in hand, it follows from its definition that W(X; y, u0) is bounded above
by the number 
r(X; y, u0) of solutions of the system

y1 + α̃±
i1 = y2 + α̃±

i2 = . . .= yr + α̃±
ir (1 � i � k), (4·1)

with

1 � |̃α±
ij |� X (1 � i � k, 1 � j � r). (4·2)

Notice here that α̃±
0m = u0m. Thus, it follows from a divisor function estimate that when the

integers u0m are fixed with

1 � |u0m|� CXd(r−1) (1 � m � r),

then there are O(Xε) possible choices for the variables αi having the property that im = 0 for
some index m with 1 � m � r.

Having carefully prepared the notational infrastructure to make comparison with
[10, sections 2 and 3] transparent, we may now follow the argument of the latter mutatis
mutandis. When 1 � p � r, we write

Bp =
∏

i

αi, (4·3)
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where the product is taken over all i ∈ I with il > ip (l �= p), and il > 0 (1 � l � r). Thus, in
view of (4·2), one has

r∏
p=1

Bp �
∏
i∈I

il>0 (1�l�r)

αi �
k∏

i=1

|̃α±
i1 |� Xk,

and so in any solution α± of (4·1) counted by 
r(X; y, u0), there exists an index p with
1 � p � r such that

1 � Bp � Xk/r. (4·4)

By relabelling variables, we consequently deduce that


r(X; y, u0) �ϒr(X; y, u0),

where ϒr(X; y, u0) denotes the number of integral solutions of the system

α̃±
i1 − α̃±

ij = Lj (1 � i � k, 2 � j � r), (4·5)

with Lj = yj − y1 (2 � j � r), and with the integral tuples αi satisfying (4·2) together with the
inequality

1 � B1 � Xk/r. (4·6)

We emphasise here that, when y1, . . . , yr are distinct, then Lj �= 0 (2 � j � r).
We now proceed under the assumption that y1, . . . , yr are fixed and distinct, whence the

integers Lj (2 � j � r) are fixed and non-zero. It follows just as in the final paragraphs of
[10, section 2] that, when the variables αi, with i ∈ I satisfying il > i1 (2 � l � r), are fixed,
then there are O(Xε) possible choices for the tuples αi satisfying (4·2) and (4·5). Here we
make use of the fact that the variables αi, in which im = 0 for some index m with 1 � m � r,
may be considered fixed with the potential loss of a factor O(Xε) in the resulting estimates.
By making use of standard estimates for the divisor function, however, we find from (4·6)
and the definition (4·3) that there are O(Xk/r+ε) possible choices for the variables αi with
i ∈ I satisfying il > i1 (2 � l � r). We therefore infer that ϒr(X; y, u0) � Xk/r+ε, whence

r(X; y, u0) � Xk/r+ε, and finally W(X; y, u0) � Xk/r+ε. This completes the proof of the
lemma.

The proof of Theorem 1·1 is now at hand. By applying Lemma 3·4 in combination with
Lemma 4·1, we obtain the upper bound

Ik,d(X) − Tk(X) � Xr+θd,r · Xk/r+ε.

By minimising the right-hand side over 2 � r � k, a comparison of (1·6) and (3·11) now
confirms that this estimate delivers the one claimed in the statement of Theorem 1·1.

5. Corollaries and refinements

We complete our discussion of incomplete Vinogradov systems by first deriving the corol-
laries to Theorem 1·1 presented in the introduction, and then considering refinements to the
main strategy.
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The proof of Corollary 1·2. Suppose that d �
√

k and take r to be the integer closest to√
k. Thus d � r and we find from (1·6) that

γk,d � r + k/r + d(d + 1)/2<
√

4k + 1 + d(d + 1)/2.

An application of Theorem 1·1 therefore leads us to the asymptotic formula

Ik,d(X) = Tk(X) + O
(

X
√

4k+1+d(d+1)/2
)

,

confirming the first claim of the corollary. In particular, when d = o
(
k1/4

)
, we discern that

√
4k + 1 + d(d + 1)/2 �

√
4k + 1 + o

(
k1/2

)
= (2 + o(1))

√
k,

and so the final claim of the corollary follows.

The proof of Corollary 1·3. Suppose that d � 1 and k � 4d + 3. In this situation, by
reference to (1·6) with r = 2, we find that

γk,d � 2 + 1
2 k + 2d − 1 = 1

2 (k + 4d + 2) � k − 1
2 .

Consequently, it follows from Theorem 1·1 that Ik,d(X) − Tk(X) � Xk−1/2, so that the first
claim of the corollary follows.

Next by considering (1·6) with r taken to be the integer closest to
√

k/(d + 1), we find
that

γk,d � rd + (r + k/r) � (d + 1)
√

4k/(d + 1) + 1.

In this instance, Theorem 1·1 supplies the asymptotic formula

Ik,d(X) = Tk(X) + O

(
X
√

4k(d+1)+(d+1)2
)

,

which establishes the second claim of the corollary.
Finally, when η is small and positive, and 1 � d � η2k, one finds that

γk,d �
√

4η2k2 + η4k2 + (4 + 2η2)k + 1< 3ηk.

The final estimate of the corollary follows, and this completes the proof.

Some refinement is possible within the argument applied in the proof of Theorem 1·1 for
smaller values of k. Thus, an argument analogous to that discussed in the final paragraph of
[10, section 2] shows that the bound 1 � Bp � Xk/r of equation (4·4) may be replaced by the
corresponding bound

1 � Bp � Xω(k,r),

where we write

ω(k, r) = k1−r
k−1∑
i=1

ir−1.
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In order to justify this assertion, denote by I+ the set of indices i ∈ I such that il > 0
(1 � l � r), and let I∗ denote the corresponding set of indices subject to the additional con-
dition that for some index p with 1 � p � r, one has il > ip whenever l �= p. Then, just as in
[10, section 2], one has card(I+) = kr and card(I∗) = rψr(k), where

ψr(k) =
k−1∑
i=1

ir−1 < kr/r.

In the situation of the proof of Lemma 4·1 in section 4, the variables αi with il = 0 for some
index l with 1 � l � r are already determined via a divisor function estimate. By permuting
and relabelling indices il, for each fixed index l, as necessary, the argument of the proof can
be adapted to show that W(X; y, u0) � Yr(X), where Yr(X) denotes the number of solutions
α± as before, but subject to the additional condition

∏
i∈I∗

αi �
(∏

i∈I+
αi

)card(I∗)/card(I+)

.

Then

r∏
p=1

Bp �
∏
i∈I∗

αi � (Xk)rψr(k)/kr
.

Consequently, in any solution α± of (4·1) counted by 
r(X; y; u0), there exists an index p
with 1 � p � r such that

1 � Bp � Xψr(k)/kr−1 = Xω(k,r).

By pursuing the same argument as in our earlier treatment, mutatis mutandis, we now derive
the upper bound

Ik,d(X) − Tk(X) � Xγ
′
k,d+ε,

where

γ ′
k,d = min

2�r�k

(
r +ω(k, r) +

r∑
l=1

max{d − l + 1, 0}
)

.

We conclude from these deliberations that Theorem 1·1 and the first conclusion of
Corollary 1·3 may be refined as follows.

THEOREM 5·1. Suppose that k � 3 and 0 � d< k/2. Then, for each ε > 0, one has

Ik,d(X) − Tk(X) � Xγ
′
k,d+ε,

where

γ ′
k,d = min

2�r�k

(
r + k1−r

k−1∑
i=1

ir−1 +
r∑

l=1

max{d − l + 1, 0}
)

.
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In particular, provided that d � 1 and k � 4d + 2, one has

Ik,d(X) = k!Xk + O
(

Xk−1/2
)

.

Proof. The proof of the first conclusion has already been outlined. As for the second, by
taking r = 2 we discern that

γ ′
k,d � 2 + 1

2 (k − 1) + 2d − 1.

Thus, provided that k> 4d + 1, one finds that γ ′
k,d � k − 1/2, and hence the final conclusion

of the theorem follows from the first.

Energetic readers will find a smorgasbord of problems to investigate allied to those
examined in this paper. We mention three in order to encourage work on these topics.

We begin by noting that the conclusions of Theorem 1·1 establish the paucity of non-
diagonal solutions in the system (1·5) when d is smaller than about k/4. In principle, the
methods employed remain useful when d< k/2. However, when d> k/2 the analogue of
the identity (2·4) that would be obtained would contain terms involving h2, or even larger
powers of h, and this precludes the possibility of eliminating all of the terms involving h in
any useful manner. A simple test case would be the situation with d = k − 1, wherein the
system (1·5) assumes the shape

xj
1 + . . .+ xj

k = yj
1 + . . .+ yj

k (2 � j � k).

When k = 3 an affine slicing approach has been employed in [12] to resolve the associated
paucity problem. It would be interesting to address this problem when k � 4.

The focus of this paper has been on the situation in which one slice is removed from a
Vinogradov system. When more than one slice is removed, two or more auxiliary variables
h1, h2, . . . take the place of the single variable h in the identity (2·4), and this seems to
pose serious problems for our methods. A simple test case in this context would address the
system of equations

xj
1 + . . .+ xj

k = yj
1 + . . .+ yj

k (j ∈ {1, 2, . . . , k − 2, k + 1}),
with k � 3. Here, the situation with k = 3 has been successfully addressed by a number of
authors (see [3, 8] and [6, corollary 0·3]), but little seems to be known for k � 4. Much more
is known when the omitted slices are carefully chosen so that the resulting systems assume
a special shape. Most obviously, one could consider systems of the shape

xtj
1 + . . .+ xtj

k = ytj
1 + . . .+ ytj

k (1 � j � k − 1).

By specialising variables, one finds from [10, theorem 1] that the number of non-diagonal
solutions of this system with 1 � x, y � X is O(Xt

√
4k+1), and this is o(Tk(X)) provided only

that the integer t is smaller than 1
2

√
k − 1. Moreover, the ingenious work of Brüdern and

Robert [2] shows that when k � 4, there is a paucity of non-diagonal solutions to systems of
the shape

x2j−1
1 + . . .+ x2j−1

k = y2j−1
1 + . . .+ y2j−1

k (1 � j � k − 1),
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wherein all of the even degree slices are omitted. A strategy for systems having arbitrary
exponents can be extracted from [11], though the work there misses a paucity estimate by a
factor ( log X)A, for a suitable A> 0.

We remark finally that the system of equations (1·5) central to Theorem 1·1 has the prop-
erty that there are k − 1 equations and k pairs of variables xi, yi. No paucity result is available
when the number of pairs of variables exceeds k. The simplest challenge in this direction
would be to establish that when k � 3, one has

Jk+2,k(X) = Tk+2(X) + o
(

Xk+2
)

.
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