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Abstract 

Computer tools are commonly used to assess designs. We develop a toolchain using open source 

code libraries in Python to provide an open source, interactive robust design improvement toolchain. 

A reference folder contains a script that reads an input parameter value file and runs the simulation. 

The toolchain executes uncertainty quantification steps by replicating the reference folder. This is 

repeated for design points, and mean and sigma graphs generated versus each design variable. This 

fits within a workflow of defining variation modes, design variables, and toolchain execution. 

Keywords: robust design, computational design methods, design automation, open source design 

1. Introduction 

Robust design was introduced by Taguchi as an experimental method to study the effect of different 

input noise factors on performance variability, and how these can be reduced through design variable 

selections (Taguchi et al., 2000). Arvidsson and Gremyr (2008) review developments and research into 

what has become the standard experimental Robust Design Method (RDM), making use of design-of-

experiments to reduce the performance variability of a design due to multiple causes. RDM is more than 

a statistical experiment, it involves multiple steps including identifying possible sources of variability, 

quantifying their relative contribution with experiments, generating ideas for design changes that may 

promote variation reduction, and then quantifying the ability of design changes to reduce this variability 

through a further set of experiments. Executing RDM early in design is needed to reduce the risk of non-

compliance when the product goes in production (Thornton, 1999). Executing RDM remains a complex 

task for many industries (Arvidsson et al., 2003), particularly when used in conjunction with modelling 

and simulation tools. The inherent complexity has impeded adoption of RDM. 

Yet, the need for RDM has increased, where increasingly systems are now design-optimized for 

higher performance, higher efficiency, and lower cost, see for example Arena et al. (2006) for a 

discussion on trends in defense system programs. Optimizing a system can result in tighter design 

margins to achieve higher performance with less mass or volume (Tan et al., 2017). Systems designed 

with tighter margins are inherently more prone to variability problems (Thornton, 1999). In summary, 

using modern design methods creates the need for clarifying and understanding how much 

performance variability there will be in a design, to compare the variability distribution against the 

targeted design margin, to thereby quantify the future manufacturing quality risks. 

We find that one of the reason for impeded adoption of RDM in practice is in part the inaccessibility 

of tools to complete the necessary RDM calculations. We find that tools readily available to practicing 
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engineers remain traditional design-of-experiment approaches, which are less effective for computer-

simulation-based analyses. Traditional factorial experimental methods make use of only a few levels 

on each factor which is effective for prototype hardware experimentation, whereas this restriction is 

not needed for computer-based analyses. 

We find RDM making use of uncertainty quantification and improved sampling techniques for 

computer-based simulation tools are more difficult to access. Therefore, this paper presents an RDM 

workflow to implement robust design analysis using computer-based simulation tools, coupled to an 

open source tool. The computational steps of the RDM workflow are coded in the open source 

scripting language Python to provide a more accessible implementation tool to generate robust design. 

This tool uses uncertainty quantification methods to compute variability over a range of considered 

design changes. Alternative designs are generated using user-selectable methods such as Latin 

hypercube sampling. The computed results can be visualized graphically to show how variability can 

be changed through design choices, in the standard RDM workflow approach (Hasenkamp et al., 

2009). This enables improved understanding of the design, its inherent robustness, and the impact of 

design changes on variability. This work provides an easily accessible tool for practicing engineers 

and the design community to execute an RDM workflow with computer-based simulation tools. 

2. Robust design related work 

Design of experiments are use in robust design to produce the necessary information to understand the 

interaction between design variables and system response. Robinson et al. (2004) and Park (2006) 

provide reviews of works in robust design statistical methods. Hasenkamp et al. (2009) review 

workflows and practices that facilitate the step by step industrial implementation of RDM, from 

variable identification through screening through robustness improvement. 

Following the RDM practice, we consider a set of noise variables defined completed with probabilistic 

distribution parameters. The uncertainty in performance can be computed based on the distributions of 

the noise variables and simulation model. Further following RDM practice, we consider a set of design 

variables each with a range of possible values that can be chosen, to minimize performance variability. 

Any combination of design variable values defines a design point. 

Computer-based design-of-experiments can make use of non-factorial sampling approaches with 

associated improved discrepancy. Latin Hypercube formulations are effective (Viana, 2016), as are 

quasi-Monte-Carlo sequence based sampling methods (Liu and Han, 2017). Chen et al. (2006) 

pioneered application of uncertainty quantification and sensitivity analysis methods to compute robust 

designs. Jin et al. (2001) discuss alternative surrogate models for simulation in design. Fang et al. 

(2005) have described modelling for computer experiments using sampling methods such as Latin 

hypercube and uniform sampling, and show examples from the automotive industry. These previous 

research efforts demonstrated the necessary algorithms and methods to implement robust design; we 

adopt the methods here and make it available using open source code libraries within a scripted RDM 

workflow. 

This paper builds on previous work to study variability in design. Workflows were developed for 

implementing model-based uncertainty quantification and sensitivity analysis to understand the 

variability in a design (Otto et al., 2019) and also to aid in root cause analysis of manufacturing 

variation problems (Otto and Sanchez, 2019). Here we consider not just quantifying the uncertainty 

and its contributors, but also to reducing that variation through design optimization. We implement a 

computer-based design-of-experiments over design variables, to visualize and reduce variability 

computed over a design-of-experiments over contributing noise variables. 

Beyond design-of-experiments methods, other formulations combine uncertainty quantification with 

numerical optimization methods (Du and Chen, 2001; Akihiro et al., 2007). We choose here to provide 

studies in the standard RDM approach, showing the impact of design variable changes on performance 

variability. This provides further clarity on the effects of design changes, rather than only providing 

the variability optimization solution answer. 

Finally, others have considered robustness for early concept phase analysis using methods different 

from RDM. Sigurdarson et al. (2019) study alternative design concepts for conflicts in requirements, 

to minimize conflicting requirements. Goetz et al. (2019) consider robust design through function 
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structure modelling. Vogel et al. (2018) considers mechatronic robust design principles. These early 

concept phase methods complement RDM by seeking better design concepts to which RDM can be 

applied. 

3. Robust design workflow and toolchain 

Completing an RDM workflow requires a sequence of methods and procedures (Arvidsson and 

Gremyr, 2008), including variable identification, variation mode and effect analysis, screening 

analysis of noise variables, formation and analysis of the robust design experiment, and verification of 

the computed solution. We develop here an RDM workflow for use with simulation based tools, 

making use of available open source code libraries. 

When a step of the workflow is executed, a set of output artefacts are generated which acts as input to 

initiate the next step. The sequence of artefacts generation is coded as an executable toolchain. A 

toolchain is a set of computational tools which compiles a sequence of commands and executes them 

sequentially. Generally, a toolchain can be built on top of different platforms and coded using a wide 

variety of programming languages. Here, the Jupyter Notebook platform is chosen to contain the 

toolchain, coded using Python. The Jupyter Notebook is an interactive open source web-based 

environment where each Notebook consists of both descriptive hypertext markup language (HTML) 

blocks and programming code blocks. Jupyter supports over 40 open source-programming languages, 

such as Python, R, Julia, and Scala. Python was chosen as the programing language mainly due to its 

large variety of available libraries and supporting ecosystem within the developers’ community. 

3.1. Robust design workflow 

To execute a RDM workflow with simulation tools, a sequence of both manual and computational 

activities are needed, as outlined in Figure 1. Steps 1 to 4 outline the robust design problem 

formulation, steps 5 to 11 outline the execution, and the last step is a verification. 

 
Figure 1. Model based robust design workflow 

The first step in the RDM workflow is a manual task to conceive all possible sources of variation, a 

variation mode and effect analysis (VMEA) (Johansson et al., 2006). This is a method to identify 

possible inputs which can contribute to variability in the performance responses and constraints. 

VMEA is especially useful to clarify what types of models are needed, and how suitable available 

modeling assets are against these sources of variation. The result of the VMEA analysis is a list of 

potential sources of variations, listed by components in the design. 

An extension of VMEA for robust design is to also consider what design changes can have an impact 

on reducing the variability. Step 2 is a manual task to identify design variables that might change the 

variability of the response. These would be design variables that have an interaction effect with the 

significant noise variables on the response. As with VMEA, typically this list of design variables is the 

result of a brainstorming workshop with experts of the system under study. The design variables will 

be analysed in the design-of-experiment to determine the best combination of values which are 

expected to reduce the variability distribution of the performance response. 
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Step 3 in the workflow is to define a simulation model of the design to quantify and predict the 

performance and constraints behaviour of the system. The variation modes that were previously 

identified are mapped to the simulation model’s input variables, where changing these model inputs 

will describe the effect of the variation modes. This model mapping step will highlight the adequacy 

of the model: variation modes which cannot be mapped to a model input indicate the variations not 

represented in the model. For example, a steady state model cannot represent dynamic variations, and 

a lumped parameter models cannot represent more refined geometric variations. The completeness of 

the model can be assessed against the modes identified in the VMEA as the fraction of variation 

modes represented by model inputs. The result of this step is the summary of variation modes linked 

to inputs of the simulation model, and a list of model inputs to study. 

Step 4 in the workflow is to setup the simulation model for robust design variability study. We create a 

reference compute unit, which is a computer folder containing all necessary simulation model and 

calculation elements. For multiple runs of the simulation, this folder is copied and modified for each 

run. The folder contains an editable comma-separated values (CSV) file which lists the input variables 

and values to be changed in a single run of the simulation. Similarly within the reference folder, a 

batch file is created and run as a command line. This batch file contains the commands to initialize the 

simulation, read the input file, compute the simulation analysis, and finally writes an output CSV file 

listing the performance responses and values. Having the simulation compute unit modularized within 

a reference folder allows the workflow code to generate new input variable values for each single run 

of the simulation, simply by copying the folder and modifying the input CSV file. 

Step 5 executes a short set of one-factor-at-a-time (OFAT) runs to ensure that the simulation model 

converges at any input value different from the nominal. This step is often necessary since the 

sampling methods used vary all inputs simultaneously, and if one input causes convergence problems, 

then many of the simulation runs may fail to converge. The toolchain implements a 1% change of each 

input value, and tests that the simulation solves and converges. 

Step 6 then proceeds with the next RDM step, which is to screen the noise factors. Usually the VMEA 

and simulation models contain a large number of input noise variables, though many turn out to not have 

much contribution to output variation. As a result, a screening analysis is necessary to identify those 

noise variables which make a significant contribution to the response. Morris’ method provides a fast 

screening method by rank-ordering the noise variables using a small number of simulation runs (Saltelli 

et al., 2008). The toolchain generates the Morris samples as reference folder replicates and launches the 

simulation model in each replicate folder to compute output values. The screening step outcome is a rank 

ordering of the input noise variables according to output variance contribution. The input variables with 

little contribution are dropped from consideration in the next step of reducing the uncertainty. 

Step 7 of the RDM workflow is to study the impact of design changes to the variability. To specify this 

an input CSV file is created that define the noise variable distribution type, parameter values and also the 

range of design variable exploration. The toolchain uses this to define and executes an uncertainty 

quantification at each design point using the distribution functions defined. Modern methods offer 

various sampling techniques suitable for computer experimentation, such as quasi-Monte Carlo or Latin 

hypercube sampling (Giunta et al., 2003). Latin hypercube, Halton and Sobol sampling methods are 

provided as options in the toolchain, making use of available open source code libraries. 

The toolchain first constructs a sampling over the design variables, such as a Latin hypercube sample. 

Each of these samples is a design point. At each design point, a further sample across the noise 

variables is made, according to the distribution parameter values. With this the complete set of runs, 

defined as design and noise experimental configurations, have been defined as an input matrix. 

Step 8 executes the batch of calculations. The toolchain generates an output folder containing a set of 

sub-folders, one for each of the simulation runs. Each of these folders are copies of the reference 

folder with the input CSV file modified per the experiment matrix. Within each folder the simulation 

is executed by the batch file to compute the performance response. The uncertainty is quantified at 

each design point by considering the set of runs with the design point fixed but with the noise 

variables changing. At each design point, a histogram of the run results is formed and the mean and 

variance computed. This is repeated at each design point. These results are collected and summarized 

into a matrix which also lists the design variable values. 
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Next, step 9 is to fit a reduced order model to the design variables of both the computed mean and 

variance. To assess the adequacy of the fits, the surrogate model error is computed and graphed. 

Step 10 in the RDM workflow is to generate factor plots, to provide a means of understanding the 

impact of design changes on the response variability. The factor plots graph the effect of the design 

changes on the performance response and the performance response standard deviation (alternatively, 

the variance or an S/N ratio could be graphed). Using the factor plots, selections of design variable 

values can be made by selecting those values which minimize the standard deviation or variance. 

Next, step 11 in the RDM workflow is a manual selection of optimum values for the design variables. 

This can be done in the usual way of scrutinizing the factor plots for design variable values with lower 

performance variance. It can also be done in the toolchain as an optimization formulation, using the 

surrogate models of the mean and variance. One can minimize the variance subject to a constraint on 

the mean, for example. The results will be the values of the design variables that minimize the 

performance response variation while maintaining a reasonable response value. 

Finally, the last step in the RDM workflow is to verify the chosen design configuration. This should be 

done through the fabrication and testing of the design. Preceding this fabrication axctivity, an 

uncertainty quantification can be done over the noise variables at the new optimum design variable 

values. The toolchain executes this analysis as above, creating another set of noise variable samples 

and evaluating the performance response. From these values, the mean and variance of the 

performance response can be computed to show the reduction in variability over the original nominal 

value results. 

3.2. Python toolchain 

The toolchain is coded in Python, presented within the Jupiter Notebook environment. The Notebook 

consists of a series of hypertext HTML blocks and computer code blocks, which can be easily edited and 

executed. Figure 2 shows the Jupyter Notebook in where the toolchain is implemented. It offers a variety 

of text elements, such as figure plots, equations, and narrative text which make the document readable as 

well as executable. Jupyter Notebooks are designed to implement scripted workflows, with a set of code 

blocks that are executed step by step. The Jupyter environment also allows the user to easily document 

instructions or comments between code blocks as HTML blocks. Notebooks can be easily shared. 

 
Figure 2. Toolchain developed in a Jupyter Notebook 
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One important characteristic of the Python code blocks is the support of standard and open sources 

library packages such as CSV (Lundh, 2001), pyDOE (Baudin, 2015), and SALib (Herman and Usher, 

2017). We used CSV for manipulating data (i.e reading and writing). SALib is a free open library for 

Python, it offers packages for sampling and sensitivity analysis. PyDOE is an experimental design 

package that can generate designs such as Latin hypercube matrices and full factorial experiments. 

Code libraries are easily imported and executed. As Jupyter Notebooks and Python are open source 

tools, they are in constant improvement by the global developer community. As such, there is 

inherently a wealth of support information on the calculations including statistical modelling, 

numerical simulation, etc., and the formulations are well documented online. 

3.3. Example: Stirling engine analysis 

In previous work (Otto et al., 2019; Otto and Sanchez, 2019) workflows were developed applying 

uncertainty quantification and sensitivity analysis methods to identify root causes of manufacturing 

quality problems. Here we use the same Stirling engine project described earlier, now as an example 

of a system requiring robustness improvement. As a university project, it is complete with a data set 

available for study. The Stirling engine has attracted attention in recent times as an object of 

optimization for its many attractive characteristics over the combustion engine, such as minimal 

pollution generation, high thermal efficiency and multi-heat-source capability. Hence, we 

implemented the robust design workflow on the Stirling engine. 

At Aalto University students fabricated, assembled and tested Stirling engines as part of the senior level 

machine design course. A Stirling engine manufactured during the course can be seen in Figure 3. 

Students measured the speed at which the crank shaft rotates when there is no load attached to it, which 

is known as the no-load speed. The no-load speed tests demonstrated 25% variation in speed across the 

fabricated engines, due to variations in fabrication. This outcome exposed the high sensitivity of the 

Stirling engine to manufacturing and assembly variations. To determine if the variability of the design 

could be reduced, a robust design analysis was undertaken by the teaching team. 

 
Figure 3. Miniature Stirling engine manufactured in the course 

First, to implement the workflow outlined in Figure 1, we compiled a list of potential sources of 

variation in engine performance as a VMEA. From this, 42 variation modes were identified, including 

modes such as part tolerance, heat flux variability, air leakage, friction between components and 

misalignments. The majority of the variation modes were due to manufacturing component variation. 

Following Step 3, these variation modes were then mapped to inputs of a Stirling engine simulation 

model. A Matlab simulation model was used to compute the power generated based on a Schmidt 

power formulation (Ureili, 2010). The model input variables were typically a compound of several 

variation modes. The 42 original variation modes were thereby represented by 11 model input 

variables in a created compute unit (Steps 4-5). Using the toolchain, we first performed a Morris 
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screening analysis to determine which of these noise variables significantly contribute to the engine 

power variability (Step 6). We varied all inputs over a ±1% range, and the screening results from the 

Morris analysis are shown in Figure 4. From this, it can be seen that the largest contributing noise 

variables are the clearance and swept cold side volumes, as well as the heat exchanger diameter, and 

the other input variations don’t significantly contribute. 

 
Figure 4. Morris analysis of the computed power variability 

Having identified the significant contributors to the engine power variability, we proceeded to 

implement the main experiment. We had chosen design variables of the hot and cold side volumes, 

which could be easily changed and also impact the power generated (Step 7). We chose a range of 

±20% of the nominal design, in order to explore how such design changes impact the variability due to 

the tolerances, yet not so large as to require changes to the design concept itself. We implemented 

Latin hypercube sampling for the design points, with 4 design variables and 40 design points. 

Next (Step 8), we applied the toolchain to generate samples across the noise variables according to 

their distribution parameters again using Latin hypercube sampling. This is repeated at each design 

point. Folders are created per each simulation run and the batch file in each folder is executed. The 

simulation computed response (engine power) at each sample point is collected, and a histogram 

formed depicting the power uncertainty at each design point. Further, the response (power) mean and 

standard deviation at each design point is collected into a main experiment matrix CSV file. 

Next we fit a surrogate model for the experimental matrix results (Step 9). It this case, we 

implemented an ordinary least squares surrogate, which fit to an    of 0.99 for the average power and 

0.94 for the power standard deviation. The surrogate model error plot for the mean and standard 

deviation generated can be seen in Figure 5. 

 
Figure 5. Surrogate model errors 

To visualize the effect of variations of each design variables over the performance response and 

performance response deviation, factor plots are generated (Step 10). Figure 6 shows the generated 
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factor plots for power mean and power sigma against each design variable. We can appreciate easily 

from Figure 6 that the cold side swept volume affects positively the generated engine power. This can 

be used to shift the mean of the generated power, a bigger value will increase the power without 

significantly increasing the standard deviation. Meanwhile the hot side swept volume is useful to 

reduce power variability, a small value will decrease the standard deviation. The hot side dead volume 

can be ignored; changing it does not improve change on the mean or variance of the power. These 

results suggest a more robust configuration, they show how design variables affect the power mean 

and power variance. 

 
Figure 6. Factor plots of mean and sigma per design variable 

In order to make a proper selection of optimum design variable values, we also formulated and solved 

an optimization (Step 11). The objective function was set to the power standard deviation, and a 

constraint was defined that the average engine power be no less than the power generated when using 

nominal values for the design variables. 

To verify this, the last step in the workflow is to recompute the uncertainty using the new design point, 

using the same level of input variations. Figure 7 shows the histogram of the power response when using 

nominal values for the design variables versus optimum values for the same design variables. The sigma 

power of the response decrease its value from 0.18 to 0.14, demonstrating a 23% variation reduction. 

 
(a)                                                                             (b) 

Figure 7. Uncertainty of engine power a) at nominal design values  
b) at robust configuration values 

4. Conclusions 

Scripted toolchains offer a means to disseminate design methods as easily portable and executed code. 

Here, we developed an RDM workflow for simulation-based tools, to study a design for sources of 

variation and to study the variation reduction impact that design changes can have. Doing this makes 

the design research that has gone into creating computer-based algorithms and methods for robust 

design more readily available. 
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The approach described makes use of quasi-Monte Carlo simulation to represent the variability, and 

computer based designed experiments to represent the design alternatives. This is useful for 

performance variations of up to 4 sigma variations.  Problems with margins of interest at 5 or more 

standard deviations need other formulations such as optimization methods (Du and Chen, 2001; 

Akahiro et al., 2007). 

The next steps in this work are to test these deployment assertions by further providing the toolchain 

to industrial partners for their own internal uses. Preliminary indications from a small sample of 

industrial users are positive, but this remains future work. Nonetheless, we feel implementation of 

design methods into standard workflows implemented in scripted toolchains provides a mechanism for 

more broad deployment. 

An example was shown from a university teaching course, where the instructors and teaching 

assistants sought improvements to a Stirling engine design, to enable students to fabricate and build an 

engine with higher predictability. The example demonstrates how the toolchain is capable of helping 

the team to understand sources of variation and to identify design changes that can make the design 

more robust. 
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