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Abstract

Complemented congruences in the classes of pseudocomplemented semilattices, p-algebras
and double p-algebras are described. The descriptions are applied to give intrinsic character-
izations of those algebras in the aforementioned classes whose congruence lattice is a Boolean
algebra.

Subject classification (Amer. Math. Soc. (MOS) 1970): primary 06 A 20, 06 A 25; secondary
06 A 40.

1. Introduction

In this paper we use a technique of Janowitz (1977) to describe complemented
congruences on pseudocomplemented semilattices, p-algebras and double p-
algebras. The main theorem shows that a congruence relation 8 on a pseudo-
complemented semilattice L is complemented if and only if it can be described by
a=hb(0) if and only if anc = bac for some semicentral element c; that is an
element ceL such that the join (xAc)v(xAc*) exists and is x, for all xeL.
Consequently, we show that if L is a pseudocomplemented semilattice then the
congruence lattice of L is a Boolean algebra if and only if L is a finite Boolean
algebra. The proof of the main theorem can be adapted to show that complemented
congruences in p-algebras and double p-algebras can also be described in the
aforementioned manner provided that “semicentral” element is replaced by the
usual lattice theoretic notion of central element. As an application, we give a
new proof of the characterization of those double p-algebras whose congruence
lattice is Boolean; a result first obtained by Beazer (1976).

2. Preliminaries

Let L be a lattice. An element acL is called distributive if and only if
av(xay)=(avx)a(avy), for all x,yeL; dually distributive if and only if a is a
distributive element in the dual of L. An element ae€L is called standard if and
only if xA(avy) = (xAg)v(xay), for all x,y€L. An element a€ L is called neutral
if and only if the sublattice of L generated by x,y and a is distributive for all
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x,y€L. The centre, cen(L), of a bounded lattice L is the set of all complemented,
neutral elements of L and is, of course, a Boolean sublattice of L. For the various
relationships and properties of these special elements we refer the reader to
Griitzer (1976).

An algebra {L; A, *,0, 1) is called a pseudocomplemented semilattice if and only
if {L; A,0,1) is a bounded semilattice such that for every a€L the element a*eL
is the pseudocomplement of a; that is x <a* if and only if aanx = 0. An element ¢
in a pseudocomplemented semilattice L is called semicentral if and only if the join
(xAc)v(xAc*)exists and is x, for all xeL. The set of all semicentral elements of L
will be denoted by C(L). If, in any pseudocomplemented semilattice L, we write
B(L) = {xeL; x = x**} then {(B(L); ¢, A, *,0,1) is a Boolean algebra when aub
is defined by aub = (a* Ab*)* for any a,be B(L). The set D(L) = {xeL; x* = 0}
is a filter in L called the dense filter. By a congruence relation on a pseudo-
complemented semilattice L we mean a semilattice congruence on L preserving
the operation *. The relation ¢ on L defined by a=b(p) if and only if a* = b*
is a congruence on L and called the Glivenko congruence. If 8 is a congruence
relation on L we write cok 8 for {xeL; x=1(6)}.

An algebra {L; A,v, ¥,0,1) is called a p-algebra if and only if {(L; A,v,0,1) is
a bounded lattice and * is the pseudocomplementation operation on L. A
congruence relation on a p-algebra is a lattice congruence preserving *. The
Glivenko congruence on any p-algebra is a p-algebra congruence,

An algebra {L; A,v,*,%,0,1> is called a double p-algebra if and only if
{L; AV, *,0,1> is a p-algebra and {L; A,v,*,0,1) is a dual p-algebra; that is
x2zat if and only if avx = 1. If L is a double p-algebra, acL and n< w then we
define an element g™+ *) € L inductively as follows:

O *) = a, kI *) = k(4 *¥)+ % for k=0.

In the event that L is distributive, at*<a and cen(L) = {a€L; a = at*}. A lattice
filter of L is said to be normal if it is closed under the operation +*. A congruence
on a double p-algebra is a p-algebra congruence preserving *. The relation @ on
L defined by a=5(®) if and only if a* = b* and a* = b+ is a congruence on L
called the determination congruence.

The standard results and rules of computation in pseudocomplemented semi-
lattices and p-algebras may be found in Gritzer (1976), while those for (distributive)
double p-algebras may be found in Beazer (1976) and Katrifidk (1973).

Let L be a pseudocomplemented semilattice, or a p-algebra or a double p-algebra.
We write K(L) for the (algebra) congruences on L and, as usual, denote the least
and greatest elements of K(L) by w and ¢, respectively. If S is any non-empty
subset of L then we write ©(S) for the smallest congruence on L collapsing S. In
the event that S = {a,b} we write 6(a,b) for ®(S). Throughout, we denote by
6, the relation on L defined by x=y(6,) if and only if xAa = yAa.
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3. Complemented congruences

THEOREM. If L is a pseudocomplemented semilattice then 0 € K(L) is complemented
if and only if 0 = 8, for some ce C(L).

Proor. First, observe that if acL then 8, is a semilattice congruence. That 6,
preserves * is easily seen. Indeed, if xAa=yAa then y¥*AxAa=0 and
x*¥Ayaa=0. From the first, y* Aa<x* so that y* Aa<x* Aa. From the second,
we get x* Aa< y* Aa and it follows that 8, is a congruence on L. If ce C(L) then 8,
is complemented with complement 8,. in K(L). Indeed, since c¢*=1(0,.), c=0(8,.)
so that the sequence 08,. c8,1 ensures that 0=1(f,v 6,.) and therefore 6,v 8,, = «.
Moreover, if x=y(8,A 0,,) then xAc = yac and xAc* = yAc* so that

x={(xAc)v(xac*)=QArc)v(yac*) =y,

since ¢ € C(L). Therefore, §,A 0. = w.

Now suppose that 8 is complemented with complement & in K(L). Then there
exists a chain 0 =¢y<¢;<...<¢,_y<c¢, =1 such that ¢, ;=c,(0v ), 1<i<n.
Obviously we can assume that » is the length of a shortest chain guaranteeing that
0v & = . In addition, we can assume that each c¢;€ B(L), since §and ¢ both
preserve **. We claim that n<2. Assuming that n>3, we have 0 = ¢, 0c, ©’c,Oc;
where © {8, 6'}. Let [0,c,]p, denote the interval {xeB(L); 0<x<c,} in the
Boolean algebra {B(L); U, A, *,0,1>. Then [0, c,]5z, is a Boolean lattice under
U and A. Let ¢; € B(L) denote the complement of ¢; in [0, ¢;]5(r) sO that ;UG = ¢,
and ¢;A¢; =0. Then ¢, = (cfAcf)* and so, since ¢;=0(®), it follows that
EF*=cy(0); that is ¢, =cy(®). We also have & =0(0"), since c;=cy(0") and & < c,.
Thus, é € B(L), 0< ¢, <¢, and 00°¢, Oc,. But now the chain

O=CO<61<C3... <Cn= 1

with 00°¢, O, also guarantees that 8v §' =« but has length n—1 contrary to the
minimality of n. Thus, n<2. If n = 1 then either § = 8, or § = 6, and we are done.
If n=2 then we have 0 =cy<c¢;<c, =1 with 08¢, ®'c, = 1. Without loss of
generality we can, by the above, take ® = 0'. Thus, there exists ¢ € B(L) such that
O<c<1 and 08'cOl. It follows that 0 = 0,. Indeed, 6,< 0, since ¢=1(0), and if
x=y(0) then xac=yac(6) and xAac=yac(f), since c¢=0(8). Therefore,
xac=yac(8A8) and so xAc=yac; that is x=y(0,). Similarly, since 0<c*<1
and 00c* ' 1, we have &’ = 4,.. Finally, we show that ¢ € C(L). Let u be any upper
bound for {xAc,xAc*}. Then (uAXx)Ac=xAc and (uAX)AC* = xAc* so that
uAx=x(0A 0) and therefore uAx = x; that is x <u. Hence the least upper bound
for {x Ac,x A c*} exists and is x, for all xeL.

CoRrROLLARY 1. If L is a pseudocomplemented semilattice then K(L) is a Boolean
algebra if and only if L is a finite Boolean algebra.
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Proor. If K(L) is Boolean then the Glivenko congruence ¢ = 6, for some ¢ € C(L).
Thus, D(L) = Cokg = Cok 8, =[c) so that ¢* =0 and, since ceC(L) implies
cvce* =1, it follows that ¢ = 1. Consequently, ¢ = 8, = w and therefore, since
x* = x*** for any x€L, x = x**; that is L = B(L) and K(B(L)) is Boolean. It
follows, by a well-known result, that L = B(L) is a finite Boolean algebra. The
converse is obvious.

COROLLARY 2. If L is a p-algebra then 0 K(L) is complemented if and only if
0 = 0, for some c € Cen(L).

Proor. If 8 € K(L) is complemented then, as in the proof of the theorem, we can
assert the existence of an element ce C(L) such that 0<c<1, 08'cf1 and 6 =6,
It follows, since ¢ & C(L), that ¢ has complement c* in L. Moreover, since 6 = §,,
it follows that 6, is a lattice congruence and therefore (see Gritzer, 1976) c is
dually distributive. To show that ¢ is central, it remains only to show that c is a
standard element (see Gritzer, 1976). To effect this, observe that if x,y€L then
xalevy)=(xac)v(xay)(8), since c=1(0), and xa(cvy)=(xac)v(xay)(d),
since c=0(8"). Therefore, x A(cvy)=(xAc)v(xAy)(8A &); that is,

xAlevy)=(xac)v(xay)
and so ¢ is standard.

For the sufficiency, we show that if ¢ € Cen (L) has complement ¢’ in Cen (L) and
0eK(L) is of the form 6, then § has complement 6, in K(L). Indeed, 6, is a
p-algebra congruence of L because it is a pseudocomplemented semilattice
congruence which preserves joins, since ¢ is dually distributive. Moreover,
6,v 6, = ¢ is guaranteed by the sequence 00, ¢0,1 and 6,A 6, = w is guaranteed
by the neutrality of c.

COROLLARY 3. If L is a p-algebra then K(L) is a Boolean algebra if and only if
L is a finite Boolean algebra.

PROOF. As in the proof of Corollary 1, the Glivenko congruence ¢ = 6, for
some ¢ € Cen (L) satisfying c* = 0. However, if ¢’ is the complement of ¢ in Cen(L)
then ¢’ < ¢*, since x = c* is the largest solution of the equation cAx = 0. It follows
that ¢’ = 0 and therefore ¢ = 0, = w. Hence L is a finite Boolean algebra.

ReMARK. Corollary 3 is a special case of a theorem of Janowitz (1975) concerning
annihilator preserving congruences on bounded O-distributive lattices.

COROLLARY 4. If L is a double p-algebra then 0 € K(L) is complemented if and only
if 8 = 6, for some ceCen(L).
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PRrROOF. The necessity follows exactly as in the proof of Corollary 2. For the
sufficiency, we show that if ¢€ Cen (L) has complement ¢’ in Cen(L) and 8 K(L)
is of the form 6, then 8 has complement 6, in K(L). Clearly we need only show
that 0, is a double p-algebra congruence on L. Indeed, since xAc¢ = yAc if and
only if xv¢' = yv(, it follows by Corollary 2 and its dual that 6, is a double
p-algebra congruence on L.

Beazer (1976) gave an intrinsic characterization of those distributive double
p-algebras whose congruence lattice is Boolean. Close scrutiny of the proof of that
theorem together with the fact that ® = w implies distributivity (see Katriiidk,
1973) shows the assumption of distributivity may be dropped. We give an alterna-
tive proof of this result using Corollary 4.

COROLLARY 5. If L is a double p-algebra then K(L) is a Boolean algebra if and only
if the following conditions hold:

(1) ¢=w.

(2) For all acL, there exists n < w such that g'" T +¥) = gni+¥),

(3) Cen(L) is finite.

Proor. If K(L) is Boolean then, by Corollary 4, the determination congruence
® = ¢, for some ceCen(L). Therefore, {1} = Cok® = Cok f,=[c) and so ¢ =1
which implies that ® = w. Consequently, L is distributive. Next, if a€L then the
normal filter F, generated by a in L is given by F, = {xe€L; x>a™+* for some
n<w}. Moreover, F, = Cok ®(F,) by Beazer (1976). It follows, since K(L) is
Boolean, that O(F,) = 6, for some ceCen(L) and, therefore, F, = Cok §, = [c).
Hence, a > ¢ > a™+®), for some n < w, which implies that g#+¥) > cn+¥) = ¢ > gni+¥),
that is ¢ = @™*+* and, therefore, a1 (+*) = gn+%)_For the necessity of condition
(3), suppose that Cen (L) is not finite. Then there exists a non-principal filter F of
Cen(L). Let

05 = U{0,; acF}.

It follows, since {6,; acF} is a directed subset of K(L), that 8, K(L) and so
0z = 0, for some c€Cen(L). Hence, Cok 85 = Cok 6, and so x> c if and only if
x 2 a, for some a € F, which implies that F is the principal filter of Cen (L) generated
by ¢; contrary to hypothesis.

Now suppose that conditions (1), (2) and (3) all hold. It follows from (1) and
Beazer (1976) that every congruence of L is of the form ©(F) for some normal
filter F of L. Clearly @(F) = VY {6(a,1); ac F}. However, condition (2) implies
that for any a€L there exists a least integer n, such that gm«t){+¥) = gna(+¥), Jt
follows, since ams+*)ggq, that 8(a,1) = 8(am='+¥, 1), for any acL. Therefore,
6(a, 1) = 6, for some c,cCen(L); namely c, = a™+*), Now condition (3) implies
that ©(F) is a finite join of congruences of the form 6, where c,eCen(L).
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Therefore, since the formula 6, v 6, = 0, ,, holds for any c;,c,eCen(L) and
Cen(L) is closed under finite meets, O(F) = 0, for some ceCen(L). It follows,
from Corollary 4, that K(L) is a Boolean algebra.

REMARK. Beazer (1976) obtained as a corollary to Theorem 4 of that paper a
characterization of the simple algebras in the class of distributive double p-algebras.
Specifically, it was shown that a distributive double p-algebra L is simple if and
only if ® = w and for all aeL\{1}, there exists an integer # such that a®+*) = 0.
We finish with the remark that the very same characterization holds if distributivity

is dropped.
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