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Summary

A recent paper in this journal by Deng, Li and Li has investigated methods to estimate rates and

effects of polygenic mutations using data from mutation accumulation experiments. Here, I

evaluate a number of critical points in this paper concerning a maximum likelihood (ML)

procedure to analyse mutation accumulation data. I show that Deng, Li and Li’s criticisms are

based on misunderstandings, or numerical problems they encountered that could have been readily

overcome. In Monte Carlo simulations, I show that ML can give a considerable increase in

precision over the method of moments that is traditionally used to analyse mutation accumulation

data. Furthermore, ML allows the comparison of the fit of different models for the distribution of

mutation effects.

1. Introduction

There has been a recent upsurge of interest in the

experimental estimation of genome-wide mutation

rates and properties of polygenic mutations by

mutation accumulation (MA). The standard design

for a MA experiment is to allow mutations to

accumulate at random is inbred lines. Mutations may

also be induced, and bred to fixation. Rates of change

of measurable properties of the phenotypic distri-

bution of a trait are used to infer the genome-wide

mutation rate (U ) and properties of the distribution

of their effects. There has also been interest in

methods to analyse data from MA experiments. A

recent paper (Deng et al., 1998 – DLL98 henceforth)

was an extensive investigation of the Bateman–Mukai

(BM) analysis method (Bateman, 1959; Mukai, 1964).

The BM method uses the rate of change of phenotypic

mean and the rate of increase of among-line variance

of the MA lines to estimate U and the average effect

of a new mutation (s), under the assumption that

mutations have equal effects. DLL98 performed a

more limited investigation of a maximum likelihood

(ML)method to infermutation parameters (Keightley,

1994; Keightley & Ohnishi, 1998), in which models
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with variable mutation effects can be assumed. DLL98

describe a number of problems and difficulties with

the ML procedure, principally that it is not more

informative than the BM approach, and that problems

occur in detecting global likelihood maxima. The

purpose of this short paper is to explain the nature of

these problems, and to compare the BM and ML

approaches.

2. Materials and methods

(i) Simulation of MA experiments

The simulation assumptions were the same as DLL98.

Each simulated experiment is assumed to consist of a

set of mutation-free control lines and a set of MA lines

that have accumulated mutations for several

generations. The MA lines each have an average of U

fixed mutations, the actual number being sampled

from a Poisson distribution. Phenotypic values for the

analysis were line means, with environmental

deviations normally distributed with variance σ#
e
, the

environmental variance of line means. Mutation

effects were assumed to be gamma distributed with

location and shape parameters α and β respectively.

The mean effect is sa ¯β}α, and the variance is β}α#.

The gamma distribution was chosen as it can take a

wide range of shapes by varying one parameter,

although natural distributions of mutation effects
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could be more complex. Cases with equal mutation

effects, corresponding to βU¢ (the model generally

assumed with the BM analysis method), were also

simulated.

(ii) Analysis by the BM method

The change in phenotypic mean between the MA and

control lines, ∆M, and the increase in among-line

variance σ#
b

are used to infer U and s, under the

assumption of equal mutation effects :

UW ¯∆M#}σ#
b
, (1)

sW ¯σ#
b
}∆M. (2)

BM estimates of U (s) are often presented as minima

(maxima), since variation in selective values will lead

to underestimation (overestimation) of the true par-

ameter values. However, they could only be minima

(maxima) in an experiment with zero sampling error.

The estimates are also often presented as model free,

in contrast to ML for which a distribution of mutation

effects is assumed. However, under BM there is no

obvious way to compare the fit of different distri-

butions of mutation effects, so the simplest model of

equal effects needs to be assumed.

(iii) Analysis by ML

The method for analysis has been described elsewhere

(Keightley & Ohnishi, 1998). Data were line means for

MA and control lines, as for the BM method. The

parameters estimated are M, σ#
e
, α, β and U. To

simplify the interpretation of the results, U and sa were

estimated for each data set using a series of different

models, corresponding to fixed values of β. Likelihood

was maximized by the simplex method (Nelder &

Mead, 1965). To ensure convergence to the global

maximum likelihood, a starting value for U was

obtained by maximizing likelihood for five fixed

values of U ranging from 0±25¬ to 4¬ the expected

value, then using the U value which gave the highest

likelihood as the starting value for the global

maximization (within a fixed β model). Within the

initial maximizations using a fixed U value, the

starting value for α was set to its expected value, and

starting values of M and σ#
e
were calculated from the

control line data. However, investigation of a subset

of the runs showed that this initial line search approach

seemed to be unnecessary, as the global maximum was

reached as long as a fixed value for β was assumed, the

starting values for the variable parameters were

plausible, and the data reasonably informative. Con-

vergence to the ML was checked by restarting the

procedure after convergence had apparently occurred,

until there was no further significant increase in

likelihood.

It should be noted that assuming a normal

distribution of environmental deviations could make

ML more sensitive to departures from normality than

the BM method. One way to alleviate this potential

problem is to use line means in the calculations (as is

done here), as these will follow a normal distribution

more closely than replicate values (perhaps leading to

a loss of some information). If the distribution of

residuals is not normal, transformation of values to an

appropriate scale may also be possible. For categorical

data (e.g. dead or alive), an appropriate liability

model, analysed via likelihood, may be the appropriate

solution (T. A. Bataillon and P. D. Keightley, un-

published).

3. Results and discussion

(i) BM and ML: comparison of equi�alent models

In their comparison of the BM and ML methods,

DLL98 do not evaluate the procedures under equi-

valent models. Since there is no obvious way to

compare the fit of different distributions of mutation

effects under the BM approach, the simplest model of

equal effects is assumed. This is therefore the

appropriate model for comparing the performance of

the BM and ML procedures. Table 1 shows mean

estimates for U and s for a range of simulated values

from the analysis of 1000 simulated data sets by the

BM and ML procedures, assuming equal mutation

effects, and σ#
e

arbitrarily set to one. The absolute

values of s simulated are not relevant here, as the

population mean is not specified, and estimates of s

for life history traits would normally be scaled by the

population mean. The informativeness of an ex-

periment depends on the number of lines and the ratio

σ#
b
}σ#

e
(Garcı!a-Dorado, 1997), so a range of plausible

values of this ratio were simulated. The performance

of the procedures can be evaluated in two ways: by

comparing the mean estimates of U and s or by

comparing the variances among the estimates. Table 1

shows that both methods give mean estimates close to

the simulated values over the range of parameter

values simulated. However, if σ#
b
}σ#

e
is small, both

methods show a small but appreciable upward bias.

Under ML, this is due to a few data sets for which

likelihood is extremely flat as a function of U, and

occurs if the data do not contain sufficient information

to reliably distinguish the model parameters. If an

experiment is noisy (σ#
b
}σ#

e
!C1), likelihood can go

on increasing with increasing U, and therefore give

infinite sampling variance. A similar problem also

occurs with the BM method if the denominator in (1)

or (2) can approach zero, and explains the extremely

high sampling variance in the case of U¯ 0±2, s¯ 2±24

(Table 1).

Since mean estimated values are close to those

simulated, the precision of the methods can be

compared from their estimation variances. Table 1
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Table 1. Comparison of means and �ariances (VAR) of estimates from

the BM and ML procedures under a model of equal mutation effects

Estimated values

Simulated values BM ML BM ML

σ#
b
}σ#

e
U s UW a VAR UW a VAR sW a VAR sW a VAR

1 0±2 2±24 0±24 0±045 0±24 0±014 3±08 21±1 2±19 0±38
1±0 1±0 1±17 0±69 1±17 0±49 1±01 0±13 1±00 0±11

5±0 0±447 5±87 10±9 5±87 10±8 0±44 0±022 0±44 0±020

5 0±2 7±07 0±21 0±0051 0±20 0±0021 7±23 1±84 7±07 0±042
1±0 2±24 1±04 0±065 1±06 0±057 2±23 0±17 2±20 0±13
5 1±0 5±12 0±96 5±17 0±98 1±01 0±031 1±00 0±030

20 0±2 14±14 0±21 0±0034 0±20 0±0020 14±1 4±13 14±1 0±051

1±0 4±47 1±01 0±037 1±00 0±010 4±51 0±48 4±46 0±013
5 2±0 5±08 0±67 5±17 0±62 2±01 0±091 1±97 0±078

Results shown are based on 1000 replicates with 100 MA and 100 control lines.

shows that ML can provide a worthwhile increase in

precision for estimation of U, and a considerable

increase for estimation of s, compared with BM. The

benefit is greatest for cases with relatively few

mutations per line or large σ#
b
}σ#

e
relative to s. If there

are many mutations per line or the experiment is

noisy, data will, presumably, be close to normally

distributed, and the information that can be gleaned

by ML comes almost exclusively from changes of

mean and between-line variance.

(ii) Can ML distinguish between distributions of

mutation effects?

In their evaluation of the ML procedure DLL98 state

that ‘Keightley’s method cannot estimate U, and all

the distribution parameters α and β simultaneously

and indi�idually from M-A data…One parameter

must be assumed in order to estimate the other

parameters…Therefore, contrary to the general belief,

Keightley’s method (1994) does not yield estimates on

more parameters from M-A data about deleterious

genomic mutations than Bateman–Mukai’s method

of moments.’ To evaluate the validity of this claim,

simulated MA experiments with mutation effects

either from a platykurtic (β¯ 4) or a leptokurtic (β¯
0±5) distribution are analysed for a series of models

with fixed values of β including the case of equal

effects (βU¢). On average, the model giving the

highest log likelihood corresponds with the model

simulated (Table 2). If the true distribution is

moderately platykurtic (β¯ 4), equal mutation effects

and distributions much more leptokurtic than the

exponential distribution (β¯1) can be excluded, on

average. If the true distribution is leptokurtic, distri-

butions more platykurtic than β¯ 2 are excluded, on

average, but distributions more leptokurtic than that

simulated usually cannot be excluded with any

confidence. The behaviour of the moments of the

distribution of genotypic values can provide an

explanation for the difficulty in placing an upper limit

for the kurtosis of the distribution (Keightley, 1998).

(iii) The problem of flat likelihoods

If variable mutation effects are assumed, parameters

that we wish to estimate from MA experiments

become strongly confounded with one another, as

seen in results of analysis of real data by ML

(Keightley, 1994; Keightley & Ohnishi, 1998; Fry et

al., 1999). In all published studies so far with ML,

estimates of mutation parameters have come from

‘profile likelihoods’ in which likelihood is maximized

for a series of fixed values of one parameter of interest.

This is a well-known technique in, for example,

animal breeding (e.g. Graser et al., 1987; Visscher et

al. 1991), where computer-intensive likelihood-based

estimation procedures have become standard. One

reason for performing profile likelihoods is to over-

come the problem of locating the global maximum

where multi-dimensional likelihood surfaces are flat.

If the parameters are confounded very severely, it may

be necessary to perform multi-dimensional grid

searches. In their analysis of simulated MA data,

DLL98 highlight the difficulty in locating global

likelihood maxima as a fundamental problem of the

method: ‘Data not shown revealed that Keightley’s

M-L program may fail to find global maxima, even

with the starting value of the other parameter(s) set

close to the true (but generally unknown) values ’

(DLL98). However, the responsibility to find global

maxima lies with the program user. The simplex

algorithm can find local maxima, depending on the

starting values it is given, and is not guaranteed to

reach the global maximum if the likelihood surface is

flat. Clearly, if the quality of the data is poor,
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Table 2. Performance of the ML procedure illustrated by analysis of

data simulated with two different gamma distributions, and analysed

under the assumption of gamma distributions with a range of shape

parameter β*

Simulated values Estimated values

Model U sa β* UW a SD sW a SD LogL SD

β¯ 4 1 2±83 U¢ 0±94 0±15 3±06 0±42 ®2±4 2±3
10 0±93 0±14 3±10 0±36 ®0±4 1±0
4 1±02 0±15 2±84 0±33 0±0 —
2 1±21 0±18 2±42 0±29 ®0±4 0±9
1 1±59 0±24 1±86 0±23 ®1±5 1±7
0±5 2±35 0±36 1±27 0±16 ®3±1 2±5

β¯ 0±5 1 1±83 U¢ 0±46 0±11 3±85 0±63 ®16±3 6±5
10 0±41 0±079 4±25 0±52 ®8±0 4±1
4 0±44 0±080 4±01 0±53 ®3±8 2±7
2 0±52 0±094 3±49 0±49 ®1±4 1±6
1 0±69 0±12 2±70 0±40 ®0±2 0±7
0±5 1±02 0±18 1±87 0±29 0±0 —
0±25 1±67 0±30 1±15 0±18 ®0±2 0±5
0±125 2±97 0±54 0±66 0±11 ®0±4 0±8

Results shown are based on 40 replicates. There were 200 control and 200 MA
lines, and the ratio σ#

b
}σ#

e
was 10. Mean LogL (LogL) and its standard deviation

(SD) refer to means and mean squared differences from the LogL of the ‘correct ’
model.

maximization of likelihood by any method may be

difficult. These points were emphasized in the paper

describing the ML method (Keightley & Ohnishi,

1998), and in the release notes provided with the

computer code: ‘It is strongly recommended to

generate profile likelihoods, by keeping one of the

parameters fixed. Convergence over the full likelihood

surface is often a problem. Also, some runs should be

checked with different starting values, again to check

convergence, and for multiple peaks.’ It is an option

for the user to program-in an alternative maximization

procedure if the one provided is found to be

unsatisfactory.

The problem of flat profile likelihoods also occurs,

but is not explained in DLL98 fig. 7e, panels A and B,

where the relationship between fixed ‘ML’ estimates

of U and β is shown. Curves are not monotonic in

these figures in cases where β is very far from the value

which best fits the data, and a broad combination of

parameter values can give essentially equally poor fits.

This would have been exemplified more clearly as a

two-dimensional grid plot. The true relationship

between the parameters is monotonic.

(iv) Concluding remarks

MA experiments are time-consuming, tedious and

costly, and often give noisy or inconclusive results. It

is therefore desirable to employ analysis methods that

extract the maximum amount of information from the

hard-won data. The results presented here and

previously (Keightley, 1998) suggest that using ML

can give worthwhile increases in precision and

decreased bias compared with the BM approach.

Likelihood allows the analysis of more complex

models, unbalanced data, and makes fuller use of the

information available in the data. In general,

likelihood-based approaches have become the method

of choice in many areas of statistical genetics (Lynch

& Walsh, 1998, chaps. 13, 15, 16, 27). For example,

restricted ML methods have largely replaced analysis

of variance for estimation of genetic parameters in

animal breeding. The ML approach has recently been

extended to handle experiments with several assay

generations, and analysis of data from two multi-

assay MA experiments in C. elegans provided par-

ameter estimates with sampling variances of the order

of 100 times smaller than obtained by the BM method

of moments (Keightley & Bataillon, 1999). Fur-

thermore, including intermediate generations in the

analysis led to considerable increases in precision.

Deng & Fu (1998) and DLL98 concluded that includ-

ing intermediate generations adds little information,

but confined their analysis to the BM method. In con-

trast to the C. elegans experiments, similar levels

of precision were obtained in BM and ML analysis of

Drosophila MA data for viability (Fry et al., 1999).

Although MA experiments can provide some

information on properties of new mutations affecting

quantitative traits, it is doubtful that results of MA

experiments alone can allow rejection of evolutionary
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hypotheses that they purport to test. The presence of

a large class of mutations with very small phenotypic

effects can never be excluded on the basis of phenotypic

measures made in the laboratory.
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