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0. Introduction and preliminaries

In Part I of this paper we shall be concerned with the representation
as convolutions of continuous linear operators which act on various function-
spaces linked with a locally compact group and which commute with left
— or right — translations; cf. the results in [12]. For completeness some
known results are included whenever they follow from the general procedure.
We have tried to follow simple general approaches as much as possible.

Nothing has been said about analogous problems for semigroups (the
real positive semi-axis, for example); see [1], [9] and [38] and the references
there cited.

Part II deals with some applications of the representation theorems
to the study of averaging operators over groups, of normalizers of function-
algebras over groups, and of some division problems in certain convolution
algebras of functions, measures, and distributions.

For the sake of completeness and the reader's convenience, Part I
contains the statements of several known representation theorems and
references to the original proofs. On the other hand, neither Part I nor
Part II contains any attempt at coverage of the theory of multipliers of
abstract Banach algebras.

The authors wish to record their thanks to a referee for suggestions,
most of which have been incorporated in revisions made during February
and March, 1966.

In this section we set out some notations which remain standard
throughout the paper, together with preliminary results which lie behind
the general approach to the representation theorems.

0.1 X will always denote a Hausdorff locally compact group, e its
neutral element, and dx its left Haar measure. If X is compact, dx is assumed

1 This paper was prepared while the first-named author was a Visiting Fellow at the
Institute of Advanced Studies of the Australian National University, during 1963.
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290 B. Brainerd and R. E. Edwards [2]

to be normalized so that J dx = 1. In general X is multiplicatively written,
but when it is specialised to Rm (R = the additive group of reals) or Tm

(T = the circle, usually regarded as the quotient Rj2n) or a product of
these, the additive notation is adopted.

The modular function A of X is the positive, continuous character of
X defined by the integral identity

(0.1) \k(xa)dx = A (a) \k{x)dx

for continuous functions k which vanish off compact subsets of X; see
[16], p. 250. (Note that our A(a) is Weil's A{ar'1) = A(a)-1 ([35], p. 39).)
One has also the formula ([35], p. 40; [16], p. 250)

(0.2) jk{x~1)dx = jk(x)A{x)dx.

X is unimodular if and only if A (a) = 1 for all aeX. This is the case
if X is Abelian, or compact, or a semisimple Lie group ([35], p. 39; [16],
p. 252).

Lp = LP(X), 1 5g p ^ oo, is the usual Lebesgue space formed relative
to dx ([16], Section 4.11). We do not usually distinguish notationally
between a function and its class modulo neglibible (or, when p = oo, locally
negligible) functions. The usual norms are employed:

\\f\\L*=\\\f(x)\»dx]1/P if p^co,
(0.3) l-J -1

H/lli- = loc. ess. sup \f(x)\.

0.2 C = C(X) denotes the space of all continuous complex-valued
functions on X, Co = CQ(X) the subspace thereof formed of continuous
functions which tend to zero at infinity, and CC = CC(X) the even smaller
subspace formed of continuous functions with compact supports. (The
support of a continuous function / on X is the closure in X of the set of
points x e X at which f(x) =£ 0. The support of / is denoted by supp/.)

Each of these spaces carries a "natural" topology: for C this is the
topology of locally uniform convergence; for Co it is the topology of uniform
convergence, defined by restricting to Co the norm ||-||L»; and for Cc it
is the topology obtained by regarding Cc as the internal inductive limit
of its subspaces

K ranging over all (or over all members of a base for) the compact subsets
of X, and each CcK being regarded as a Banach space with the supremum
norm; see [16], p. 430 (where Cc is denoted by Jf).

When X is compact, C, Co and Cc, together with their natural topologies,
become identical.

https://doi.org/10.1017/S1446788700004286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004286


[3] Linear operators which commute with translations, I 291

0.3 M = M(X) denotes the space of all complex Radon measures
on X; see [16], Chapter 4. It may and will be regarded as the dual of Cc,
and the associated weak topology a(M, Cc) is the "vague topology of
measures". (The cr-notation for weak topologies is as explained in [16],
pp. 88—89, 500—501.)

If /A e M, the support of /u, denoted by supp [i, is the complement in
X of the largest open subset U of X satisfying \fi\(U) = 0. (This last require-
ment is equivalent to the demand that </, //> = J fd/u shall vanish for any
feCc having its support within U.)

Mc — MC(X) is the subspace of M formed of those measures having
compact supports. Mc is viewed as the dual of C and carries an associated
weak topology a(Mc, C); see [16], p. 203.

Mbd = Mhd(X) is the subspace of M formed of those measures [j,
such that

(0.4) 1^1 = |^| (X )< +oo.

Mhi, together with this norm, is identifiable with the dual of the Banach
space Co; see [16], Exercise 4.45.

Throughout, sx denotes the Dirac measure at the point x, and e = se

([16], p. 179). Then supp sx = {x}.

0.4 For general groups X, M(X) is the largest "function-space" we
introduce, all others being subspaces of it in the following sense. The func-
tions we have to deal with are invariably locally integrable, and thus belong
to the space usually denoted by L\oc. Such a function, say /, is identified
with the measure fdx (see [16], p. 221), and the support of / is by definition
that of the associated measure. (If / is continuous this agrees with the
definition given in 0.2.)

In particular one obtains in this way a linear isometry of L1 into Mbd.
We shall also consider the spaces L%, composed of functions in Lv

with compact supports. Lv
c is regarded as the inductive limit of the Banach

spaces

with the norms induced by that of Lp.

0.5 If X is a Lie group, we sometimes consider the superspace
2'{X) of M(X) composed of Schwartz distributions on X. This is the
dual of the space Cf = Cf{X) of test functions (indefinitely differentiable
and with compact supports) when the latter is regarded as the inductive
limit of the Frechet space C~K. For more details, see [32], [33], Chapter 1
of [22] and Chapter 5 of [16].

0.6 The left- and right-translation operators ra and pa (a e X) are
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defined initially for functions by the formulae (cf. [16], p. 248; the right-
translation operator Ra there defined differs from po by the numerical
factor A (a)):

(0 5) * . / (*)=/ (a" 1 *) .
pj{x) = A{a)f{xa-i).

The factor A (a) is a convenience only. The definitions are then consistently
extended to measures (or distributions) in the following way:

\kd{xafi) = \ra-ik • d/i = \k{ax)dfi{x),
(0-6) J J J

J kd{Pafi) = ]A{a)Pa-ik • dfi = J k{xa)dii{x)

for keCc (or Cf).
It then turns out that

(0-7) l|T«/||£.= | | / l | i , , l!Pa/llL» = ^(«)1/J>'ll/llL*,

where, as usual, p' is defined by \jp-\-\jp' = 1. In particular,

(0-8) I

and more generally

(0-9) l

for any fi e MM.
All of the spaces of functions, measures, or distributions thus far

introduced are invariant under both left- and right-translations.

0.7 Convolutions are essential in our discussions; for more details,
see [16], Section 4.19. If A and /J, are positive measures, the convolution
X * /n is said to exist if and only if the following integrals (known to have
a common value)

JdX(x) Jk(xy)dn(y), jdfi(y)jk(xy)dX(x),

j | k{xy)dX(x)d/j,(y)

are finite for each positive function k e CC(X). Then A * /x is the positive
measure defined by setting J kd(X * fi) equal to this common value.

If A and fi are complex measures, A * /J, is said to exist if and only if
|A| * \/i\ exists in the preceding sense, in which case we can define A * /J,
by the same expression as before (the integrals involved being absolutely
convergent).

It is known that A * fx exists if either of A or /j, has a compact support,
or if both are bounded; in the latter case,

https://doi.org/10.1017/S1446788700004286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004286


[5] Linear operators which commute with translations, I 293

(0.10) \\k * p \ \ ^ \\X\\ • \\ft\\.

Convolution is associative, provided all but at most one of the factors
has a compact support, or provided all are bounded.

If X * (i is defined, its support lies within A • B, where A and B are
the supports of X and /n respectively.

Somewhat similar definitions and remarks apply in the case of distribu-
tions; see [32], [33], [22] and [16], Section 5.10. Except in §§ 4, 5 we shall
meet distributional convolutions only for the case in which all but at most
one of the factors have compact supports.

0.8 The definition of convolution given in 0.7 applies to (suitably
restricted) functions; see [16], pp. 259—262. If, for example, X is the
function / (i.e., if X = fdx) then formally X * n is a function, which we write
as / * [i, namely

(0.11) / *n{x) = J f(xy^)A(y)d/x(y).

Similarly

If / and g are functions, then

(0.13) f*g(x)=jg(y-1x)f(y)dy.

For arbitrary measurable / the pointwise interpretation of (0.11) and (0.12)
meets with difficulties when fi has a component which is singular relative
to Haar measure. One way out of the trouble is to replace / by a Borel
measurable function equal l.a.e. to it. An alternative solution is to adopt
the interpretation discussed in 0.9 below. Formula (0.13) likewise in general
defines / * g only a.e.

From the above formulae it is easy to infer that

(0.14)

The first two equations here are taken to imply that fi * / and / * (i are
functions in Lp whenever both factors on the right-hand side are finite.

The smoothing properties of convolution are important. For example,
if / e Cc (or Cf), then / * fi and /j,*feC (or C°°) whenever ^ is a measure
(or a distribution).

0.9 The formulae (0.11) and (0.12) suggest abstract definitions of
the convolution, namely (cf. [16], p. 568)
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(0.15) X * ft = j rafx • dX{a) = J PaX • dft{a).

These formulae do indeed hold if, for example, at least one of X and /n has
a compact support. The functions a -s- rOiw and a -> paX are regarded as
continuous M-valued functions on -X". If X e Mc, the existence of J TOJM • dX(a)
is then evident. In the case of J paX • dfi(a) we note that for any k e Cc,
the function a -> < k, paX > is continuous and has a compact support, so
that J (k, paXyd/u(a) exists.

Formula (0.15) holds in other cases as well, notably if X and /u are
bounded measures. Likewise, if f e Lv and fi is a bounded measure, then

which exists even as a Bochner integral if p ^ oo; and likewise with

f*fi = J pjdfi{a)

if / e Lp and A1^'^ is a bounded measure.
These representations in terms of integrals of vector-valued functions

are most useful when considering the action of continuous linear operators
which commute with translations.

1. Operators with range in the space of continuous functions

One of the crucial features of the cases dealt with in this section is
that the range of the operator considered (which is to be continuous, linear,
and commuting with translations) shall lie within the space C of all con-
tinuous complex-valued functions on X. We begin with a result, typical
of numerous similar ones, showing that within wide limits the topology
of the range space is not decisive.

1.1 PROPOSITION. Suppose X is sigma-compact and that T is a linear
operator from Ce into C which is continuous for the natural [inductive-limit)
topology on Cc and some topology 3~ on C with the following property:

If {gn} is a sequence extracted from C such thatgn -> g e C locally uniformly
whilst gn ->• 0 for $~, then g = 0.

Then T is continuous for the natural topology on Cc and the natural
topology {of locally uniform convergence) on C.

PROOF. TO prove that T is continuous for the natural topologies, it
suffices to show that, for each compact set K C X, the restriction T\CcK

is continuous from the Banach space CcK into C. X being tr-compact,
C is a Frechet space with its natural topology. Hence it suffices to show
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that T\CcK has a graph closed in CcKxC. But the assumed property of
&~, combined with the assumed continuity of T with respect to the topology
& on C, ensures that the said graph is closed.

REMARK. AS examples of suitable topologies &~ we indicate that of
pointwise convergence; or a(M, CC)\C; or, if X is a Lie group, the distribu-
tional topology a{S)', Cf)\C.

Our first representation theorem combines the results for four separate
cases. Some of these are known, but others have not to our knowledge been
previously formulated. The range functions being continuous, the proofs
are more straightforward than those of most representation theorems of
this type.

1.2 THEOREM. (1) Suppose that T: C c ->- C is linear, continuous for
the natural topology on Cc and the topology of pointwise convergence on C,
and commutes with the pa [resp. the ra]. Then there exists a JX e M such that

(1.1) Tf = n*f [ r e s p . f */i]

for feCe.
(2) / / T : C -> C is linear, continuous for the natural topology on the

domain space and that of simple (= pointwise) convergence on the range
space, and commutes with the pa [resp. ra], then there exists some fieMc

such that (1.1) holds for feC.
(3) Suppose that X is a-compact. Suppose too that T : Cc -> Cc is linear

and continuous for the inductive-limit topology on the domain space and for
some topology 2T on the range space having the property that, if a sequence
{/„} extracted from Cc converges to g eCc for the inductive limit topology and
to 0 for &~, then g = 0. Suppose finally that T commutes with the pa [resp.
TO]. Then there exists some fieMc such that (1.1) holds for feCc.

(4) If T :C0^C0 is linear and continuous (for the usual normed topology)
and commutes with the pa [resp. ra], then there exists a measure fj, such that
fieMM [resp. A-/xeMM] for which (1.1) holds for feC0.

PROOF. (1) Linearity and continuity of T show that, if e denotes the
neutral element of X, then / -> Tf(e) is a Radon measure on X. Denote
this measure by X. If T commutes with the pa one has

Tf(a) = A(a)Pa-1Tf(e) = A

= A(a) j Pa-if -dl = A {a) j A (a~1)f(xa)dk(x)

= jf{xa)dk{x) = j f(x~1a)dl(x)

= I*/(a) = (i*f(a),
v

where fi — A e M is the measure defined by
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jkd/* = J^(x-1)iA(x)

for keCc. Likewise, if T commutes with the ra,

Tf{a) Ta-x77(e) = Tx^f(e) = J xrrf • dX

= jf{axri)A(x) -dX(x)IA{x)

= f*[i(a),

where /J, = A~x • X eM. Thus (1.1) is established.
(2) The topology on C inducing on Ce a topology weaker than the

inductive-limit topology, (1) may be applied to T\Ce to conclude that there
exists a measure /i e M such that (1.1) holds for / eCc. Besides this, the
assumed continuity of T signifies that there exists a compact set K C X
and a number k 2̂  0 such that

|/| (feC).

Combined with (1.1) this reads

[resp. ^ k • Supx

for feCc, which relation implies immediately that the support of /J, is
contained in the compact set K~y. Thus /u e Mc. Accordingly, the mapping
T' defined by T'f = p, * f [resp. / * fi] is defined and continuous on C with
values in C. Since T and T' coincide on Ce, and since Cc is dense in C,
therefore T and T' coincide on the whole of C. In other words, (1.1) holds
for all / e C.

(3) One begins by showing, much as in Proposition 1.1, that T is indeed
continuous for the natural topology on the range space. Then (1) applies
and shows that (1.1) holds from some fi e M. It remains to show that, since
/j. * / [resp. f * fi] belongs to Cc (and not merely to C) for each / e Cc, fi
must have a compact support.

To this end, fix some compact neighbourhood N of e in X, and consider
the set

B = {/6Cc:supp/CiV, l / l ^ l } .

B is a bounded subset of Cc. Hence B' = T(B) is also a bounded subset
of Cc. We will show that this entails the existence of a compact set K C X
such all functions in B' have their supports contained in K. Supposing this
to have been established, (1.1) shows then that
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supp (fi * /) CK
[resp. supp (/ * fi) C K]

for every / e Cc with support inside N. One can then allow / to vary over a
suitable directed family {/J of functions in Cc with supports inside N
and such that fi * /,- -> (i [resp. ft* p -> (i\ vaguely, so that the support
of fj, itself will be seen to lie within K.

To prove the existence of K, we argue by contradiction. If no such
compact set K existed, there would exist (since X is cr-compact) a sequence
{xn} extracted from X such that

(i) each compact subset of X contains xn for at most a finite number
of n,

(ii) for each n there exists fne B' such that

Define, for / eCc,
Pit) = SuPn \nf(xn)lfn(xn)\.

By (i), p(f) < +00 for each / eCc. p is evidently a seminorm on Cc, and
it is lower semicontinuous since for each n the mapping / -> f{xn) is a
continuous linear functional on Cc. Since Cc is barrelled ([16], pp. 427 — 430),
p is continuous ([16], p. 463). B' being bounded in Cc, p(B') is bounded.
But this is absurd since /„ e B' and

p(fn)^\nfn(xn)lfn(xn)\=n.

(4) In this case part (1) is directly applicable to show that a measure
fi exists such that (1.1) is valid for / e Cc C Co. In addition, by virtue of
the continuity of T from Co into itself, there is a number k 5; 0 such that

for feC0. In conjunction with (1.1) this reads

[resp.

for f eCc. This entails that fi [resp. A • p] is a bounded measure. From this
point the argument proceeds to its conclusion as does the proof of (2).

1.3 REMARKS. (1) In certain cases the assumption that X be cr-com-
pact may be dropped from part (3) of Theorem 1.2.

(a) If the topology &" involved is stronger than that induced on Cc

by the vague topology a(M, Cc), then the said hypothesis may be dropped.
This follows from Lemmas 2 and 3 of Edwards [10].
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(b) The hypothesis may again be suppressed whenever T is assumed
to be positive.

For in this case u 5: 0 and has the property that /J, * / [resp. f * fi]
lies in Cc whenever / e Cc. This entails that \x has a compact support, as
the following argument shows.

Suppose [i is a positive measure with support S. Then, if s e S and
if / e C+ and /(s) ^ 0, it is clear that J fd/j, > 0. Now

P * /(*) = J i(y^x)di*{y) [f * fx{x) = J f(xy-i)A(y)dv(y)].

If / e CJ and /(e) > 0, and if x e S, the function

V -> /(2T1*) [resp. / ( a n r 1 ) ^ ) ]

belongs to C+ and takes for y = x a. non-zero value. By the opening remark
above, therefore, /u * f(x) > 0 [resp. / * /J,(X) > 0]. This shows that

S = supp fx C supp (/n * /) n supp (/ * JJ).

So 5 is compact whenever /j, * / (or f * fi) has a compact support.
(2) In each of the cases mentioned in Theorem 1.2, the converse

statement is true (and rather trivial).
(3) Case (4) of Theorem 1.2 is discussed by Kelley [26].
(4) Helgason [20] considers continuous endomorphisms T of the space

of uniformly almost periodic functions on an Abelian topological group G
which commute with translations. To some extent this case is reducible
to that dealt with in Theorem 1.2 by introducing the Bohr compactification
X of G.

Linear maps into C, commuting with translations, of other spaces
can be discussed in a similar fashion. We content ourselves with one
theorem of this sort.

1.4 THEOREM. / / T is a continuous linear map of Lp into C (the weak
topology ff(L°°, L1) being involved if p = oo) which commutes with the pa

[resp. TO], then (1.1) holds for some function fx such that A~llv/i e Lv [resp.
AW'/ieL"'], where l/p+l/p' = 1. Consequently A~^vTf [resp. Tf] is
bounded and continuous for each f e Lv.

PROOF. Since Cc C Lv, the natural topology of Cc being stronger than
the induced on it from Lv, case (1) of Theorem 1.2 applies to show that a
measure n exists so that (1.1) holds for / eCc. The continuity of T for the
topology induced by that of Lv entails that /i is absolutely continuous with
respect to Haar measure, i.e., is a function. Moreover, since

\Tf(e)\ ^ k • \\f\\v,
(1.1) yields
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If-
for feCc. A little manipulation, combined with the converse of Holder's
inequality, leads from these inequalities to the stated properties of fj,. The
final statement of the theorem stems from Holder's inequality itself.

1.5 By dualising, the preceding results yield a representation theorem
for continuous linear maps T with values in various spaces of measures
and which commute with the pa [resp. ta]. Conversely, these latter results
can be established ab initio and then used as a basis for proving results
like Theorem 1.2.

For example, suppose that T is linear, maps Mc into M, is continuous
for the topologies a(Mc, C) and a(M, Cc), and commutes with the pa

[resp. ra]. Now if feMc one can write

/ = e * / = J (Pme)df{x)

[resp. / = / * £ = J (rxe)df{x)^

The stated continuity of T then ensures (cf. [16], pp. 562, 571) that it may
be applied "under the integral sign", leading to

Tf = j (TPxe)df(x) = J (PxTe)df(x) = p * f

[resp. Tf = j (Trxe)df(x) = J (raTe)df(x) = / * / . ] ,

where n = TeeM. Thus formula (1.1) is again true.
Besides this, if S is a continuous linear map of Cc into C which com-

mutes with the pa [resp. TO], its adjoint T maps M0 into M, commutes
with the pa [resp. TO], and is continuous for the weak topologies mentioned
above. T is represented by (1.1), as we have just a verified. It is a simple
computation to deduce that S is accordingly represented by (1.1) with p,
in place of fi. Thus part (1) of Theorem 1.2 is recovered.

1.6 OPERATORS INTO L°°. We begin with an observation due to
D. A. Edwards [6]; see also some similar remarks in § 5 of R.E. Edwards [14]:

Let F be a vector subspace of M, stable under the pa [resp. ra], and
endowed with some topology. If T : F -> L°° is continuous linear and
•commutes with pa [resp. T J , and if / e F is such that limo_>e pj = /
[resp. limo^,Tfl/ = / ] , then Tf belongs to Crbu [resp. Clbu] (the space of
bounded right [resp. left] uniformly continuous complex-valued functions
on X).

This applies in particular if F = Lp with p < oo (see Theorem 1.4).
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Again, if T:L°°-+L~, then T(Crbu) C Crbu and T(Clbu)CClbu. So,
by Theorem 1.2 (1), there exists a measure fi such that

(1.1) Tf = /i*f [resp./*//]

for / e C c . As in the proof of Theorem 1.2 (4), it appears that [i [resp.
A • (x]e Mbd and that (1.1) continues to hold for / e Co.

If also T is continuous for a(L°°, L1) we may conclude that (1.1) holds
for all / e L°°. (To see this it suffices to approximate / in a(L°°, L1) by
functions (<f>N * f)uit where the <f>N are as in Proposition 2.1 and the wt- e C+,
0 f£ ut <S 1, and ut -> 1 locally uniformly on X.)

2. Operators from L* and 1}

It is convenient to begin with two general propositions which will
form the basis of several later arguments.

2.1 PROPOSITION. Let {N} be a base of relatively compact neighbourhoods
of e in X {which can all be assumed to lie within some fixed compact neigh-
bourhood No of e). For each N choose </>N e Cc such that <f>N 22 0, supp <f>N C N,
J <f)N(x)dx = 1. Let G be a right [resp. left] translation-invariant vector subspace
of M, and let T be a continuous linear map of Ce into G which commutes with
the pa [resp. ra]. Define fxN = T<f>N e G C M. Then

{i) for each f eCc the elements fiN * f [resp. f * p,N] remain bounded in
G (as N varies);

(ii) for each f eCc,

(2.1) Tf = lim /iN * / [resp. lim / * fiN]

in the sense of G. (The limits are taken with respect to the directed set {N},
partially ordered by set-inclusion reversed.)

PROOF. If / e Cc, the <f>N * / [resp. / * <j>N] remain bounded in Cc as N
varies. This is so because these functions are uniformly bounded and
vanish outside a fixed compact subset of G; cf. [16], p. 432 (case m = 0).
Moreover

<l>N*f =

the integrands being regarded as functions with values in Cc. The continuity
of T, combined with its commutation properties, shows that

T(<f>N * /) = J (Tpx<f>N)f(x)dx = J (PxT<f>N)f(x)dx = fiN * f

[resp. T(f * <f>N) = | (Trx4>N)f(x)dx = j (rxT<t>N)f(x)dx = / *
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observe that pxfiN [resp. rxjuN] is a continuous M-valued function of x,
so that the integrals

J {Pxf*N)f{%)dx [resp. J (rxiuN)f(x)dxj

exist as elements of M ([16], p. 577). Thus

(2.2) T(<f>N *f)=Mlf*f [resp. T{f * <f>N) = f * Mlf]

for each N and each / e Cc.
From (2.2) and the boundedness of the <f>N * / [resp. / * <f>N], (i) follows

on account of the continuity of T.
Moreover since

lim <f>N* f = / [resp. Km / * </>N = /]

in Cc, (2.1) follows from (2.2) and the continuity of T.

2.2 If X is a Lie group, one can replace M by 3)' and suppose further-
more that each <f>N e Cf.

2.3 PROPOSITION. TAe assumptions and notations are as in Proposition
2.1. / « addition assume that T is initially defined on some vector subspace
F of M which contains Cc, which is separated locally convex and invariant
under both right and left translations, and which fulfills the following con-
ditions:

(a) The injection Ce -»• F is continuous and x -> xxf and x -> pxf are
continuous from X into F for each f e F.

(b) In F, the closed convex envelope of a compact set is compact {which
is true whenever F is quasicomplete; see [16], p. 651).

(c) There exists a neighbourhood Nt of e in X with the property that,
given any neighbourhood V of 0 in F, there exists a neighbourhood V of 0
in F such that the set

{rxf:xsNltfe V'} [resp. {PJ :xeNltfe V'}]

is contained in V.
Let G be as in Proposition 2.1.
Then, if T is linear and continuous from F into G, and if T commutes

with the pa [resp. ra], the set

[resp.{f*liN:NCN1,feBnCc}}

is bounded in G whenever B is a bounded subset of F.

PROOF. The second clause of (a) combines with (b) to show ([16],
p. 561) that
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[resp. f*<f>N = j {Pxf)(j>N{x)dx = J {ra!<f>N)f(x)dxj

for each N and each / e C c , the integrals being now taken in the sense
of F. In particular, (2.2) remains true.

The first of these integral representations of <f>N * / [resp. / * <f>N]
shows, when combined with (c) and the bipolar theorem ([16], p. 503),
that (f>N * f [resp. / * <f>N] falls into the closed convex envelope in F of V,
provided NCN1 and feV. As a consequence, the family of maps

f-+4>N*f [resp. / -> f * <f>N],

obtained when N varies inside Nlt is equicontinuous from F into itself.
Accordingly, the family of maps

obtained when N varies within Nlt is equicontinuous from F into G.
This signifies that, if W is a given neighbourhood of 0 in G, the set

A = {/ e F : T(<j>N *f)eW for all NCNJ
[resp. {feF:T{f*<j>N)eW for all N CNJ]

is a neighbourhood of 0 in F and therefore absorbs any preassigned bounded
subset B of F. By virtue of (2.2), it follows that the set S of fiN * f [resp.
/ * PN]> obtained when N varies within N1 and / varies over B n Cc, is
absorbed by W. This being true for any W, the set S is bounded in G.

2.4 The hypotheses (a) —(c) of Proposition 2.3 are satisfied if
F = Z> (1 <p < c») since | | T J | | L * = ||/||L, and \\Pxf\\L* = A{x)^'\\t\\Lr.
They are also satisfied if / = Cbd(X), or C0(X), or MM(X).

2.5 THEOREM. Let T be a continuous linear map of L\ into Lp (1 fS,p g oo)
which commutes with the pa [resp. ta]. Then there exists fi such that fi e L"
if 1 < p ^ oo, and /x e Mbd if p = 1, for which

(1.1) Tf = ft*f [resp.f*n]

for feL\.

PROOF. We use Proposition 2.1, applied to T\CC and G = Lp. Notice
that now the <j>N remain bounded in L\, so that the fiN are bounded in Lp.

If 1 < p ^ oo, the bounded subsets of Vs are relatively compact
for a(Lp, Lp'), so that the directed family {/%} has a limiting point n e Lp

for this topology. But then, if / e Cc, [i * / [resp. / * fi] is a limiting point
(for the topology of locally uniform convergence) of the family {ftN * /}
[resp. {f*(iN}]. In view of (2.1) it follows that (1.1) holds for feCe.
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If p = 1, {/uN} will have a limiting point [i e Mbd for the topology
a(MM, Co), and a similar argument shows that again (1.1) holds for / e Ce.

On the other hand if n e Lp then

(2.3)

These formulae show that the mapping / - > , « * / [resp. / * fi] is continuous
from L] into Z,". Since Cc is dense in L], continuity shows that (1.1) con-
tinues to hold for all feL].

A similar argument applies if p = 1 and /u e Mbd.

2.6.1 COROLLARY. Suppose that T is a continuous linear map of L\
into itself which commutes with the pa [resp. ra]. Then there exists a
measure fi e Mc such that

(1.1) Tf = /i*f [resp. / * ^ ]

for / e L j .

PROOF. The case p = 1 of the preceding theorem shows that (1.1)
must hold with some /j,eMbd. Also, if feCc, /i * / [resp. / * /A] is con-
tinuous. Since it belongs to L\, it must belong to Ce. We now appeal to
Theorem 1.2 (3) and Remark 1.3 (1) in order to conclude that /J, has
a compact support.

2.6.2 COROLLARY, (i) Any continuous linear map T of L1 into Lp

(1 s£ p ^ oo) which commutes with the ra has the form

where fieLpifl<p^co and fi e Mbd if p = 1; and conversely.
(ii) If T is a continuous linear map of L1 into Lp (1 5S p :£ co) which

commutes with the pa, and if either p = 1 or X is unimodular then

where /ieLpifl<:p^oo and JX e Mbd if p = 1; and conversely.

PROOF. It suffices to apply Theorem 2.5, noting that under the stated
hypothesis it follows from (2.3) that the map / -> / * fi [resp. fi * /] is
continuous from L1 into Lv, whilst in all cases L] is dense in L1.

2.7 REMARKS. (1) The Abelian case of Corollary 2.6.2 has been
discussed in Edwards [7]; for p = 1 see also Wendel [36] and [37]. For a
case involving certain subalgebras of L1 when X is Abelian, see [27].
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(2) The hypotheses in part (ii) of Corollary 2.6.2 are essential. In fact,
if X is not unimodular and p > 1, there exists no non-trivial continuous
linear map T of L1 into Lv which commutes with the pa. For suppose T
were non-trivial and that / e L1 is chosen so that g = Tf ^ 0. Then

iip-giiL» = \\p,Tt\\v = \\TPJ\\LV =g urn Hpjiiy

But \\pxg\\Lv = A(x)V*'\\g\\LV. It would follow that A1/"' is bounded and
so, since p > 1, that A itself is bounded. Since A is a character, it would
be identically 1 and X would be unimodular, contrary to hypothesis.

2.8 MAPS OF L1 INTO QUOTIENT SPACES OF (L1)8.
Here s is a natural number and (L1)3 is the product of s copies of L1,

normed in the usual way, i.e., if / = (/1; • • •, /s) is an element of (L1)",
then ||/|| is 2LIII/*IILX-

We shall consider quotients (Z,1)8//, where J is a closed vector subspace
of (L1)8 which is stable under the pa [resp. ra], it being understood that
for / = (/i, ••*,/,) one defines

PJ= {Pafl, • • •• Pafs),

and analogously for xaf. It is equivalent to say that / is a closed vector
subspace of (L1)3 which is stable under right [resp. left] convolution

f-+f*g= (J1*g, • • ;f,*g)
[resp. / - > g * / = (g*/x , •• ;g*f,)].

Our aim is to seek a representation formula, like (1.1), for continuous
linear maps T of L1 into (-L1)8// which commute with the pa [resp. T0]
(or, equivalently, commute with right [resp. left] convolutions with elements
of Z,1). A natural conjecture is that any such T has an expression

(2.4) Tf=(p* f)j [resp. (/ * p)j],

where f* = (^ , • • •, fis) e (Mbi)
3,

t**f = {/*i*f. • • • , / * , * i ) ,

and where hj denotes the coset modulo J of h e {L1)3.
It will be shown that this conjecture proves to be correct, provided /

fulfils an extra condition which amounts to assuming that it is closed in a
stronger sense than that specified by the normed topology of (L1)'. This
extra condition is satisfied in the applications we make in Part II. It is
expressed as follows.
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2.8.1 DEFINITION. A closed vector subspace J of (L1)3 is said to
satisfy condition (C) if, whenever {/(a)} = {(j[a\ • • •, j[a))} is a norm-
bounded directed family of elements of / such that

lima/«"» = /» (k=l,2,--;s)

for the topology a(L1, Co), then / = (j1, • • •, jk) necessarily belongs to / .

2.8.2 In this subsection we collect a few statements concerning
condition (C) which will prove useful later.

(a) If X is compact, and if J is a closed vector subspace of {Ll)s which
is stable under the pa [resp. T J (i.e., which is such that J * L1 C J [resp.
L1 * J C / ] ) , then J satisfies condition (C). In fact, J is closed for the product
of the topologies a{Lx, Co).

PROOF. We may identify the dual of (Z.1)8 with (L°°)s in such a way that

[resp. </,/,> = S L i *»*/*(«)].

where h = (hlt • • •, hs) e (L°°)s. Suppose this identification to be made,
and take any h in the annihilator of J. For any geL1 we shall then have
(by the assumed stability of / )

2l=ifl*g*hk(e) = 0
[resp. 2 L i * * • £ • £ ( « ) = «]

whenever {f} is a directed family extracted from J. Now g * hk [resp.
hk*g]eC, which is here identical with Co. Accordingly, if for each
k = 1, 2, • • •, s one has lima f% = fk in the sense of the topology ^(L1, Co),
it follows that

2Li h*g* hk(e) = 0
[resp. J,LiK*g *h(e) = 0].

Since this is true for each g e L1, and since g can be made to vary so that
fk * g -> fk [resp. g * /ft -> fk] in L1 for each k, it follows that / belongs to
the annihilator of the J. J being a closed vector subspace of (L1)8, the Hahn-
Banach theorem ([16], Corollary 2.2.5) entails that fej, which is what
we had to show.

(a') The statement in (a) is false if X is non-compact and unimodular.

PROOF. Define / by the formula

It is evident that / is a closed vector subspace of (Z,1)8 which is stable under
both the pa and the T0. We will show that, X being non-compact, / does
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not satisfy condition (C). Choose any foeLx with a compact support K
and such that J"fQdx = 1. For each aeX define

U = (/o-T./o, 0, • • •, 0).

Then it is evident that fa ej and that /a has norm in (L1)' at most 2. We
will in a moment verify that TO/0 -> 0 for a(D-, Co) as a -> oo. This, com-
bined with the fact that (/„, 0, • • •, 0) does not belong to J, will make it
clear that J does not satisfy condition (C).

To verify the outstanding point, take any u e Co. Then

\j (rjo)udx\=\f fo(a-*x)u{x)dx

= I j U(y)u{av)dy

Since K is compact and u e Co, this expression tends to 0 as a ->• oo. Indeed,
for any e > 0, the set {x e X : \u(x)\ 2> e} = KE is compact. If a lies outside
the compact set KgR-1, therefore,

whence the desired conclusion.
(b) The intersection of any collection of subsets of (L1)", each satisfying

condition (C), itself satisfies condition (C).

PROOF. This is obvious.
(c) Suppose that Xh e MM for k = 1, 2, • • • s. Then

/ = {/e(Li)*: 2 ^ 4 * 4 = 0}

[resp. 7 = {/ e (Z1)' : 2Li /* * K = 0}]

is stable under the pa [resp. ra] and is closed for the product of the topologies
a{Lx, Co), hence satisfies condition (C).

PROOF. Stability is clear, as also is the fact that J is a closed vector
subspace of (L1)".

Suppose that {/a} is a directed family extracted from J such that
lima j% = jk exists in the sense of <T(Z,\ CO) for each k. For each a,

[resp. 2*=i7**4 = °]-

Reference to the lemma immediately below shows that the same is true
when, for each k, jl is replaced by j k , so that jej.
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2.8.3 LEMMA. Suppose that fia, fi and X belong to Mbd, a ranging over
some directed set, and that

lima fia = n
for a(MM, Co). Then

lima /na * X = n * X [resp. lima X * pa = X * fi\

in the same sense.

PROOF. If ueC0, the Fubini-Tonelli theorem ([16], pp. 244—245)
shows that

J ud(fia *X) =

[^resp. J ud(X * fia) = J
where

w(a;) = J u{xy)dX{y)

[jesp. w(a;) = jM(2/x)iA(?/)J .

It therefore suffices to verify that v [resp. w] belongs to Co. Now, given
any e > 0, there exists a compact set KCX such that |A|(X\K) ^ s.
Then, uniformly with respect to x e X,

[resp.

v{x)— jKu{xy)dX{y)

w(x)- jKu{yx)dX{y)

So it suffices to verify that

jK u [xy)dX(y) [resp. jR u(yx)dX(y)j

belongs to Co. However, there exists a compact set K' C X such that
\u(z)\ £ e for zeX\K'. Then, if x lies outside K'K*1 [resp. K~lK'],

\jKu(xy)dX(y)\^e-jKd\X\

j
which, since K'R-1 [resp. K^K'] is compact, establishes what is required.

After these preliminaries we pass to the statement and proof of the
representation theorem.

2.9 THEOREM. Suppose that J satisfies condition (C) and is stable
under the pa [resp. T J . Let T be a continuous linear map of L1 into (Z-1)8//
which commutes with the pa [resp. ra]. Then T is expressible in the form (2.4)
for some ft e (MM)'.
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PROOF. This will utilise the system of functions <f>N introduced in
Proposition 2.1 Put

Then lim^ <f>x*g = g = linijy g * <f>N in Ll for each g eL1. Since T commutes
with right [resp. left] convolutions by elements of L1, it follows that

(2.5) Tg = \vcaN (fN)j * g [resp. limw g * (/»)j]

in (L1)8//. Here the family {fj } is bounded in (L1)*//, T being continuous
and the family {<f>N} being bounded in L1. So, by adding suitable elements
of / to the fN, we can arrange that the latter are bounded in (L1)'. Then,
for each k, the f% are bounded in L1. Regarding L1 as imbedded in Mbi,
it follows that by passage to a cofinal subfamily it can be arranged (cf.
[16], p. 205) that

li /f = [ik

exists in the sense of the topology a(MM, Co) for each k — 1, 2, • • •, s.
Lemma 2.8.3 shows then that

(2.6) lim^/f *g = f*k*g [resp. lim^g * f% = g * f*K]

for oiL1, Co).
On the other hand, from (2.5), we may choose elements jN of / such

that, on putting
Tg=gj= (gi,---,gsh,

one has
(27) lim^H^-Zf *g+j?\\» = O
( ' ' [resp. lim^ | \gk-g * / * + / f ||Ll = 0].

From (2.6) and (2.7) it appears that the j% remain bounded in L1 and that

(2-8) iimjv $ = i"* * g—gk [resp. g * /^fc-gfc]

for a{Lx, Co). Since J satisfies condition (C), (2.8) shows that fi *g—gej
[resp. g * ft—g £ / ] . Hence

Tg=gj= {ft* g)j [resp. (g * f*)j],

which establishes (2.4).

3. Positive operators

In this section we concentrate on those linear maps T which commute
with right (or left) translations and which are further assumed to be positive.
Here the positivity of T means that Tf is a positive measure (or function)
whenever / is a positive measure (or function) in the domain of T. This
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assumption is pretty severe: if X is a Lie group and the range of T lies
in the space of distributions on X, Tf, if positive, is necessarily a measure;
so, if each element of the domain of T is expressible as a difference of
positive elements, T must map its domain into the set of measures. The
fact that a positive distribution is necessarily a measure ([32], pp. 28—29)
is one of the main reasons for the possible simplifications when T is
positive.

We start with a sort of "blanket" theorem.

3.1 THEOREM. Suppose that T is a positive linear map of Cc into M
which commutes with the pa [resp. ra]. Then there exists a positive measure
fieM such that

(3.1) Tf = p * / [resp. / * p]

for feCe.

PROOF. We shall use Proposition 2.1, taking there G = M with the
topology a(M, Cc). The first step is to show (as will be true in most cases
of practical interest) that positivity of T implies continuity. In the present
case it suffices to show that if, for some compact set K C X, a sequence
{/„} extracted from CcK converges uniformly to zero, then the Tfn converge
to zero vaguely.

For this, choose a positive u eCc majorising the characteristic function
of K. Then positive numbers ccn exist such that |/n| £S a.nu. By positivity
of T, \Tfn\ Ss<xn- \Tu\, which majorisation is more than enough to show
that Tfn ->• 0 vaguely.

With the notation of Proposition 2.1, the fiN are now positive measures.
By (i) of that proposition, the pN * / [resp. / * pN] are vaguely bounded
for each f eCe. Taking / and g to be positive elements of Cc, it follows that
the numbers ig,PN*f} [resp. <g, / */%>] remain bounded. Written
explicitly this signifies that

SupN j jg(xy)f(y)dfiN(x)dy < +oo

[resp. SupN jjg(xy)f(x)dfiN{y)dx < +oo] ,

or that

Smpjy I hdfxN <C oo,

where

Kx) = \g{xy)f{y)dy [resp. j g(yx)f(y)dyj .

Now, given any compact set H C X, it is evident that / and g may be chosen
from Cc so as to be positive and to make the corresponding function h a
majorant of the characteristic function of H. So it appears that the pN

https://doi.org/10.1017/S1446788700004286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004286


310 B. Brainerd and R. E. Edwards [22]

themselves are vaguely bounded. But then, by Theorems 1.11.4 and 7.1.1
of [16], the directed family {fiN} has a vague limiting point //, itself a positive
measure. Then, for each feCc, the family {/J,N * /} [resp. {/ * /%}] has
fi * / [resp. / * fi\ as a limiting point for the topology of locally uniform
convergence. Comparison with (2.1) shows that (1.1) holds.

3.2 REMARKS, (i) If in Theorem 3.1 we replace positivity of T by
continuity, at the same time removing the restriction that /J, be positive
in the conclusion, the statement so obtained is false, at any rate if X is
Abelian and non-discrete. For in this case any compact subset KoiX having
interior points fails to be a Helson set (see Rudin [31], Chapter 5 and
especially Theorem 5.6.10). As a consequence (see Edwards [15]), K carries
a pseudomeasure s (see § 4 infra) which is not a measure. Then T : f -*• s * f
maps U- (and L%) continuously into itself and commutes with translations.
Reference [15] contains also a more constructive approach to the existence
of pseudomeasures s of this sort.

(ii) Concerning not-necessarily-positive maps T, see Theorem 5.1 (d)
below.

3.3 THEOREM. / / T is a positive linear map of Cc into Mbd which
commutes with the pa [resp. ra], then there exists a positive measure /u eMbd

such that (1.1) holds for feCc. Consequently the following assertions are true:
(1) A positive linear map T of Cc into Mbd which commutes with the

pa can be continuously extended into a map of Co into Co, Cbd into Cbd, Lv

into Lv (1 ^p ^ oo) and Mbd into Mbd.
(2) / / X is unimodular, statement (1) remains true of any positive linear

map T of Cc into Mbd which commutes with the ra.
(3) In any case, if T is linear and positive from Ce into Mbd and com-

mutes with the ra, then it maps Cc into C and can be continuously extended
so as to map L1 into L1 and Mbd into Mbd; moreover, if f eCc vanishes outside
a compact set KCX, then

the number mK being independent of f.

PROOF. This is virtually a repetition of that of Theorem 3.1. On this
occasion we apply Proposition 2.1, taking G = Mbd; the argument used
in the proof of Theorem 3.1 shows that again positivity of T implies its
continuity. The positive measures /iN are now such that the /iN * / [resp.
/ * /*N] a r e bounded in Mbd for each f eCe. Applying this condition with
/ chosen to be positive and such that J fdx > 0, it is readily seen that the
fiN are themselves bounded in Mbd. The family {/%} therefore ([16], p. 205)
has a limiting point /u for the topology a(Mbd, Co), which point is neces-
sarily positive. Use of (2.1) leads as before to (1.1).
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Assertion (1) is now immediate from the relation

together with the fact that xj is bounded with respect to a e X in any one
of the spaces Co, Cbd, L

p and Mhd (each taken with its natural norm).
The same argument yields (2), when X is unimodular, since

f*fi = j (pj)dfi[a)

and the paf are bounded with respect to a e X because A = 1.
As for (3) we observe that pj is bounded in L1 and in Mbd, whether

or not X is unimodular. Moreover, if / vanishes outside a compact set
KCX,

and we may take

REMARK. For not-necessarily-positive maps T, see Theorem 5.1 (c)
infra.

3.4 POSITIVE MAPS OF LV INTO Lq.

The remainder of this section will be concerned with positive linear
maps T of Lv into L" (1 5j p ^ oo, 1 ^ q ^ oo) which commute with the
pa [resp. TO]. Theorems 3.1 and 3.2 each contribute towards the solution
of this problem. The discussion is facilitated by introducing certain sets of
measures on X.

3.4.1 DEFINITION. M%" [resp. M%Q] denotes the set of measures
fieM such that
( 3 n I I A * * / I I L . ^ const.il/Hi,
1 ' [resp. | |/*i«||i. ^ const. Il/Hi,]

for feCc. If X is Abelian we write simply M"'q.

3.4.2 If fi e Mv£a [resp. M^"] and 1 <S p < oo, the mapping / - > / * * /
[resp. f * p] can be extended by continuity into a mapping of Lv into LQ,
the relation (3.1) remaining valid for feLp. This extended mapping com-
mutes with the pa [resp. ra] and is continuous.

Notice that in any case M%"'DMbd; and if X is unimodular one has
likewise M%PD Mbd. If X is compact,
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Ml" = M, MPiQ = M
whenever p 5g q.

Young's inequality, which is a special case of Theorem 9.5.1 (a) of [16],

valid whenp ^ 1, r ^ 1, ljp+1/r S: 1 and q is determined by the relation
\jq = ijp-^ijr— 1, shows that in these circumstances Mp£qDLr and

3.4.3 The argument in 2.7 (2) shows that, if X is not unimodular,
and if p =£ q, there exists no non-trivial continuous linear map T of Lp

into L" which commutes with the pa; in particular, Mp£q = {0}. On the
other hand, an argument due to Hormander ([23], Theorem 1.1) shows
that if oo > p > q, there exists no non-trivial continuous linear map T
of Lv into Lq which commutes with the ra: in particular M^" = {0}.

3.5 THEOREM. / / T is a positive linear map of Lv into Lq which com-
mutes with the pa [resp. TO], then there exists a positive /j,eMp£q [resp. M%q]
such that

Tf = n*f [resp. f * p]

for f eCc; if p < oo, (1.1) holds for feLp. And conversely.

PROOF. In view of Theorem 3.1 it remains only to show that a positive
linear map T of Lp into L" is continuous. The proof is simple. If T were
not continuous, there would exist fneLp (n = 1, 2, • • •) such that
H / . H ^ l and \\Tfn\\Lq^n\ T being positive, \Tfn\ f^T\fn\, and we
may therefore suppose that /„ 2: 0. The series / = ££Li n~~2fn converges
in Lp and /„ ^ w2/. Hence 0 ^ Tfn ^ n*Tf and so

which is absurd if n is sufficiently large.

3.5.1 REMARKS, (i) It is well-known that positivity implies continuity
(for linear maps) in much more general circumstances; see, for example,
[16], p. 612 and the references cited there.

(ii) If X is compact the definition of (Radon) measures shows that any
positive n in M%" of M%" is necessarily bounded. We shall now comment
briefly on this matter for groups X which are not necessarily compact,
as a result of which the above inference will be justified on less direct
grounds.

3.5.2 Let us denote by C£9 [resp. C^'9] the following hypothesis
concerning X — there exists a number c < 1 with the property that to each
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K belonging to a base for the compact subsets of X corresponds a positive
function fK such that

(i) SupK| | /K | |£ ,< +00;

(ii) II/XIIL.= 1 for all X;

(iii) IK/K—/KIIL« ^ c [resp. WPJK-IKWL- ^ cl for aU a e/L

If X is Abelian we write simply C'q.

3.5.3 It follows from Reiter's work [29] that if X is Abelian we can
fulfill conditions (ii) and (iii) for any q. Dieudonne"'s work [5] shows that
(ii) and (iii) can be fulfilled for left translates, if X is a nilpotent Lie group;
and from more recent work of Reiter [30] it appears that the same is true
whenever X is a solvable Lie group. Notice that if we can choose fK ^ 1,
then (ii) implies (i) for any p ^ q. This is the case if X = Rm, in which
case we can take fK = m(K')~x%K', where K' is a sufficiently large hyper-
cube (depending upon K).

3.5.4 If X is compact, C^9 and C%" are true — simply take fK = 1.
V

3.5.5 If X is unimodular ||/x||La

for any q, so that C£9oC#fl .

3.5.6 PROPOSITION. Suppose that X satisfies Q a [resp. C%Q]. Then
any positive fj, e M^" [resp. M%"] is bounded.

PROOF. Suppose fi is a positive measure in Mp£q [resp. M%Q]. Then
(3.1) and (i) of Cp£q [resp. C^8] shows that there is a number k, independent
of K, such that

ll/» */KIIZ« ^ * [resP- ll/x *A*lli« ^ * ] •

4̂ fortiori since / x 3 : 0 and ^ 5: 0,

(3.2) H ^ • /jjHi. ^ A [resp. ||/K * ̂ K | | i a ^ k],

where fiK = [i\K. Putting wK = $ d/j,K, we have

/"K * fK—mKfK = I (*«/*—fK)d,UK(a)

[resp. /x * fiK—mKfK = J (po/K—/K)^K(«)] •

So, applying (ii) and (iii) of C£9 [resp. C£a] we obtain

mK = HWX/KIIX,, = \\fiK * /K— I {rafK—fK)d/iK(a)\L9

[resp. ||/x * ,aK— J (pafK—/
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Hence
mK 5S £(1—c)-1.

Letting K expand, it follows that fi is bounded.

3.5.7 We shall in § 4 consider continuous (not necessarily positive)
endomorphisms of Lv for the case in which X is locally compact Abelian.

4. Representation of multipliers of L"

4.0 Throughout this section X is assumed to be locally compact
Abelian. We denote by X = {f} the character group of X and assume
the Haar measures on X and X to be adjusted so that the Fourier trans-
formation is an isometry of L2(X) onto L2(X).

By a multiplier of Lp = LP(X) we understand a continuous linear
operator T mapping L9 into itself which commutes with translations. (Some
justification for the term "multiplier" will appear in the course of 4.5 and
4.6, especially equation (4.5.2).) The multipliers of L1 have been fully
identified in Corollary 2.6.2; and in 1.6 it has been seen that if T is a mul-
tiplier of L°°, then the restriction T\C0 is represented by convolution with
a bounded measure on X. When 1 < p < oo, the situation is in general
quite different and obscure: for explicit examples, see the proof of Theorem
4.13 below. If X = Rn = X, a detailed study has been made by Hor-
mander [23].

In this section we aim to show in detail that any multiplier of Lp is
expressible as convolution with a suitable type of pseudomeasure on X.
It follows from Theorem 5.1 (d) that likewise any continuous linear operator
T from L" into Lq which commutes with translations is representable as
convolution with a suitable type of quasimeasure on X.

4.1 THE SPACE P(X) OF PSEUDOMEASURES ON X.

We write A = A (X) for the set of functions u on X of the form

(4.1.1) u{z) =

for some v e L1 (X); v is uniquely determined by u and we define on A
the norm

(4.1.2)

It is evident that A is a Banach algebra under pointwise operations. It is
moreover a dense subset of Co, the injection map of A into Co being con-
tinuous.

We write P = P(X) for the topological dual of A. Elements of P are
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termed pseudomeasures on X, the name being suggested by the fact that
any element of Mbd(X) defines, and is uniquely determined by, its restriction
to A (X), this restriction being a pseudomeasure on X. If X is non-discrete,
P(X) will contain elements with compact support which are not measures;
see Remark 3.2 (i) and the references cited there. Moreover, P(X) will in
general contain Radon measures on X which are not bounded measures.
For example, suppose X = R and let (cn)iv=i be any sequence which
decreases monotonically to zero and is such that ncn is bounded. Then (see,
for example, [39], Vol. 1, pp. 182—183) the series 2^=i c« s m nx l& boundedly
convergent for x e R and therefore weakly convergent in L°°(R). This last
means precisely that the series 2«^i C»(e«~~e-J °f measures is weakly
convergent in P(R). The sum of this series is at the same time a measure
which, if 2S-i \cn\ = °°> is n o t a bounded measure.

On the other hand, it is quite easy to show that any positive pseudo-
measure belongs to Mbd(X).

P is a vector space and also a module over A. By using partitions of
unity whose elements belong to A, pseudomeasures can be localised; in
particular one can define the support of a pseudomeasure s as the com-
plement of the largest open subset U of G having the property that s (u) = 0
for every u e A satisfying supp uCU.

It is possible to extend the Fourier transformation to pseudomeasures
in such a way as to realise a linear isometry of P(X) onto L°°{X) (the norm
of <f> eL°°(Z) being the local essential supremum of |^|). The extension is
made in such a way that the relation s = <f> signifies exactly that <f> e
and s e P(X) are related by the formula

(4.1.3) s(u) =

whenever u e A is given by (4.1.1). The isometric nature of this extended
Fourier transformation is an immediate consequence of the definition of
the natural norm on P as the dual of A (see [16], Section 1.10.6).

If X is a finite product of lines or circles, the pseudomeasures on X
can be thought of as comprising exactly the Schwartz distributions on
X whose Schwartz-Fourier transforms belong to L°°(X).

In terms of the Fourier transform one can now make P into an algebra
under convolution, s1 * s2 being that pseudomeasure whose transform is
«! • S2.

4.2 MULTIPLIERS DEFINED BY PSEUDOMEASURES. If s e P and / e L2,

then s-feL2(X) is the Plancherel-Fourier transform of some uniquely
determined element of L2: this element we denote by s * /. The Parseval
formula shows that
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where | |s| |P denotes the norm of s qua element of the dual of A, which is
identical with HsH .̂

It is simple to verify that the formula

(4.2.2) Tf = s*f

defines T as a multiplier of L2 for which ||71| = | |s | |P . The converse statement
will form part of our main theorem yet to be stated and proved.

4.3 THE SPACES PP(X). For any exponent p satisfying 1 ^p ^ oo
we define Pp = PP(X) to be the set of pseudomeasures s e P{X) such that

(4.3.1) \\s * f\\LP ^ c o n s t . \\f\\LP

for each / eCc, the constant depending upon s. The remarks in 4.0 referring
to Corollary 2.6.2 may be interpreted as meaning that P 1 = P°° = MM.
It is easily seen furthermore that

(4.3.2) P* = pp' (l/p+l/p' = 1)

and that always

(4.3.3) Mbd CP*CP.

In 4.2 it has appeared that

(4.3.4) pa = p.

If s e Pp we can define s * f e Lv for each f e Lp (or each / e Co, if
p = oo) by continuity; then (4.3.1) continues to hold for each feLp (or
each / e Co, if p = oo). As a consequence, if p ^ oo and s e P", the formula
(4.2.2) defines T as a multiplier of Lp.

We can now state the main theorem of this section.

4.4 THEOREM. Suppose that 1 ^ p < oo and that T is a multiplier
of Lp. Then there exists a pseudomeasure s e Pp such that

(4.2.2) xf = s*f

for f e Lp. Conversely, if s e Pp, then (4.2.2) defines T as a multiplier of Lp.
The converse assertion is evident from the substance of 4.2 and 4.3.

The direct assertion will be established in two stages, taking the special
case p — 2 first.

4.5 PROOF WHEN p = 2. Let T be a multiplier of V-. Then, as at the
outset of the proof of Proposition 2.1, we have Tf * g = T(f * g) = / * Tg
whenever, /, geCe. Hence

(4.5.1) (Tfr-g=f-(Tgf a.e.
whenever /, geCc. Now, according to [2], p. 6, Proposition 4, or [16],
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p. 229, X is the disjoint union of a locally negligible set N and a disjoint
locally countable family {Kt} of compact subsets of X. For each index i
we may choose and fix a function g( e Ce such that gf is non-vanishing on
K{. Define the function <f> on X by setting it equal to {Tg^fgi on/C,- for
each * and to 0 on N. Then, if feCe we have by (4.5.1) the relation
(27)^ = (f> •} a.e. on Kt. The family {Kt} being locally countable, whilst/
vanishes outside a <r-finite subset of X, it follows that

(4.5.2) {Tff = <f> • f a.e. on X.

It is evident that <f> is measurable. Moreover, the continuity of T shows that
(4.5.2) continuous to hold for each / e Z2. Parseval's formula and (4.5.2)
combine to show that <f> is locally essentially bounded and that ||T'|| = ||^||00.

We pause here to remark that it is the function (f> appearing in (4.5.2),
rather than T itself, which should be spoken of as a "multiplier" of L2 —
at least if one wishes to retain the terminology which is customary in the
study of ordinary Fourier series.

To complete the proof, introduce the pseudomeasure s on X for which
s = <f> (see 4.1). According to the definition of s * / (see 4.2), we have

and comparison with (4.5.2) shows that Tf = s * / qua elements of L2.

4.6 PROOF WHEN p ^ 2. Let T be the adjoint (see [16], p. 515)
of the given multiplier T of Lv, so that

(4.6.1) 77* / ' ( 0 )= /* r / ' ( 0 )

for f e Lp and /' e Lp. By the basic properties of convolution (see Section
4.19.15 of [16]) T' commutes with translations. Thus T' is a multiplier
of L'\

If we suppose that /, /' eCcC L" n Lv', then we know that Tf * /' =
/ * Tf, and comparison with (4.6.1) shows that T and T' coincide on Cc.
Therefore we have for / e Cc both

^ imi
and

At this point the Riesz-Thorin convexity theorem ([39], Vol. II, p. 95)
may be applied to conclude that

for feCe. Accordingly T\CC can be extended into a multiplier of L2. By
(4.5), therefore, there exists a pseudomeasure s e P such that (4.2.2)

https://doi.org/10.1017/S1446788700004286 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700004286


318 B. Brainerd and R. E. Edwards [30]

holds for f eCc. This in itself entails that s e Pp; and then (4.2.2) must, by
continuity, continue to hold for all / 6 Lp. The proof is thus complete.

4.7 REMARKS. We have noted that P1 = P°° = MM which, if X is
non-discrete, is a proper subset of P. (Mbd can exhaust P only if X is a
Helson set, which is certainly false if X is non-discrete; see [31], p. 119.)

If X = Rn, PP^P whenever p ^ 2: this follows from Theorem 1.12
of Hormander [23] (taking F ^ 1 therein).

If X is non-discrete compact Abelian, then Theorem 4.13 shows that
MM ^ Pp whenever 1 < fi < oo. In this case we have also Pp =£ P whenever
p ^ 2. In verifying this one may, by (4.3.2), assume that p < 2. If Pv

were to coincide with P, then for any bounded function /S on X and any
/ e L", /3 • / is the Fourier transform of some function in Lp. Then (see
Helgason [21] and Edwards [11]) fel2(X), and so / E L 2 , whenever feLp.
Since p < 2, this would entail that X is discrete.

Presumably Pp ^ P for all p ^ 2 and all infinite X, but we do not
know of a proof of this. The relation is established for any locally com-
pact Abelian X containing an infinite discrete subgroup in G. I. Gaudry
"Multipliers of type {p, q)" (to appear Pacific J. Math.).

4.8 Suppose that T is a multiplier of Lp, that E is a closed subset
of X, and that either of the following (actually equivalent) conditions is
fulfilled:

(i) supp Tf C £+supp / for / e Cc;
(ii) for each / e Lp and each neighbourhood U of E, Tf is the limit

in Lp of linear combinations of translates xaf with a eU.

It is then easily seen that, in the representation (4.2.2), supp s C E.
Consequently, if E n K is a Helson set for each compact set K C X, then s
is necessarily a measure with support contained in E.

For example, if {an} is a finite or infinite sequence of points of X
which has no limiting point in E, and if (i) or (ii) holds with E = {«„},
then T is expressible in the form

Tf = Icn-raJ,
where the series converges weakly in Z.2 for each / e L2 n Lp.

4.9 A type of representation theorem somewhat different from
Theorem 4.4 supra has been announced by Figa-Talamanca [17], his
assertion being that the multipliers of Lp can be put into a linear isometric
correspondence with the elements of the dual of a certain Banach function-
space Ap. This space Av is the space of functions h on X admitting at least
one expression of the form

(4-9.1) * = 2 £ i / „ • £ „ ,
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wherein

(4.9.2) /„ e L*, gn e L*', 2Zi 11/»| II- • I \gj \w < «>•

The norm on Av is defined to be

(4.9.3) \\h\\Av = Inf ZZi II/.IIL- • IL?JIL»',

the infimum being taken over all expressions (4.9.1) for h. (The space A
of 4.1 is none other than A2.) In the said correspondence the multiplier
T is associated with the functional t on Av for which

(4.9.4) t{f*g) = Tf

and the crucial step in establishing the correspondence lies in showing that
any relation of the form

(4.9.5) fneL», gneL*', %Zi ll/.llz.. • IIS.IIL.' < oo, 2 S L 1 / . * ^ = 0

implies that

(4-9.6) 2Z.1Tfn*gn{0)=0.

One way of achieving this object is to establish the following ap-
proximation theorem for multipliers T.

4.10 THEOREM. Let T be a multiplier of Lv (1 < p < oo). Then there
exists a net {Ta} of multipliers of Lv satisfying the following conditions

(«) iira|| ^ urn
(ii) lima TJ * g(0) = Tf * g(0) {f e L», g e L*')
(Hi) each Ta is defined by convolution with a function in Cc.

In the presence of (i), (ii) is equivalent to saying that T = lima Ta

in the strong operator topology; or again that Tf = lima TJ, uniformly
when / ranges over precompact subsets of Lv.

4.11 In order to establish 4.10 it suffices to show that multipliers
Ta exist satisfying (iii) and

(i') | r a /*g(0) l^ ! | r | | | | / | | L , | | g | | ^ V.geC.),

and such that (ii) holds for /, geCc. Such a net {Ta} may be obtained
by setting

where

s is the pseudomeasure defined by T (see Theorem 4.4); the kaeCe

and form an approximate identity in L1 chosen so that kae L1^);
and Ha is the inverse Fourier transform of ha, {ha} forming an ap-
proximation identity in !?•{£) for which HaeCc.

It is evident that these conditions ensure that ja e Cc for each a.
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4.12 Granted 4.10, it is easy to show that (4.9.5) implies (4.9.6).
Thus, by (i) and (ii) and dominated convergence of the series,

5T=i Tfn * gn(0) = lima ZZ1 TJn * gn(0).
By (iii),

TJn * gn(0) = <ja * / J * gn(0) = ja * (/„ * gn) (0)

and, since /4 e I 1 and 2^=i fn *gn{x) is uniformly convergent we thus
obtain

2 £ l TJn * gM = j fa(-*) • 2SLl /- * gn{x)dx

4.13 REMARKS, (i) As mentioned in 4.0, by using the results in [19]
one can show likewise that any multiplier 3" of Lv into Lq (1 ^ p < oo,
1 ^ <? < oo) is representable in the form (4.4.2), where now s is a quasi-
measure on X (a concept defined in [19]) such that

\\s*f\\t. ^ const. H/lli,

for feCc. Moreover (see 2.6.2 (i) and 4.14 (b) infra) only the case
1 ^ >̂ < q < oo needs further consideration. For this case one can show
that analogues of 4.9—4.12 subsist, p' being replaced in (4.9.2) by q' and
the series (4.9.1) being now convergent in Lr, where 1/r = llp+l/q'—l.
Extensions, to the case of multipliers of Lp into L", of the results in 4.9
and 4.10 are discussed in [18].

(ii) The concept of pseudomeasure can be satisfactorily extended to
all unimodular locally compact groups X, but it has yet to be seen to
what extent the preceding proofs (seemingly dependent on use of the Fourier
transform) can be carried over in detail.

(iii) Hormander ([23], Theorem 1.9) shows that if X = Rn and
p < 2 < q, then there exist distributions fi such that / —> /« * / is a continuous
linear map of Lv into LQ (which evidently commutes with translations)
and yet fi is not a measure, so that p, is certainly not a bounded measure.

4.14 It has been noted in 3.4.3 that
(a) if X is not unimodular, and if p ^ q, there exists no non-trivial

continuous linear map of Lv into L" which commutes with right translations;
and that

(b) if X = Rn, and if q < p < oo, there exist no non-trivial continuous
linear maps of Lp into Lq commuting with translations. (Hormander's proof
of this, given for X = Rn, in fact obviously extends to the case of left
translations on any locally compact group X.)
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We shall now show that no such collapse occurs when X is compact
Abelian. Indeed, if p = 1 the existence of an abundance of non-trivial
maps of the desired sort of L1 into L" follows from Corollary 2.6.2. (This
does not depend on the special nature of X.) On the other hand, if X is
infinite compact Abelian and 1 < p 5S oo, 1 jS q < oo, the following
theorem shows that there exist many maps of the desired type which,
moreover, are not expressible by convolution with any (necessarily bounded)
measure.

4.15 THEOREM. Let X be infinite compact Abelian, 1 < p ^ oo, and
1 sS q < oo. Then there exist continuous linear maps T of Lp into Lq which
commute with translations and yet which are not expressible in the form
Tf = (i * f for any measure n on X.

The proof depends on the existence and properties of infinite Sidon
subsets S of the character groups X: see § 5.7 of Rudin [31].

Before starting the proof of the theorem we collect some facts about
these Sidon sets.

LEMMA 1. Let X be as in the above theorem, let S be a Sidon subset of
X, and let 1 < p :g; oo. Then for each f e Lp we have

[2t*s l / ^ l 2 ] * ^ const. \\f\\LP.

PROOF. See [31], p. 130.

LEMMA 2. Let X and S be as in Lemma 1, and let /J, be any Radon measure
on X such that /2(£) = 0 for £ e X\S. Then [i e Lr for 1 ^ r < oo.

PROOF. Take a directed family (t{) of trigonometric polynomials on X
such that H l̂h ^ 1 and tf*p->fi vaguely. By [31], Theorem 5.7.7 it
follows that

||^ * j«||i,r ^ const. ||^ * /*Mr,i ^ const.

Assuming (as we may) that r > 1, it follows that the net {tt * /i} has a weak
limiting point in Lr. By vague convergence, this limiting point must be /x,
so that n e Lr.

LEMMA 3. Let X and S be as in Lemma 1, let 1 < p ^ oo, 1 ^ q < oo,
and let /? be any bounded complex-valued function on X which vanishes on
X\S. Then there exists a continuous linear map T of Lp into Lq which
commutes with translations and for which (Tf)* — /?/.

PROOF. Immediate from Lemmas 1 and 2.

PROOF OF THEOREM 4.15. Let S be any infinite Sidon subset of X (see
[31], p. 126), choose /? as in Lemma 3 and such that furthermore
/? ̂  12(X), and then appeal to Lemma 2 once more.
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4.16 A RESULT OF STEIN. Throughout this section X will denote the
circle group, so that X is identifiable with the additive group Z of integers.
Stein ([34], Theorem 9) has given a result which comes rather close to
providing a necessary and sufficient in order that a bounded function
<f> on Z shall define a multiplier T of Lv via the relation

(4.16.1) - /

This result is expressed in terms of the function 0, defined a.e. on X by
the formula

(4.16.2) 0(x) = 2n^o (*n)-^(n)«'~

the series being convergent in Z,2 (for example).
Given an exponent q satisfying 1 :£ q t== °o, 0 is said to belong to VQ

if and only if 0 e Lq and

the supremum being taken relative to all finite sequences {[ak, &t]}J=1 of
non-overlapping subintervals [ak, bt] of [O,2TZ).

Prior to stating Stein's result we remark that from (4.3.2) and the
Riesz-Thorin convexity theorem ([39], Vol. II, p. 95) it follows that if <j>
defines a multiplier of Lp, then it also defines a multiplier of Lr for any r
lying in the closed interval spanned by r and r'. In particular, it suffices to
discuss the multipliers of V for 1 f£ p ^ 2. Stein's theorem asserts that,
if 1 < p < 2, then:

(a) if <f> defines a multiplier of L" (and so of Lr whenever p T^r ^p'),
then 0 e Vp>;

(b) if 0 e Vv,, then j> defines a multiplier of Lr whenever p < r < p'.

As Stein remarks, 0 e V^ if and only if 0 is (equal a.e. to) a function
of bounded variation. This, in conjunction with the case p = l of Corollary
2.6.2, shows that </> defines a multiplier of L1 if and only if 0 e F m . Similarly,
0 g V2 if and only if <f> is bounded; and so, by (4.3.4) and Theorem 4.4,.
one may say that <j> defines a multiplier of L2 if and only if 0 e F2.

4.17 RESULTS FOR THE GROUPS Rn. A number of results are known
which give sufficient conditions on a function <f> on Rn (identified as the
dual of R") ensuring that (4.5.2) defines T as a multiplier of V into Lq,
in which case <f> may itself be described as a (p, q)-multiplier. For these
results we refer the reader to Hormander [23], Theorems 1.11, 2.4 and 2.5.
Of these the first and second have known analogous for the circle group;
see [39], Vol. II, p. 127. The third, like the results in [28], involve generalised
derivatives of <j>; we know of no published analogous for the circle group.

De Leeuw [4] establishes relations between bounded functions <j> which
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(the are (p, p)-multipliers on R with those which are (p, p)-multipliers
on Rd line with its discrete topology), together with relations between
multipliers on R, on the circle and on Z.

5. Further results for Abelian groups

Throughout this section we assume again that X is Abelian. In terms
of the pseudomeasures introduced in § 4 we can extend Theorems 3.1 and
3.3 to not-necessarily-positive operators T. The results are published
elsewhere, but we record them here for convenience.

We write Pc = PC(X) for the set of pseudomeasures with compact
supports.

5.1 THEOREM, (a) If T is a continuous linear map from Cc into Mc

which commutes with translations, there exists a pseudomeasure s e Pc

such that
Tf = s*f;

and conversely.
(b) As (a), save that C and M replace Cc and Mc, respectively.
(c) If T is a continuous linear map from Cc into Mbd which commutes

with translations, there exists a pseudomeasure s e P such that

Tf = s*f.
(d) If T is a continuous linear map from Cc into M which commutes

with translations, there exists a quasimeasure q on X such that

Tf = q*f-
PROOF. That of (a) appears in Edwards [13], Theorem 2; (b) follows

from (a) by considering the adjoint of T. Assertion (c) is Theorem 1 of
[13]. Gaudry [19] gives the definition of quasimeasures (which can be
regarded as locally finite sums of pseudomeasures) and the proof of (d).

REMARKS. Concerning the nature of pseudomeasures, see again Remark
3.2(i). It is interesting to note that the stated representation formulae
entail that T actually maps L2 into Lfoc in all cases; L\ into L\ and Z.2

into L2 in cases (a) and (b); and L2 into Z,2 in case (c).
Again for the reader's convenience we record some known results for

the case X = Rn or T" or a finite product of such groups.

5.2 THEOREM. Let X be of the form Rm X Tn.
(a) Any continuous linear map T of C£° into 2' which commutes with

translations has the form
Tf = /i*f

for some /j,e@'; and conversely.
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(b) Any continuous linear map T of C°° into @)' which commutes with
translations has the form

for some fi e S>'c; and conversely.
(c) Any continuous linear map T of C~ into Q)\ (the latter with the

topology o(@)'c, C°°)) which commutes with translation has the form

Tf = /u*f

for some fi e S>'c; and conversely.

PROOF. Statements (a) and (b) are proved by Schwartz [33], pp.
53—54 and pp. 18—19 respectively. It is not difficult to derive statement
(c) by applying (b) to the adjoint of T.

6. Continuity questions

We have frequently used the fact that, under quite mild restrictions on
the function-spaces F and G, a continuous linear map T of F into G which
commutes with translations also commutes with convolutions, and vice
versa. At root this is because in most cases convolution is a limit of linear
combinations of translations, whilst reciprocally translation is a limit of
convolutions with arbitrarily smooth functions.

It will be shown in 6.2 and 6.3 that, under mild conditions on F and
G, a linear map T of F into G which commutes with convolutions is neces-
sarily continuous. These results refine and extend Theorem 3.1 of de
Leeuw [3].

A detailed analysis of similar continuity questions for a somewhat
different class of operators is given by B. E. Johnson [25].

We begin with a definition.

6.1 DEFINITION. Given a non-void subset Z of M (or of Si', if X
is a Lie group), by a left [resp. right] 2"-space is meant a vector subspace
H of M (or of 2') with the following properties:

(i) H is stable under convolution on the left [resp. right] by elements
of Z\

(ii) H is a separated topological vector space such that, for each
s e 2, the map h ->• s * h [resp. A -> A * s] is a continuous endo-
morphism of H;

(iii) if he H satisfies s * h — 0 [resp. h * s = 0] for all s e E, then
h = 0.

The following result sharpens de Leeuw's Theorem 3.1 in so far as T
is not assumed to commute with translations.
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6.2 THEOREM. Suppose that X is compact and that Z denotes the set
of all trigonometric polynomials on X. Let F and G be two left [resp. right]
Z-spaces, and suppose that the closed graph theorem applies to linear maps of
F into G. The conclusion is that if T is any linear map of F into G such that

(6.1) T(s*f) = s * Tf [resp. T(f * s) = Tf * s]

for all f e F and all trigonometric polynomials s, then T is continuous.

REMARK. We recall that a trigonometric polynomial on X is a finite
linear combination of co-ordinates of finite-dimensional, continuous,
unitary representations of X. If X is Abelian, the trigonometric polynomials
are therefore simply the finite linear combinations of continuous characters
of X. In this case, therefore, (6.1) is equivalent to condition 4 in de Leeuw's
Theorem 3.1.

PROOF. We consider the left-handed case, which is typical. It suffices
to show that the graph of T is closed in FxG. Suppose that {/„} is a net
which converges to 0 in F and for which, moreover, {Tfn} is convergent in
G to g. It must be shown that g = 0.

Choose any s e Z. Then Fs = s * F is a finite-dimensional vector
subspace of F. As U ranges over a base at 0 in F, the sets s * U define a
base at 0 for a vector space topology on Fs which, since F is separated
and the map / -> s * / is continuous by 6.1 (ii), is separated. Consequently,
T\FS is continuous for this topology. The definition of the topology on
Fs is arranged so that / -> s * / is continuous from F into Fs. In particular,
therefore, T(s * /„) -+0 in G. On the other hand, (6.1) shows that
•^(s * /«) = s * Tfn, which converges in G to s * g. It follows that s * g = 0,
and this for each seZ. Hence, by (iii) of 6.1, g = 0.

6.3 There are analogues of Theorem 6.2 for certain other interesting
cases. Suppose for example, that F is a separated topological vector space
which is also a commutative algebra under convolution, the latter being
separately continuous on FxF. Suppose further that G is a left [resp.
right] F-space in the sense of Definition 6.1. It then follows by a similar
argument that any linear map T of F into G, satisfying

(6.2) T(f*f')=f*Tf' [resp. = 77*/']

for /, /' e F, has a graph closed in FxG.
These conditions are fulfilled, and lead to continuity of T, if X is

Abelian and if, for example,

F = Ce,L
1

e, or L1

and
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G = L" (1 ^ p ^ oo) or Mid,

as well as in numerous other cases.

6.4 We do not know whether there are valid analogues of Theorems
6.2 and 6.3 in which the main hypothesis, that T commutes with con-
volutions, is replaced by the assumption that T commutes with translations.
We note, however, the following germane result, due to Iwahori [24]:

Let X be a compact group, E the set of trigonometric polynomials
on X, and T an endomorphism of E such that

(1) T commutes with the ra (aeX);

(2) £ 1 = l;
(3) Tf = Tf for all / e E;
(4) T(fg) = Tf-Tg for all /, g e E.

Then there exists a e X such that Tf = paf for all / e E.
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