
JFP 20 (5 & 6): 417–461, 2011. c© Cambridge University Press 2010

doi:10.1017/S0956796810000146 First published online 3 September 2010

417

Space profiling for parallel functional programs

DANIEL SPOONHOWER, GUY E. BLELLOCH, ROBERT HARPER

School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA

(e-mail: {spoons,blelloch,rwh}@cs.cmu.edu)

PHILLIP B. GIBBONS

Intel Labs Pittsburgh, 4720 Forbes Avenue, Suite 410, Pittsburgh, PA 15213, USA

(e-mail: phillip.b.gibbons@intel.com)

Abstract

We present a semantic space profiler for parallel functional programs. Building on previous

work in sequential profiling, our tools help programmers to relate runtime resource use

back to program source code. Unlike many profiling tools, our profiler is based on a cost

semantics. This provides a means to reason about performance without requiring a detailed

understanding of the compiler or runtime system. It also provides a specification for language

implementers. This is critical in that it enables us to separate cleanly the performance of the

application from that of the language implementation. Some aspects of the implementation

can have significant effects on performance. Our cost semantics enables programmers to

understand the impact of different scheduling policies while hiding many of the details

of their implementations. We show applications where the choice of scheduling policy has

asymptotic effects on space use. We explain these use patterns through a demonstration

of our tools. We also validate our methodology by observing similar performance in our

implementation of a parallel extension of Standard ML.

1 Introduction

Approaches to multicore and multiprocessor programming can be divided into

two broad categories: concurrency and parallelism. In the case of concurrency,

programmers reason explicitly about the order in which tasks are executed and

must use some form of synchronization to ensure that programs yield correct

results. In the case of parallelism, multicore execution is purely a means to improve

performance: programmers provide opportunities for parallelism, but the results of

program execution are defined independently of whether or not those opportunities

are taken.

While some problems require concurrency (e.g., applications that must respond to

network requests or user interaction), many algorithms can be expressed using only

parallelism (e.g., those based on divide-and-conquer strategies). Reasoning about

and debugging parallel programs can be performed independently of the number

of processors or processor cores and is therefore much simpler than for concurrent

programs. There are also many opportunities for profiling parallel programs with

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

418 D. Spoonhower et al.

only a few assumptions about how tasks will be assigned to processor cores. We will

investigate several such opportunities in this work.

Functional programming languages are an attractive means for writing parallel

programs. By eschewing side effects, programmers can find many opportunities for

parallel evaluation. Many sequential functional programming languages also offer a

clear semantic definition that can serve as a foundation for a semantic definition of

parallelism.

In practice, however, achieving better performance through parallelism can be

quite difficult. While the extensional behavior of parallel functional programs does

not depend on the language implementation, their performance certainly does. In

fact, even sequential implementations of functional languages can have dramatic and

unexpected effects on performance. To analyze and improve performance, functional

programmers often rely upon profilers to analyze resource use (Appel et al. 1988;

Runciman & Wakeling 1993a; Sansom & Peyton Jones 1995; Röjemo & Runciman

1996). With parallel implementations, the need for profilers is magnified by such

issues as task granularity, communication, and scheduling policy—all of which can

have a significant impact on time and space use.

We present a semantic space profiler for a call-by-value parallel functional

language and implementations of that language for shared memory architectures.

Our method abstracts away from many details of the language implementation

and yet allows programmers to reason about asymptotic performance. Because it is

based on a semantics rather than a particular implementation, our profiling method

remains true to the spirit of functional programming: thinking about program

behavior does not require a detailed understanding of the compiler or target

machine.

Our profiling method must account, at least abstractly, for some parts of the

implementation. In this work, we focus on scheduling policy and its effects on

application space use. Because the choice of scheduling policy often has dramatic,

and even asymptotic, effects on space use (as detailed in this paper), it is critical that

a programmer has the flexibility to choose a policy that is best suited to his or her

application. This flexibility must be reflected both in the language implementation

and in any profiling tools.

Our profiling tools are based on a cost semantics (Blelloch & Greiner 1995;

Sansom & Peyton Jones 1995). A cost semantics is a dynamic semantics that, in

addition to the ordinary extensional result, yields an abstract measure of cost.

In our semantics, this cost is a pair of directed graphs that capture essential

dependencies during program execution (Section 3). One of these graphs is used

to record sequential dependencies; parallel pebblings of this graph correspond

to different scheduling policies. The second graph, novel to this work, records

dependencies between parts of the program state.

These graphs are used by our tools to simulate the behavior of different scheduling

policies and to make predictions about space use. For example, by generating graphs

for a range of inputs, programmers can perform an asymptotic analysis of space

use. Our profiling tools also allow programmers to visualize the parallel execution

of programs and compare scheduling policies (Section 4).

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 419

We emphasize that our method enables users to profile parallel programs. This

stands in contrast to many existing profilers, which provide a means of profiling

a program based only on a particular language implementation. While our approach

leads to some loss of precision, there is a tradeoff between precision and offering

performance results that can be easily related to the program text. Our cost semantics

is the fulcrum that enables us to balance this tradeoff.

Our cost semantics also provides a formal specification that forces language

implementations to be “safe-for-space” (Shao & Appel 1994). Besides acting as a

guide for implementers, it maintains a clean separation between the performance

of a program and the performance of the language implementation. This ensures

that profiling results are meaningful and that programmers can expect the same

asymptotic performance when moving from one compliant implementation to

another.

To demonstrate that this specification does not place an onerous burden on

implementers, we present an implementation (Section 5) of a parallel extension of

Standard ML (Milner et al. 1997) based on our cost semantics and the MLton

optimizing compiler (Weeks 2006). Our framework also extends to other parallel

extensions of ML (e.g., Fluet et al. 2007) as well as languages with eager parallelism

such as NESL (Blelloch et al. 1994) and Data Parallel Haskell (Peyton Jones

et al. 2008). By factoring out scheduling, our framework can also bring to light

performance issues in language implementations that bake in a particular scheduling

policy.

Our implementation includes three scheduling policies: two based on parallel

breadth- and depth-first traversals of the cost graphs and a third based on work

stealing (Burton & Sleep 1981; Blumofe & Leiserson 1999). As we anticipate the

need for other policies, we have isolated the core decisions of such policies behind

a simple signature.

We implemented several parallel algorithms to validate our work and measured

performance using both our tools and by sampling memory use in our implementa-

tion. The results show that our cost semantics is able to correctly predict asymptotic

trends in memory use (Section 6).

Using our semantics, we also discovered a space leak in an optimization in MLton

(Section 7.2). As a specification, a cost semantics determines which performance

problems must be blamed on the programmer, and which can be attributed to the

language implementation.

A preliminary version of this paper appeared in the Proceedings of the 2008

International Conference on Functional Programming.

2 Motivating example

In the next section, we introduce a profiling semantics that assigns a space cost

to each program. This cost abstracts away from many details of the compiler, but

enables programmers to predict (within a constant factor) the space behavior of

different scheduling policies. To motivate this work, we present a small example,

matrix multiplication, where the choice of scheduling policy has a dramatic effect

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

420 D. Spoonhower et al.

fun tabulate (f, n) =
let fun loop (i, j) = (∗ offset i, length j ∗)

if j = 0 then vector (0, f i)
else if j = 1 then vector (1, f i)
else let

val k = j div 2
val lr = { loop (i, k), loop (i + k, j − k) }

in
append (#1 lr, #2 lr) (∗ line flagged by tool ∗)

end
in

loop (0, n)
end

fun mm mult (A, B) =
let

fun vv mult (b, a) = reducei op+ (fn (i, x) ⇒ sub (b, i) ∗ x) 0.0 a
fun mv mult (B, a) = tabulate (fn i ⇒ vv mult (sub (B, i), a), length B)

in
tabulate (fn i ⇒ mv mult (B, sub (A, i)), length A)

end

Fig. 1. Matrix multiplication code.

on space use. We give a cursory discussion here, and consider this application in

further detail in Section 6, along with four other applications (sorting, convex hull,

n-body simulation, and the n-queens problem).

Figure 1 shows the source code for matrix multiplication written in our parallel

extension of ML. This example defines two top-level functions. The first is a parallel

version of tabulate and the second, mm mult, multiplies two matrices of appropriate

sizes using persistent vectors. Within the definition of mm mult, two additional

functions are defined. The first, vv mult, computes the dot product of two vectors.

The second, mv mult, computes a matrix-vector product. In this example, variables

A and B stand for matrices, a and b for vectors, and x for scalars. Persistent vectors

are created with one of two primitives. The first primitive, vector (s, x), creates a

vector of size s where every element is given by the value of x. The other primitive,

append, creates a new vector that is the result of appending its arguments. (For

simplicity, this implementation of multiplication assumes that one of its arguments

is in row-major form while the other is in column-major form.)

The parallelism in this example is derived in part from the implementation of

tabulate. As in an ordinary implementation of tabulate, this function returns a

vector where each element is initialized using the function supplied as an argument.

In this implementation, whenever the result will have two or more elements, each half

of the result may be built in parallel. In our parallel language, the two components

of a pair written with curly braces ({ . . . }) may be computed in parallel. Thus the

two recursive calls to loop in the body of tabulate maybe computed in parallel.

Matrix multiplication offers a tremendous amount of potential parallelism. In

this example, multiplying two n × n matrices may result in n3 scalar multiplications

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 421

occurring in parallel. (Recall that there are n scalar multiplications for each of the

n2 elements in the result.)

Not shown here are the implementations of several other functions on vectors,

including length, which returns the length of its argument, and reducei, which is a

form of fold but may reduce two halves of a vector in parallel before combining the

results.

With this example in hand, we will now briefly consider this example in a broader

context of parallel programs, how these programs can be implemented, and the

performance consequences of these implementation choices.

Our framework can be used by programmers to predict the behavior of par-

allel programs such as matrix multiplication, as summarized below. In general, a

programmer would:

1. Select a program and run it using the profiling interpreter based on our cost

semantics.

The cost semantics yields a pair of directed graphs. As these graphs are

too detailed to present in their raw form, our tools summarize these graphs

into a more compact form. An example of summarized graphs for matrix

multiplication is shown in Figure 2(a). In these graphs, nodes represent

sequential computation. In the graph on the left, edges point downward,

and an edge from n1 to n2 indicates that n1 must be executed before n2. For

matrix multiplication, we see the regular structure of its parallelism: work is

evenly distributed among parallel branches. In the graph on the right, edges

point upward, and an edge from n2 to n1 indicates that n2 depends on the

value allocated at n1.

At the first stage of analysis, these graphs allow programmers to make

qualitative statements about their programs and to classify parallel algorithms

visually: algorithms with different parallel structure will give rise to graphs

with different shapes. These graphs are also used as input in the following

step.

2. Use our simulator to predict the space performance for different scheduling

policies and numbers of processors.

Each scheduling policy determines a traversal of the cost graphs. By fixing

a policy and the number of processors, our simulator uses these graphs to

determine the high-water mark for space use (i.e., the smallest heap that can

be used to run the program). It also determines the point during execution at

which this mark is reached, as well as where in the source code these data are

allocated and used.

3. Repeat steps 1 and 2 for different inputs. Plot the results to draw conclusions

about asymptotic performance.

For each input, programmers generate a new pair of graphs. Our tools can

then be used to generate plots such as those shown in Figure 2(b). These plots

show trends in space use as a function of input size for different schedulers.

In this example, we compare two schedulers each using two processors. The

scheduling policy on the left manages parallel tasks using a FIFO queue and

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

422 D. Spoonhower et al.

(a)

(b)

2 4 6 8 10 12
0

1,000

2,000

input size (# rows/columns)

m
ax

li
v
e

sp
ac

e
(u

n
it

s)

breadth-first

〈work queue〉
[b,a]

[m,inj]

append(#1 lr, #2 lr)

〈remainder〉

2 4 6 8 10 12

input size (# rows/columns)

depth-first

append(#1 lr, #2 lr)

〈remainder〉

Fig. 2. Profiler output for matrix multiplication. (a) Summarized cost graphs; and (b)

simulated space use as a function of input size for two scheduling policies: breadth-first

(left) and depth-first (right).

implements a breadth-first traversal of the left cost graph. The scheduling

policy on the right implements a parallel depth-first traversal (see Section 5.2

for details) of the left cost graph. Our tools also help explain the space use

through a breakdown according to particular allocation points (as shown in

the figure) or use points. As the figure shows, for both schedulers, a significant

part of the space use at the high-water mark can be attributed to the vectors

allocated in the implementation of tabulate (i.e., append (. . .), as marked

in Figure 1). However, for the breadth-first scheduler (on the left), most of

the space is attributed to the work queue and two forms of closure (denoted

with “[. . .]” in the key). These two closures appear during the application of

reducei.

4. Reexamine the cost graphs to isolate space use and elucidate the effects of the

scheduling policy.

While the plots generated in the previous step depict trends in space use,

they provide little insight into how the scheduling policy affects these trends.

The final step in an analysis often requires programmers to revisit the cost

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 423

(expressions) e ::= x | fun f (x) = e | e1 e2 | {e1,e2} | #1 e | #2 e
| true | false | if e1 then e2 else e3 | v

(values) v ::= 〈 f .x.e〉� | v1,v2〉� | true� | false�
(locations) � ∈ L

Fig. 3. Language syntax. Components of pairs written {e1, e2} may be computed in parallel.

We include a separate class of values with annotations that capture sharing explicitly, but

these values do not appear in the surface syntax used by programmers. As in Standard ML,

projections from a pair are denoted #1 and #2 .

graphs, this time including information about the scheduling policy. In the

course of analyzing our example applications, we will show how computing

the difference between two executions based on different schedules can explain

why one policy yields better performance and how programs can be modified

to improve performance. In our matrix multiplication example (right graph of

Figure 2(a)), we see that the point where the graph is the widest (i.e., where

the most parallelism is available) also marks a shift in how the program uses

space. From this point on, most of the data allocated by the program are

no longer in use. Our tools can show that the high-water mark for space

under a breadth-first policy arises because all these nodes at the widest point

are concurrently active. These nodes represent the evaluation of the body of

vv mult and correspond to the top three entries in the left plot of Figure 2(b).

We have presented a simple example here but the framework and tools also apply

to programs with irregular parallel structure.

3 Cost semantics

The cost semantics for our language is an evaluation semantics that computes both

a result and an abstract cost reflecting how that result is obtained. It assigns a

single cost to each closed program that enables us to construct a model of parallel

execution and reason about the behavior of different scheduling policies.

In general, a cost semantics is necessary for any asymptotic analysis of running

time or space use. For sequential implementations of eager languages, there is

an obvious cost semantics that nearly all programmers understand implicitly.

For languages that fix the order of evaluation, the source code contains all the

information necessary to reason about performance.

In this work, we give a cost semantics that serves as a basis for the asymptotic

analysis of parallel programs, including their use of space. We believe that it is

important that this semantics assigns costs to source-level programs. However, since

the performance of programs depends on some aspects of the implementation, we

must further interpret the results of the cost semantics, as discussed in Sections 3.2

and 3.3 below.

Figure 3 shows the syntax of the call-by-value language we discuss in this section.

In addition to variables x, recursive functions fun f(x) = e, and function application

e1 e2, it includes syntax for constructing pairs {e1, e2} in parallel. As in Standard

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

424 D. Spoonhower et al.

ML, components of a pair may be projected using functions #1 and #2 . We also

include booleans and conditional expressions as they will play an interesting role in

the cost semantics.

The syntax of values v (including functions, pairs, and booleans) is distinguished

from the syntax of the corresponding source expressions: programmers never write

values in their code. Associated with each value is a location � drawn from an

infinite set of locations L. The location of a value loc(v) is defined in Figure 6.

Locations are used to express sharing and will be important in reasoning about the

space use of programs. For example, given the pair value 〈v1, v2〉�, if loc(v1) = loc(v2)

then both components occupy the same space. If loc(v1) �= loc(v2) then the two

components are represented separately. For example, the two components may be

extensionally identical (i.e., they are indistinguishable using language primitives) but

represented using disjoint parts of the heap. We refer to the subset of expressions

that does not contain any values as source expressions.

In the implementation of our profiler, we extend this fragment with integers,

floating-point numbers, lists, trees, and vectors, but none of these extensions

prove difficult. We also include an additional form of pairs that always evaluates

components of the pair sequentially. The choice between parallel and sequential pairs

allows programmers to control the granularity of parallel tasks explicitly. Finally,

we assume that all values are allocated in the heap for the sake of simplicity, but

this assumption may also be relaxed.

3.1 Semantics

A cost semantics is a dynamic semantics and thus yields results only for closed

expressions, i.e., for a given program over a single input. Just as in ordinary

performance profiling, we must run a program over a series of inputs before we can

generalize its behavior. Our cost semantics is defined by the following judgment,

which is read, expression e evaluates to value v with computation graph g and heap

graph h.

e ⇓ v; g; h

This judgment is defined in Figure 4. The extensional portions of this judgment

are standard in the way that they relate expressions to values. As discussed below,

edges in a computation graph represent control dependencies in the execution of

a program, while edges in a heap graph represent dependencies on and between

values.

Computation Graphs. Each node in the computation graph represents a single

reduction of some subexpression, or more specifically an event associated with that

reduction. Edges represent constraints on the order in which these events can occur.

Computation graphs are similar to the graphs introduced by Blumofe & Leiserson

(1998) and those used by Greiner & Blelloch (1999).

For the programs considered in this article, each computation graph is a series-

parallel graph. Each such graph consists of a single node, or a sequential or parallel

composition of smaller graphs. Every series-parallel graph has a unique initial node

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 425

e ⇓ v;g;h

e1 ⇓ v1;g1;h1 e2 ⇓ v2;g2;h2 (� fresh)

{e1,e2} ⇓ 〈v1,v2〉�;g1 ⊗g2 ⊕ [�];h1 ∪h2 ∪{(�, loc(v1)),(�, loc(v2))}
C-FORK

e ⇓ 〈v1,v2〉�;g;h (n fresh)
#i e ⇓ vi;g⊕ [n];h∪{(n,�)} C-PROJi

(n fresh)
v ⇓ v; [n] 0/;

C-VAL

(� fresh)

fun f (x) = e ⇓ 〈 f .x.e〉�; [�];⋃�′∈locs(e)(�,� ′)
C-FUN

e1 ⇓ 〈 f .x.e3〉�1;g1;h1

e2 ⇓ v2;g2;h2 [〈 f .x.e3〉�1/ f][v2/x]e3 ⇓ v3;g3;h3 (n fresh)
e1 e2 ⇓ v3;g1 ⊕g2 ⊕ [n]⊕g3;h1 ∪h2 ∪h3 ∪{(n, �1),(n, loc(v2))}

C-APP

(� fresh)

true ⇓ true�; [�] 0/;
C-TRUE

(� fresh)

false ⇓ false�; [�] 0/;
C-FALSE

e1 ⇓ true�1;g1;h1 e2 ⇓ v2;g2;h2 (n fresh)
if e1 then e2 else e3 ⇓ v2;g1 ⊕ [n]⊕g2;

h1 ∪h2 ∪{(n, �1)}∪
⋃
�∈locs(e3)(n, �)

C-IFTRUE

e1 ⇓ false�1;g1;h1 e3 ⇓ v3;g3;h3 (n fresh)
if e1 then e2 else e3 ⇓ v3;g1 ⊕ [n]⊕g3;

h1 ∪h3 ∪{(n, �1)}∪
⋃
�∈locs(e2)(n, �)

C-IFFALSE

Fig. 4. Cost semantics. This semantics yields two graphs that can be used to reason about

the parallel performance of programs. The substitution [v/x] of a value v for a variable x is

a capture-avoiding substitution defined in Figure 5. The outermost locations of values loc(v)

and expressions locs(e) are defined in Figure 6. Parallel composition takes precedence over

serial composition so g1 ⊗ g2 ⊕ g3 should be read as (g1 ⊗ g2) ⊕ g3.

that precedes all other nodes. Dually, every series-parallel graph also has a unique

final node that is preceded by all other nodes. Nodes are denoted � and n (and

variants). Graph are written as tuples such as (n; n′;E) where n is the initial node,

n′ is the final node, and E is a set of edges. The remaining nodes of the graph

are implicitly defined by the edge list. The primitive operations used to build

computation graphs are shown in Figure 7. (In this figure and elsewhere, a gray

diamond stands for an arbitrary subgraph.) A graph consisting of a single node n

is written (n; n; ∅) or more briefly [n]. In the parallel composition (on the right),

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

426 D. Spoonhower et al.

[v/x]x = v
[v/x]y = y (if x �= y)
[v/x]fun f (y) = e = fun f (y) = [v/x]e (if x �= y and x �= f)
[v/x]e1 e2 = [v/x]e1 [v/x]e2

[v/x]{e1,e2} = {[v/x]e1, [v/x]e2}
[v/x](#i e) = #i ([v/x]e)
[v/x]true = true
[v/x]false = false
[v/x]if e1 then e2 else e3 = if [v/x]e1 then [v/x]e2 else [v/x]e3

[v/x]v′ = v′ (where v′ is a value)

Fig. 5. Substitution. These equations define substitution for our semantics. This is a

standard, capture-avoiding substitution.

loc(〈 f .x.e〉�) = �
loc(〈v1,v2〉�) = �
loc(true�) = �

loc(false�) = �

locs(fun f (x) = e) = locs(e)
locs(e1 e2) = locs(e1)∪ locs(e2)
locs({e1,e2}) = locs(e1)∪ locs(e2)
locs(#i e) = locs(e)
locs(true) = 0
locs(false) = 0
locs(if e1 then e2 else e3) = locs(e1)∪ locs(e2)∪ locs(e3)
locs(v) = loc(v)

/
/

Fig. 6. Locations of values and expressions. Locations are used in measuring the space

required to represent a value and can appear in expressions after a substitution has occurred.

the node n is called the fork point and the node n′ is called the join point. We

identify graphs up to reordering of nodes and edges: binary operations ⊕ and ⊗ on

computation graphs are commutative and associative. As suggested by the notation,

⊗ is assigned higher precedence than ⊕.

Edges in the computation graph point forward in time: an edge from node n1 to

node n2 indicates that the expression corresponding to n1 must be evaluated before

that corresponding to n2. In our figures, nodes will be arranged so that time passes

from top to bottom. We follow standard terminology and say that if there is an edge

from n1 to n2 then n1 is a parent of n2 and n2 is a child of n1. If there is a non-empty

path from n1 to n2, then we write n1 ≺g n2 and say that n1 is a predecessor of n2,

and that n2 is a descendant of n1.

Heap Graphs. We extend the work of Greiner & Blelloch (1999) with heap graphs.

Heap graphs are also directed, acyclic graphs but are not necessarily series-parallel

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 427

Single Node Serial Composition Parallel Composition

[n] g1 ⊕g2 g1 ⊗g2

(n1;n′1;E1)⊕ (n2;n′2;E2) (n1;n′1;E1)⊗ (n2;n′2;E2)

n

g1

g2

g1 g2

n

n′

(n;n 0/;) (n1;n′2;E1 ∪E2 ∪{(n′1,n2)}) (n;n′;E1 ∪E2 ∪{(n,n1),
(n,n2),(n′1,n

′),(n′2,n
′)})

n,n′ fresh

Fig. 7. Graph operations for pairs. The graphs associated with our language (a language with

parallel pairs) are built from single nodes as well as the serial and parallel composition of

smaller graphs.

graphs. Each node again represents the evaluation of a subexpression. For source

expressions, each heap graph shares nodes with the computation graph arising from

the same execution. In a sense, computation and heap graphs may be considered as

two sets of edges on a shared set of nodes. While edges in the computation graph

point forward in time, edges in the heap graph point backward in time.

Each edge in the heap graph represents a dependency on a value: if there is an

edge from n to � then n depends on the value with location �. The sink of a heap

edge will always be a node � corresponding to the value allocated at that point in

time. The source of a heap edge may be either a node �′ (indicating a dependency

among values) or node n (indicating a dependency on a value by an arbitrary

computation). In the first case, the memory associated with � cannot be reclaimed

while the value represented by �′ is still in use. In the second case (where n represents

a point in the evaluation of an expression) the memory associated with � cannot be

reclaimed until after the expression corresponding to n has been evaluated. Heap

graphs will be written as a set of edges. As above, the nodes are left implicit. The

evaluation rule for parallel pairs (c-Fork) is an example of a dependency between

values: two edges are added to the heap graph to represent the dependencies of the

pair on each of its components. Thus, if the pair is reachable, so is each component.

In the evaluation of a function application (c-App), however, two edges are added

to express the uses of values. The first such edge marks a use of the function. The

second edge is more subtle and denotes a possible last use of the argument. For strict

functions, this second edge is redundant: there will be another edge leading to the

argument when it is used. However, for nonstrict functions, this is the first point at

which the garbage collector might reclaim the space associated with the argument.

As discussed in Section 7, these edges are critical in ensuring that the specification

given by the cost semantics can be implemented.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

428 D. Spoonhower et al.

A similar concern arises in the rules for conditionals. In c-IfTrue, the semantics

must record the locations that appear in the branch that is not taken. (In this case,

these are the locations of e3.) Again, the intuition is that this is the first point at

which the storage corresponding to these locations might be reclaimed. These edges

represent our imperfect knowledge of program behavior at runtime: we cannot, in

general, predict which branch will be taken nor which values may be reclaimed. The

rule c-IfFalse is analogous. These rules will be discussed in more detail after we

have made a more concrete connection between heap graphs and space use.

While there is some flexibility in designing these rules, we choose the versions

presented here because they can be implemented in a reasonable way and yet seem

to constrain the implementation sufficiently. Care must be taken, however, as the

implications of rules can be subtle (see the example in Section 7.1).

3.2 Schedules

Together, the computation and heap graphs enable a programmer to analyze the

behavior of her program under a variety of scheduling policies. For a given program,

each policy will give rise to a particular parallel execution that is constrained by the

computation graph g (as well as other parameters such as the number of processors).

Definition 1 (Schedule Order)

A schedule order � (or more briefly a schedule) for a computation graph g is defined

by a partial order on the nodes of g such that,

• ∀n ∈ nodes(g). n � n,

• ∀n1, n2 ∈ nodes(g). n1 ≺g n2 ⇒ n1 � n2,

Where � is the corresponding strict partial order given by the reflexive reduction

of �.

An instance n1 � n2 of this partial order can be read as “n1 is scheduled no later

than n2.” The definition above requires that every node in g is scheduled. It also

requires that the corresponding strict partial order is a super-order of the precedence

relation given by the edges of g. It follows that the initial node of a graph is the

always the first node scheduled, and the final node is always the last node scheduled.

We can extend a schedule order from individual nodes to sets of nodes in a

straightforward manner. Given two sets of nodes N1 and N2, N1 is scheduled before

N2 if every node in N1 is scheduled before every node in N2.

N1 � N2 iff ∀n1 ∈ N1, n2 ∈ N2. n1 � n2

The partial order defining a schedule gives a global view of all the events that

occur during the evaluation of a program. In some cases, it will be useful to consider

more narrow views of the events that occur in a schedule. For example, we can view

a schedule from a particular moment in time. Two nodes n1 and n2 are scheduled

simultaneously (written n1 �� n2) if neither n1 nor n2 is scheduled after the other.

n1 �� n2 iff n1 � n2 ∧ n2 � n1

We shall use this notion of simultaneity to reason about space use in the next

section.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 429

3.3 Roots

To understand the space use of a schedule �, we first partition the set of nodes in

the computation graph into a sequence of sets of simultaneously scheduled nodes.

We call such a partition the steps of the schedule.

steps(�) = N1, . . . , Nk such that

⎧⎨
⎩

∀n ∈ nodes(g). ∃Ni.n ∈ Ni,

N1 � · · · � Nk , and

∀1 � i � k, ∀n1, n2 ∈ Ni. n1 �� n2

The first two conditions ensure that these sets define a partition: no node is related

to itself by the strict partial order �. This partition is unique because every node in

Ni is scheduled simultaneously and is therefore incomparable with every other node

in Ni. Thus no node in Ni can be moved to any other set that is scheduled before

or after Ni.

For any step Ni, we define the closure N̂i as the set of all the nodes that have

been scheduled up to and including that step.

N̂i =
⋃

1�j�i

Nj

While nodes in N̂i are not necessarily scheduled simultaneously, it is still the case

that N̂i � Ni+1. With these sets in mind, we can think of a schedule as defining a

wavefront that advances across the computation graph, visiting some set of nodes

at each step. We say that a node n is ready at step Ni+1 if all of the parents of

n appear in N̂i but n �∈ N̂i.

Given a schedule � of a graph g with steps N1, . . . , Nk , consider the moment in

time represented by some Ni. Because N̂i contains all previously scheduled nodes

and because edges in h point backward in time, each edge (n, �) in h will fall into

one of the following three categories.

• Both n, � �∈ N̂i. As the value associated with � has not yet been allocated, the

edge (n, �) does not contribute to the use of space at step Ni.

• Both n, � ∈ N̂i. While the value associated with � has been allocated, the use

of this value represented by this edge is also in the past. Again, the edge (n, �)

does not contribute to the use of space at step Ni.

• We have � ∈ N̂i, but n �∈ N̂i. The value associated with � has been allocated,

and n represents a possible use in the future. The edge (n, �) does contribute

to the use of space at step Ni.

In the definition below, we must also explicitly account for the location of the

final value resulting from evaluation. Though this value may never be used in the

program itself, we must include it when computing space use.

Definition 2 (Roots)

Given e ⇓ v; g; h, the roots after scheduling the nodes in N and with respect to

location �, written rootsh,�(N), is the set of nodes �′ ∈ N where �′ = � or h contains

an edge leading from outside N to �′. Symbolically,

rootsh,�(N) = {�′ ∈ N | �′ = � ∨ (∃n.(n, �′) ∈ h ∧ n �∈ N)}

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

430 D. Spoonhower et al.

g1

n

g2

locs(e2)

locs(e1)

locs(e3)

(a) before branch

g1

n

g2

locs(e2)

locs(e1)

locs(e3)

(b) after branch

Fig. 8. Modeling space use for conditional expressions. This figure shows cost graphs for

a conditional expression evaluated using the rule c-IfTrue. Each part shows one step of a

schedule of these graphs: before (a) and after (b) the branch is taken. A dashed line divides

those nodes that have been scheduled from those that have not, and heap edges that point

to roots are drawn with heavy lines.

The location of a value loc(v) is the outermost location of the value as defined in

Figure 6, and serves to uniquely identify that value. The locations of an expression

locs(e) are the locations of any values that appear in that expression as a result of

substitution. As we will often be interested in the roots with respect to a value, we

write rootsh,v(N) as an abbreviation for rootsh,loc(v)(N).

We use the term roots to evoke a related concept from work in garbage collection.

For a reader that is most comfortable thinking in terms of an implementation, the

roots might correspond to those memory locations that are reachable directly from

the processor registers or the call stack. In a parallel implementation, it also includes

those locations that are reachable directly from the scheduler queue.

Roots must be defined “with respect to a location” so that the final result of

evaluating an expression is not lost. This corresponds to an observation of that

result. Thus rootsh,v(N) will account for the cost of representing v even if v is not

used in the remainder of the computation.

As an example, Figure 8 shows simplified cost graphs derived from an expression

of the form if e1 then e2 else e3 and an application of the rule c-IfTrue. The two

parts of the figure depict two distinct points in time for a single schedule of these

graphs. In both parts, a dashed line divides those nodes that have been scheduled

from those that have not. As in other figures, edges in a computation graph run

from top to bottom, while edges in a heap graph run from bottom to top. Those

heap edges that point to roots are drawn as thicker lines.

By assumption, e1 evaluates to true (or more precisely, a value true�1). This

computation is represented by the subgraph g1. Next, e2 is evaluated (as represented

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 431

by the subgraph g2). The three clouds at the top of each graph represent the sets

of nodes in the heap graph corresponding to the locations of the expressions e1,

e2, and e3. (We assume that this conditional expression appears within the context

of a larger expression and that this conditional may have subexpressions which are

values.) The node labeled n represents the point at which the condition is tested and

the branch is taken. Recall that the cost semantics adds heap edges from n to the

locations of the branch that is not taken (here, e3).

In Part (a), n has not yet been scheduled. At this point in time, the roots include

the locations of e3 as well as those of e2 and the value that is being tested. Each

of the four heavy heap edges in the figure points to one such root. A garbage

collector cannot (in general) determine which values will actually be required in the

remainder of the computation and therefore must preserve any reachable values

until the branch is taken. The cost semantics admits such an implementation by

including all these locations among the roots.

Part (b) depicts the point in time just after n has been scheduled, or equivalently,

after the branch has been taken. At this point, a garbage collector may reclaim space

used to represent any values that appear in e3 (but do not appear in e2). The figure

shows how this is reflected in the cost semantics: the edges from n to the locations

of e3 are no longer roots.

It is possible to define a cost semantics that does not include edges pointing to

the values of the branch not taken (e.g., those from n to the locs(e3)). However,

building an implementation faithful to such a cost semantics would be impossible:

it would require the language implementation (and in particular, the garbage

collector) to predict which branch will be taken for each conditional expression

in the program. Furthermore, it must make such predictions without consuming any

additional space. These additional edges distinguish what might be called “true”

garbage from “provable” garbage: though we would like to measure the memory

required by only those values that will actually be used in the remainder of the

computation, we cannot expect an implementation to efficiently determine that

set of values. Instead, we settle for an approximation of those values based on

reachability.

Our cost semantics maintains an invariant that at each point in a schedule,

the roots of the heap graph correspond to values that must be preserved given

information available at that point in time. Thus the heap graph encodes not only

information about values in the heap, but also information about uses of those

values over time.

The following theorem serves as a sanity check for our definition of roots and

of the heap graphs defined in the cost semantics. Informally, it states that, given

an expression e and cost graphs g and h, the locations of e are the same as the

roots at the start of the evaluation of e. (When considered in the context of a larger

computation, all of the locations of e will be scheduled before any of the nodes of

g. Thus rootsh,v(locs(e)) is the smallest set of roots at the start of the evaluation of e

in any parallel schedule.) If one of the locations in locs(e) did not appear in the set

of roots, then either our definition of roots is incorrect or there are edges missing

from the heap graph.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

432 D. Spoonhower et al.

Theorem 1 (Initial Roots)

If e ⇓ v; g; h then rootsh,v(locs(e)) = locs(e).

Proof

By induction on the given derivation.

Case c-Fork: Here, we have locs(e) = locs(e1) ∪ locs(e2). For i ∈ {1, 2}, the

induction hypothesis yields rootshi,vi(locs(ei)) = locs(ei). It suffices to show that for

each � ∈ locs(e) either � = loc(v) or that there exists an edge (n, �) ∈ h such that

n �∈ locs(e). Consider one location �′ such that �′ �= loc(v). Without loss of generality,

assume that �′ ∈ locs(e1), and therefore �′ ∈ rootsh1 ,v1 (locs(e1)). It follows that either

�′ = loc(v1) or there exists an edge (n, �′) ∈ h1 such that n �∈ locs(e1). Take the first

case; by construction, there is an edge (�, loc(v1)) and � �∈ locs(e) since � was chosen

to be fresh. In the second case, the edge (n, �′) is also in h and it remains to show

that n �∈ locs(e2). Since (n, �′) ∈ h1 it follows that n ∈ nodes(g1) and since nodes in

the computation graph are chosen to be fresh, n �∈ locs(e2).

Case c-Proji: In this case, e = #i e′ and locs(e) = locs(e′). As a subderivation, we

have e′ ⇓ 〈v1, v2〉�; g′; h′ with h = h′ ∪ (n, �). Inductively, rootsh′ ,�(locs(e′)) = locs(e′).

It is sufficient to show that for each �′ ∈ locs(e′) either �′ = loc(v) or there exists an

edge (n′, �′) ∈ h such that n′ �∈ locs(e′). Assume that �′ �= loc(v). Since �′ ∈ locs(e′)

we have �′ ∈ rootsh′ ,�(locs(e′)). Then either �′ = � or there exists an edge (n′, �′) ∈ h′

such that n′ �∈ locs(e′). In the first case, we have an edge (n, �′) ∈ h and since n was

chosen to be fresh n �∈ locs(e′). In the second case, the required edge is also in h

since h′ ⊆ h.

Case c-Val: Here, locs(e) = {loc(v)}. From the definition, rootsh,v({loc(v)}) =

{loc(v)}.
Case c-Fun: In this case, e = fun f(x) = e′ and locs(e) = locs(e′). Assume loc(v) = �.

As there are edges in h from � to each �′ ∈ locs(e′), it follows that rootsh,v(locs(e′)) =

locs(e′).

Case c-App: In this case, e = e1 e2. Each of the locations in locs(e) comes from

e1 or e2. As in the case for c-Fork, we apply the inductive hypothesis to each

subexpression and then show that each location in locs(ei) is also in rootsh,v(e),

either because of an edge appearing in one of the heap subgraphs or because of one

of the edges added in this rule.

Case c-True (and c-False): Here, locs(e) is empty, and the result is immediate.

Case c-IfTrue (and analogously c-IfFalse): As the locations of a conditional

expression may come from either branch, we must ensure that they are also in the

initial roots. In c-IfTrue, the locations of e2 are included in the set of roots as has

been shown inductively in previous cases. For each location � in e3, there is an edge

from n to each � and, because n does not appear in the locations of e, each such

location is also in the roots of e. �

3.4 Space use

Roots describe only those values which are immediately reachable from the current

program state. To understand the total space required to represent a value, we must

consider all reachable nodes in the heap graph. We write �1 �h �2 if there is a

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 433

(possibly empty) path from �1 to �2 in h. Below, we define the space required for

the parallel evaluation of expressions. Though these definitions do not precisely

account for the space required to represent values in some implementations of

the language, they will still enable us to account for the asymptotic space use of

programs. Moreover, an implementation may use more space than is described here,

depending on some details of the language implementation (e.g., how frequently the

garbage collector runs).

The first definition gives the space required to represent the state of parallel

evaluation at a single moment in time. It accounts for all values that have been

allocated and may be used in the remaining evaluation of the expression.

Definition 3 (Space Required at a Step)

The space required at a step N of a schedule that eventually computes a value v is

the number of nodes in the heap graph h that are reachable starting from the nodes

in rootsh,v(N).

spacev,h(N) = |{� ∈ h | ∃�′ ∈ rootsh,v(N).�′ �h �}|

Definition 4 (Space Required by a Schedule)

The space required by a schedule � that computes a value v is the maximum amount

of space required in any step in that schedule.

spacev,h(�) = max({spacev,h(N) | N ∈ steps(�)})

These definitions are implemented as part of our profiler and are used to generate

the plots such as those in Figure 2(b) and in the following section. Plots that show

the simulated high-water mark for space-use (such as Figure 2(b)) are derived as

follows: given a program and input, the cost semantics is used to derive a value

v, a computation graph g, and a heap graph h; a scheduling policy is then used

to determine a schedule � for g; and the minimum required space is computed as

spacev,h(�).

3.5 Provable implementations

In the following section, we will use cost graphs, schedules, and roots as a basis

for our profiling tools. However, these concepts can also serve as part of a formal

specification of a language implementation. The definition of schedules given above

includes any execution that respects the dependencies present in the original program.

This includes schedules that use an unbounded amount of parallelism in a single

step as well as those that allow some processor to remain idle even when there is

work to be performed.

We can refine this definition to limit ourselves to more realistic classes of schedulers

and even to particular policies. One advantage of using cost graphs is that such

refinements can be stated in a simple and clear manner. For example, greedy

scheduling policies are those that avoid leaving processors idle whenever possible.

Using the definitions above, a schedule � that uses p processors is greedy if

∀n1, n2. n1 � n2 ⇒ ∃n3.(n3 ≺g n2 ∧ n1 �� n3) ∨ |{n | n �� n1}| = p

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

434 D. Spoonhower et al.

This states that a schedule that uses p processors is greedy if, whenever n2 is

scheduled after n1 then either there was a sequential dependency to n2 from some

node scheduled simultaneously with n1, or there were p − 1 other nodes that were

scheduled simultaneously with n1.

Similarly, we can define the behavior of any scheduling policy that is based on a

schedule for a single processor or a 1-schedule (Blelloch et al. 1999). This includes

both the depth-first and breadth-first scheduling policies used in this work. A 1-

schedule is defined by a strict linear order <1 on the nodes of the computation

graph. The following implication must hold for any parallel schedule � based on

such a 1-schedule.

∀n1, n2. n1 � n2 ⇒ n1 <1 n2 ∨ ∃n3.(n3 ≺g n2 ∧ n1 �� n3)

This implication states that whenever a node n1 is scheduled before node n2 then

either n1 came before n2 in the strict order <1 or there was a predecessor of n2 that

was scheduled simultaneously with n1.

Though it is beyond the scope of the current work, one can also give an

implementation of our parallel language that makes the scheduling policy explicit.

For example, one can present such an implementation using a small-step parallel

semantics. Such a semantics is known as a provably efficient implementation (Greiner

& Blelloch 1999) because each transition can be related to a step in a schedule of

the corresponding cost graphs. The constraints described in this section serve as

concise specifications for these implementations.

4 Profiling

Profiling has long been used as a means for improving the performance of programs,

and space profiling has been used to great effect in improving the performance of

sequential call-by-need programs (Runciman & Wakeling 1993a). Measurements are

usually taken by instrumenting either the source code or the runtime system and

then running the program. One issue that arises is that measurements derived using

this method reflect not only the original program but also the compiler and runtime

system. In the case of our implementation in MLton and for one particular program,

there was a significant difference in space use between the original and the compiled

versions of that program, due to a space leak introduced by one of the existing

optimizations in MLton.

We address this issue by considering an alternative method of profiling. Semantic

profiling relies only on the semantics of the source program. While more traditional

profiling can be viewed as a set of measurements about a program together

with a particular implementation of the language, semantic profiling gives results

independently of any implementation. Using the profiling tools described in this

section, we discovered and helped to fix the aforementioned bug in MLton (see

Section 7).

To achieve this implementation-independence, our profiler is based on the cost

semantics presented in the previous section. Though this method offers less precision

than a traditional profiler, its results predict asymptotic space use for any provable

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 435

implementation of the language. In addition, a semantic profiler can be used to

reason about the performance of scheduling policies or hardware configurations

even without full implementations of these policies or access to the hardware.

As with other forms of profiling, semantic profiling gives answers specific to a

particular input and, similarly, only yields results for inputs where the program

terminates. For each closed program, the cost semantics is used to derive a pair of

cost graphs. We have implemented our cost semantics as an interpreter in Standard

ML (Milner et al. 1997) using a straightforward transcription of the inference rules.

The cost graphs are then interpreted using the techniques described in this section,

and the results are presented to the programmer along with more concrete measures

of performance. We remind the reader that cost graphs, and therefore the results of

the profiler, are not abstract in the sense of abstract interpretation (Cousot & Cousot

1977): they do not approximate the extensional behavior of programs. Instead, they

are abstract in that they do not explicitly account for many aspects of the language

implementation, including the compiler and garbage collector.

4.1 Simulation

Using cost graphs, our profiler can simulate the parallel execution of programs.

This simulation can be broken down into three parts: a generic component that

maintains information about the graph traversal, an implementation of a scheduling

policy, and a function that measures some aspect of program performance. Below,

we describe how different scheduling policies are integrated into our profiler and

how information about memory use is computed and presented to the programmer.

Scheduling Policies. To include different scheduling policies in our profiler, one must

simply implement a function that, given a graph and the set of all ready nodes,

determines which nodes should be scheduled in the next step. Policies can usually

be implemented with a few lines of code.

For example, the depth-first scheduling policy is simulated using a list to represent

the set of ready nodes. (Recall that a node is ready if all its parents have been

visited, but it has not yet been visited.) To simulate P processors, the first P nodes

are removed from the list. The profiler must then determine the set of nodes that

are enabled in this step. This is accomplished by mapping a function defined by the

edges of the computation graph across these nodes. The results are then concatenated

together and added at the front of the list of ready nodes. These concatenated nodes

must be kept in the same order as the corresponding nodes that were removed from

the ready list to ensure a depth-first traversal of the graph (Blelloch et al. 1999).

Note that the profiler performs none of the actual computation of the program.

The process of simulating a scheduling policy requires only the nodes and edges of

the computation graph. The breadth-first policy uses a similar implementation, but

instead of adding new nodes to the beginning of the list, it adds them at the end.

The work-stealing scheduling requires slightly more effort: it must maintain a

separate set of nodes for each processor. Each set is maintained using a list similar

to that used by the depth-first scheduler. If a list becomes empty, another list from

which to steal is chosen randomly. Though work-stealing derives many of its benefits

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

436 D. Spoonhower et al.

from efficient techniques for managing these sets of tasks (e.g., using doubly ended

queues as described by Frigo et al. 1998), these techniques have little if any effect

on space use and we are free to omit them in our profiler.

We have also implemented a variant of each of these policies that simulates

the more coarsely grained schedules that are used by our runtime implementation.

That is, the versions described above schedule tasks at the granularity of individual

nodes. Put another way, those versions simulate the behavior of threads that can

be preempted at arbitrary points in the execution of the program. In our runtime

implementation (as described in Section 5), scheduling is performed cooperatively

by processors, and thus a thread will only be interrupted if it makes a call to the

scheduling library, for example, to spawn a new task. In terms of the cost graphs,

which means that whenever there is exactly one node n2 that becomes ready as a

result of processor p visiting a node n1, then p will always visit n2 in the next step,

regardless of what nodes are enabled by other processors.

As the profiler is a sequential program, simulating scheduling policies in the

profiler avoids most of the complexity associated with implementing a scheduling

policy as part of the runtime: an online scheduler implemented as part of a language

runtime is an example of a concurrent program, since its behavior depends crucially

on the interleaving of memory accesses by the hardware. Such an implementation

must carefully use synchronization primitives to guard any state shared among

different processors. This is not necessary in our profiler. While the profiler could

easily be implemented as a parallel program, we leave such an implementation as

future work. Note, however, that the extensional semantics of such a implementation

would be identical, by definition, to the one we describe in this article. We should

further note that our implementation is not a hardware simulator. It is an abstraction

of the actual implementation: it does not account for the precise cost of scheduling

each node, and it only approximates the interleaving of tasks that would occur in

the runtime implementation. In the simulation, processors move in lock-step as they

visit nodes and fully “synchronize” after each step.

Space Use. Once the profiler has computed the set of nodes visited at a given step,

the amount of memory required at this step can be determined by following the

steps outlined in the previous section. In particular, the profiler uses the set of visited

nodes to determine the set of roots (i.e., visited nodes that are the sink of a heap

edge that leads from an unvisited node). The total space use is determined by the set

of nodes in the heap graph that are reachable from these roots. Because the number

of nodes visited in each step is small compared to the total number of nodes in

the computation graph, our profiler explicitly maintains the set of edges that cross

between unvisited and visited nodes. At each step, it simply adds and removes edges

from that set based on which nodes are visited.

While it is possible to use this technique to show the total space use as a function

of time since the beginning of program execution (as in Runciman & Wakeling

1993a), we have found it more useful to record the maximum amount of space

required at any point during an execution. We refer to this quantity as the high-

water mark of space use. By iterating over different inputs, this quantity may then

be plotted as a function of input size to show trends in space use.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 437

The profiler is also able to attribute space use to variables and expressions found

in the source program. To do so, it uses an extended version of the cost semantics

that associates a source expression or other annotation with each node in the heap

graph. For example, the node corresponding to the allocation of a sequential pair

comprised of the values bound to variables x and y would be annotated with the

source expression (x,y). A node representing the allocation of a function value is

annotated with the list of variables that appear freely in the body of the function

(excluding the function argument). These lists are written within square brackets

(e.g., [a,b,c]). For uses of values (e.g., in the applications of array primitives such

as append) nodes are annotated with the source code of the application. Note

that this means that the annotations of some nodes may be substrings of the

annotations of other nodes. For example, there may be a node with an annotation

such as #1 lr as well as one annotated append (#1 lr, #2 lr). While it is possible

that this could lead to very long annotations, this has not been a problem in our

experience. In general, ML programmers tend to name intermediate results (as is

good programming practice), and this limits the length of annotations. In addition,

if we only consider the annotations of nodes at the sources or sinks of root edges

(as we do in the subsequent development), there will be little duplication of source

code in the annotations in which we are interested.

These annotations support profiling both the creation of values and the uses of

those values. If we are interested in what sort of values are present in the heap, then

we look at the annotations associated with the sinks of heap edges. As noted in

Section 3, the sink of a heap edge always represents a value. When showing space

use (or “retainers” in the terminology of Runciman & Röjemo 1996), we instead

consider the sources of heap edges. These correspond both to values as well as uses

of those values (e.g., function applications, pair projections).

In this article, we focus on the uses of values (or retainers). Using annotations,

our profiler is able to break down the total space use by attributing part of this

total to each root. As described previously, the total space use is proportional to the

total number of heap nodes reachable from the roots. For nodes that are reachable

from more than one root, the space associated with that node is divided equally

among all such roots. For example, if there are six nodes in the heap graph that

are each reachable from three roots, then each root would be charged two units of

space.

4.2 Visualization

The cost graphs given by our semantics are often quite large and thus difficult

for programmers to comprehend. We have implemented a method that distills these

graphs and yields their essential components. As our goal is to produce a meaningful

visual output, we associate a size and color with each node and edge. (In this write-

up, we restrict ourselves to black and shades of gray.) As the computation and

heap graphs share nodes, we show one superimposed over the other. The resulting

graph can then be rendered into various image formats using generic graph layout

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

438 D. Spoonhower et al.

software.1 All of the graphs shown in this paper are mechanically generated from

our cost semantics and an implementation of the following numbered rules. We

determined these rules in part through experimentation, but in a large part upon

the principles discussed below.

We are most interested in the parallel structure of program execution. Thus a

series of nodes that describes sequential computation can be rendered as a single

node. We use node size to indicate the amount of sequential computation and node

position to indicate computational dependencies.

1. For each node n in the computation graph, if n has out-degree one, n has

in-degree one, and the (sole) predecessor of n also has out-degree one, then

coalesce n with its predecessor. The area of the resulting node is the sum of

the area of the two coalesced nodes. Nodes in the original graph have unit

area.

2. Remove edges between coalesced nodes in both the computation and heap

graphs. (There are no self-edges in the result.)

3. Constrain the layout so that the vertical position of nodes respects the partial

order determined by computation edges.

4. Constrain the layout so that the horizontal position of nodes reflects the

sequential schedule: nodes that are scheduled earlier in the sequential schedule

should appear further to the left.

In the output graph, we draw computation edges in a light gray as the structure of

the computation graph can be roughly derived from the layout of the nodes: among

vertically aligned nodes, those closer to the top of the graph must be executed first.

Nodes are also drawn so that the sequential schedule follows a left-to-right traversal.

Finally, we also omit arrowheads on edges as they add to visual clutter. An example

of node coalescing is shown here.

distills to

Due to the structure of the cost graphs, coalescing will never create nonunique

edges in the computation graph (i.e., more than one edge between the same pair

of nodes). On the other hand, it will often be the case that there are several heap

edges between the same pair of nodes. We considered trying to represent these

duplicate heap edges, for example, by weighting heap edges in the output according

to number of duplicates. This, however, ignores any sharing among these heap edges

and may lead to confusing visual results (e.g., a group of heavy edges that represents

a relatively small amount of heap space). For graphs distilled independently of a

1 We used Graphviz (http://www.graphviz.org/) to generate the graphs shown in this article.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 439

particular point in time, duplicate heap edges are removed, and all heap edges are

given the same weight.

If we restrict ourselves to a single moment in time, we can overcome the difficulties

with representing sharing and also focus on the behavior of a specific scheduling

policy and its effect on space use. We use the color of both nodes and heap edges to

highlight the behavior of the scheduling policy at step Ni, the moment when space

use reaches it high-water mark.

5. Fill nodes with black if they are executed at or before step Ni, and gray

otherwise.

6. Draw heap edges that determine roots at step Ni in black and other heap

edges in gray.

We must be careful about which nodes we coalesce, as we expect those heap edges

that determine roots to connect only executed and unexecuted nodes.

7. Avoid coalescing two nodes if one has been executed at or before step Ni and

the other has not.

Finally, now that we have restricted ourselves to a single moment in time, we can

properly account for sharing in the heap graph.

8. Weight each heap edge according to its share of the total amount of heap

space reachable from that edge at step Ni.

Thus the total space use at the high-water mark may be determined from the total

weight of the black heap edges (i.e., those representing the roots). Generally, the

above rules mean that the visual properties of distilled graphs can be interpreted as

follows.

The larger the. . . then the greater the. . .

graph height sequential dependencies

graph width possible parallelism

node size computation

edge thickness space use

The sizes of graphs for several example applications are shown in Table 1, both

before and after coalescing nodes and edges. These applications are described in

Section 6.

5 Implementation

In this section, we describe an implementation of a parallel functional language based

on our semantics. This serves to validate our profiling results and demonstrate that

implementations of our specification can achieve good parallel speed-ups.

Our implementation is an extension of MLton (Weeks 2006), a whole-program,

optimizing compiler for Standard ML (Milner et al. 1997). This is the first parallel

implementation of MLton. In keeping with the philosophy that performance-critical

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

440 D. Spoonhower et al.

Table 1. Graph sizes before and after distillation

Original Distilled

Application Input size Nodes Heap edges Nodes Heap edges

Matrix multiplication 4 4,028 1,371 314 168

” 6 12,690 4,239 1,074 534

” 8 29,032 9,579 2,554 1,212

Quicksort 16 9,720 6,773 79 76

” 24 21,496 15,341 119 116

” 32 37,880 27,365 159 156

Quickhull 16 15,259 8,788 459 618

” 24 29,343 17,264 859 1,218

” 32 40,327 23,912 1,219 1,794

n-queens 4 16,985 7,959 79 91

” 5 82,377 38,252 264 402

” 6 397,873 175,821 759 1051

code can be written in a high-level language, we implemented as much of the runtime

support for parallelism in SML as we could. That said, we were also required to

make some changes and additions to the existing runtime system, which is written

in C.

5.1 Runtime system

MLton is comprised of a compiler, a set of libraries, and a uniprocessor runtime

system. Our first task was to make modifications to the runtime to ensure that

shared resources would be safely accessed by concurrently executing processors. In

our initial revision, we added a global mutex around all accesses to these shared

resources. We then found the hottest code paths and replaced this mutex with lighter-

weight mechanisms or restructured the code to avoid synchronization altogether. In

some cases, this required adding per-processor state. For example, each processor

maintains a local allocation pool that it may use to satisfy allocation requests

without synchronization. When the local pool is exhausted, the runtime uses an

atomic compare-and-swap operation to claim a portion of memory from the global

pool. We were also required to make some minor changes to the compiler and

standard basis library to ensure thread safety.

We have not yet addressed the issue of parallel garbage collection in our

implementation. However, we believe that previous work in parallel collection

for SML (Cheng & Blelloch 2001) could be carried over in a straightforward

manner.

Our runtime supports an additional runtime parameter that indicates how many

processors to use.2 For each processor, the runtime sets up the local processor

2 We envision a version that allows users to dynamically add and remove processors from the active set,
but in the current implementation, this set remained fixed.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 441

signature SCHEDULING POLICY =
sig

(∗ processor identifier ∗)
type proc = int
(∗ abstract type of a task, defined elsewhere as unit → unit ∗)
type work

(∗ the first argument is the identifier of the current processor ∗)
(∗ add new work to the queue; highest priority appears first ∗)
val add : proc → work list → unit
(∗ remove the next, highest priority work ∗)
val get : proc → work option
(∗ mark the most recent unit of work as done ∗)
val finish : proc → unit
(∗ is there higher priority work for the given processor? ∗)
val shouldYield : proc → bool

end

Fig. 9. Signature for scheduling policies. Scheduling policies are defined by implementing

this signature.

state and invokes the main scheduling loop. The remaining parallel functionality,

including the scheduling loop, is handled by a set of SML modules, described below.

5.2 Scheduling policies

At the core of our parallel library is the scheduling loop. The loop is run in parallel

by each processor and consists of running a single task. It is the role of the scheduling

policy to determine which task is run in each iteration of the loop. To plug-and-play

with different scheduling policies, we developed a simple signature that any policy

must implement (Figure 9).

Given the purpose of scheduling policies, the functions add and get should be

self-explanatory. With respect to add, “priority” means the order in which tasks

would have been evaluated by a sequential implementation. Each scheduling policy

chooses whether or not to respect this priority when returning tasks from the get

function: a policy’s notion of priority may differ depending on how that policy

organizes tasks.

The finish function is called once for each task removed from the queue. For many

scheduling policies, finish does nothing. The final function shouldYield is used to

avoid some nontrivial thread operations in cases where they are unnecessary. This

function returns a boolean value that indicates whether or not there is any other

ready task that has a higher priority (as assigned by the scheduling policy) than the

task being evaluated by the current processor. If the result is true, then the current

task should be suspended and enqueued. Otherwise, the current task can continue.

The shouldYield operation is discussed in more detail in the description of the work-

stealing scheduler below. Though we present this interface as an SML signature, we

believe that this abstraction would be useful for parallel implementations of other

languages.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

442 D. Spoonhower et al.

We include three scheduling policies in our analysis and implementation: depth-

first, breadth-first, and work-stealing. Each is between 50 and 125 lines of SML in

our implementation. These policies are all greedy, in that processors will not be kept

idle if there are available tasks (as discussed in Section 3). Moreover, each permits

rescheduling only at fork points and join points. These are features of the particular

schedulers we study and not limitations of our framework.

Breadth-First Scheduling. The breadth-first policy is the simplest policy in our

implementation. It maintains a single FIFO queue and uses a global lock to serialize

concurrent access to the queue. This scheduling policy performs a left-to-right,

breadth-first traversal of the computation graph and is equivalent to a round-robin

scheduler. It is the “fairest” of the three schedulers we implemented in the following

sense: if we consider each chain of nodes in the computation graph as a thread, it

alternates scheduling each of these threads among the available processors.

Depth-First Scheduling. The parallel depth-first policy (Blelloch et al. 1999) prioritizes

tasks according to a left-to-right depth-first traversal of the computation graph. Our

implementation uses a single global queue and runs tasks from the front of the

queue. This it not strictly a LIFO queue: to ensure that our implementation obeys

the global left-to-right depth-first priority, the children of the leftmost task must be

given higher priority than the children of nodes further to the right. (In a sense,

priority is inherited.) To assign proper priorities, our implementation also maintains

one “finger” for each processor that indicates where new tasks should be inserted

into the queue (Blelloch et al. 1999). The finish function is used to clean up any

state associated with this finger.

We also experimented with a scheduling policy without this complication (where

the global queue is maintained as a LIFO stack). However, as noted above, this

policy is not faithful to a depth-first scheduling policy. There is little theoretical

work addressing this form of scheduling, and we have not considered it in our

experimental results in Section 6.

Work-Stealing Scheduling. A work-stealing scheduling policy (Burton & Sleep 1981;

Blumofe & Leiserson 1999) maintains a separate queue for each processor. Locally,

each queue is maintained using a LIFO discipline. However, if one of the processors

should exhaust its own queue, it randomly selects another processor to “steal”

from and then removes the oldest task from that queue. In the common case,

each processor only accesses its own queue, so we can use a more finely-grained

synchronization mechanism than in the other two scheduling policies to serialize

concurrent access. This leads to less contention and significantly smaller overhead

compared to the breadth- and depth-first schedulers, both of which use a single

global queue in our implementation.

Because a work-stealing policy favors local work, a dequeue that immediately

follows an enqueue will always return the task that was enqueued. Our implementa-

tion avoids these two operations (and also avoids suspending the current thread) by

always returning false as the result of shouldYield. The remainder of the parallel

library checks the result of this function in cases where a dequeue will follow an

enqueue.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 443

5.3 Parallel library

The lowest level parallel interface in our library provides methods for suspending

and resuming computation along with adding new tasks to the work queue. It is

built as a thin wrapper around MLton’s user-level thread library. This wrapper

adds the proper calls to the scheduling policy to ensure that tasks are initiated in

the proper order and finished correctly. This interface, however, is not intended for

programmers. Instead, we also provide routines for parallel pairs, futures, vector,

and array manipulation based on these primitives. For example, the parallel pair

construct used in our cost semantics is implemented by the following function.

(∗ run two functions, possibly in parallel, and return their results as a pair ∗)

val fork : (unit → α) ∗ (unit → β) → α ∗ β

This function is implemented by (possibly) suspending the current computation

and adding two new parallel tasks, one for each branch of the fork. Through the

use of shared state and an atomic compare-and-swap operation, these tasks agree

which of the two finished second. This task is responsible for adding a third task

that will resume the suspended computation with the new pair. The other routines

in our library are implemented in a similar manner, or by building upon functions

such as fork.

5.4 Space profiling in MLton

One method to measure space use is to record the maximum amount of live data

found in the heap at the end of any garbage collection. Given the default behavior

of most collectors, however, there is no way to understand the accuracy of this

measurement. Using the collector to determine the high-water mark of space use

with perfect accuracy would require a collection after every allocation or pointer

update. This would be prohibitively expensive.

To rectify this problem, we have modified MLton’s garbage collector to measure

memory use with bounded error and relatively small effects on performance. To

measure the high-water mark within a fraction E of the true value, we restrict the

amount of memory available for new allocation as follows. At the end of each

collection, given a high-water mark of M bytes and L bytes of live data currently in

the heap, we restrict allocation so that no more than M ∗ (1 + E) − L bytes will be

allocated before the next collection. In the interim between collections (i.e., between

measurements) the high-water mark will be no more than M ∗ (1+E) bytes. That is,

consider the worst-case scenario, where M ∗ (1 + E) bytes of data was live at some

point between collections. No more data could be live because there was L bytes live

after the previous collection and only M ∗ (1+E)−L additional bytes were allocated

since then. Regardless of how many bytes are live at the next collection, the runtime

will always report a high-water mark of at least M, because the high-water mark is

a monotonically increasing value. (It will report more than M if more than M bytes

of live data are discovered by the collector.) We will, therefore, achieve the desired

level of accuracy. This technique differs from most collector implementations, which

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

444 D. Spoonhower et al.

use only the current amount of live data L in determining when to perform the next

collection.

For example, suppose that during the execution of a program, we have already

observed 10 MB of live data in the heap but at the present moment (just after

completing a collection), there is only 5 MB of live data. If we are satisfied with

knowing the high-water mark to within 20% of the true value, then we constrain

the collector to allocate at most 10∗ (1+0.2)−5 = 7 MB before performing another

collection. Even if all of this newly allocated data were to be live at some point in

time, the high-water mark would never exceed 12 MB. At the end of the second

collection, the runtime will report a high-water mark no less than 10 MB.

The two key properties of this technique are, first, that it slowly increases the

threshold of available memory (yielding an accurate result) and second, that it

dynamically sets the period between collections (as measured in bytes allocated) to

avoid performing collections when doing so would not give any new information

about the high-water mark. Continuing the example above, if a second collection

found only 1 MB of live data, then there is no reason to perform another collection

until at least 11 MB of new data have been allocated.

Note that this technique may also be combined with a generational garbage

collector (Lieberman & Hewitt 1983; Ungar 1984), for example, as in MLton. In

this case, limiting allocation simply means limiting the size of the nursery. As in

an Appel-style generational collector (Appel 1989), all of the remaining space may

be assigned to the older generation. Thus, this technique need not increase the

frequency of major collections. When reporting the high-water mark after a minor

collection, the collector must assume that all of the data in the older generation is

live.

As we report in the next section, this technique has enabled us to measure space

use with low overhead and predicable results and without additional effort by the

programmer.

6 Empirical results

Predictions about program performance based on a high-level semantics are only

useful if those predictions are also realized by an efficient implementation. We

validate our profiling tools empirically using an instrumented version of our MLton

implementation. Because our profiling tools do not measure exact memory usage,

we can only confirm that these predictions match the asymptotic behavior of our

implementation on equivalent inputs: where the semantics predicts space use as a

constant, linear, or super linear function of the input size, our MLton implementation

delivers similar results.

We performed our experiments on a four-way dual-core x86-64 machine with 32

GBs of physical RAM running version 2.6.21 of the Linux kernel. Each of the four

processor chips is a 3.4 GHz Intel Xeon, and together they provide eight independent

execution units. In the remainder of this section, we will refer to each execution

unit as a processor. We focus on measurements of space use but also report on

scalability.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 445

Table 2. Lines of code in applications. This table shows the size of each of the applications

described in the section. This does not include library routines such as the implementations of

parallel vectors or the collection of matrix operations used in Barnes–Hut simulation

Name Lines of code

Matrix multiplication 165

Quicksort 29

Mergesort 132

Selection sort 41

Insertion sort 13

Quickhull 68

n-queens 40

Barnes–Hut 379

We implemented several small parallel applications as part of our study. These

include the matrix multiplication example described above, several sorting algo-

rithms, the Quickhull algorithm for finding the convex hull of a set of points

(Preparata & Shamos 1988), the n-queens problem, and the Barnes–Hut simulation

of gravitational bodies (Barnes & Hut 1986). Table 2 provides a list of these

applications along with their sizes. Note that this includes a more sophisticated

version of matrix multiplication, discussed in more detail in Section 6.2 below.

6.1 Space use

For each application, we report the effect of scheduling policy and number of

processors on the amount of memory required by the application. We measured the

high-water mark of space use including both stacks and reachable objects in the

heap. Measuring this quantity with complete accuracy would require traversing all

reachable objects in the heap after every allocation and pointer mutation. Instead, we

use the technique described in Section 5.4 to measure this quantity within a tunable

bound. Figure 10 shows the high-water mark of space use for five of the applications

in our study. Smaller values indicate better performance. We use different shapes

to represent different policies: × for breadth first, + for depth-first, and � for

work-stealing. Larger symbols indicate more processors were made available; we

show results for space use on one, two, and four processors.

Matrix Multiplication. The analysis in Section 2 (recall Figure 2(b)) predicts that the

breadth-first scheduling policy uses asymptotically more space than the depth-first

policy. A similar analysis predicts that breadth-first is far worse than work-stealing.

Both these predictions are confirmed by the space use in our implementation, as

plotted in Figure 10(a).

Sorting. We implemented several sorting algorithms including quicksort, mergesort,

insertion sort, and selection sort. Figure 10(b) shows the space use of a functional

implementation of quicksort where data are represented as binary trees with lists of

elements at the leaves. In each recursive call, the first element is taken as the pivot

element. This plot shows the behavior for the worst-case input: the input elements

are given in reverse order. While we would expect quicksort to take time quadratic

in the size of the input in this case, it is perhaps surprising that it also requires

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

446 D. Spoonhower et al.

0 50 100 150 200

0

10

20

30

input size (# rows/columns)

m
ax

liv
e

sp
ac

e
(M

B
)

breadth-first
depth-first
work-stealing

(a) matrix multiplication

0 2,000 4,000 6,000

0

100

200

300

400

input size (# elements)

m
ax

liv
e

sp
ac

e
(M

B
)

(b) quicksort

0 20 40 60 80
0

2

4

6

input size (# points, thousands)

m
ax

liv
e

sp
ac

e
(M

B
)

(c) quickhull

8 10 12 14

0

50

100

150

200

250

input size (n)

m
ax

liv
e

sp
ac

e
(M

B
)

(d) n-queens

0 2,000 4,000 6,000
0

5

10

15

20

input size (# particles)

m
ax

liv
e

sp
ac

e
(M

B
)

(e) Barnes–Hut simulation

Fig. 10. Space use versus input size. Each plot shows the high-water mark of space use for

one of five applications. We tested three scheduling policies (depth-first, breadth-first, and

work-stealing) with up to four processors. Larger symbols indicate that more processors were

used. Different scheduling policies yield dramatically different performance, as discussed in

the text.

quadratic space. This behavior is also predicted by the cost semantics. The plot in

Figure 11 is generated by our semantic profiler and shows the consumers of space

for the depth-first policy at the high-water mark. The shape of this plot agrees with

the data in Figure 10(b). The plot also shows that this space is referenced by various

parts of the filter function. In particular, most of the live heap data is referenced

by the variable xs that appears in the expressions tail xs, head xs, isnil xs, and

filter xs as well as the closure [xs,filter,f].

The cost graphs in Figure 12 show that the high-water mark for this policy occurs

after the left branch of each parallel fork has executed. As expected, there are few

opportunities for parallel execution with this input because at each level of the

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 447

5 10 15 20
0

2,000

4,000

6,000

8,000

input size (# elements)

m
ax

liv
e

sp
ac

e
(u

ni
ts

)

tail xs

head xs

isnil xs

filter xs

[xs,filter,f]

(fn ⇒ . . .) rest

if f x then . . .

〈remainder〉

Fig. 11. Simulated space use for quicksort. This plot shows space use, as predicted by our

profiler, as a function of input size when using a depth-first scheduling policy and a single

processor. Overall, this plot agrees with the measurements shown in Figure 10(b). The legend

shows how space use can be attributed to subexpressions of the program.

Fig. 12. Cost graphs for quicksort. These summarized graphs show the point at which the

program reaches the high-water mark of space use under a depth-first scheduling policy: after

the first completion of a recursive invocation with a nonempty input.

recursion, quicksort splits its input into a single element on the right and all the

remaining elements on the left. However, until the partition is complete each branch

on the right-hand side is still holding on to the recursive input. This analysis suggests

an alternative implementation. If we introduce a join point between partitioning the

elements and recursively sorting them, we can avoid the asymptotic increase in space

use.

Convex Hull. This application computes the convex hull in two dimensions using the

quickhull algorithm. (This name was first used by Preparata & Shamos (1988).) We

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

448 D. Spoonhower et al.

Fig. 13. Cost graphs for quickhull. Quickhull displays a more irregular form of parallelism.

Heap edges show how data are split between different parallel branches. Portions of the graph

labeled “A” and “B” are discussed in the text.

again show results for the worst-case input: the input points are arranged in a circle

and so every point in the input is also in the hull. Figure 10(c) shows the high-water

mark of space use, which again matches our cost semantics-based predictions (not

shown).

Quickhull offers more parallelism than the previous example, but this parallelism

is still more constrained than that found in matrix multiplication. The algorithm

proceeds by partitioning the point set by dividing the plane in half (in parallel) and

then recursively processing each half (in parallel). Between these two phases there is

a synchronization. This is shown through the widening and narrowing of the graphs

shown in Figure 13.

Nodes are colored to illustrate one point in the execution of the work-stealing

scheduling policy with two processors. In this case, the work-stealing policy performs

more poorly than either of the other two policies because it starts, but does not finish,

computing these partitions. The point labeled “A” represents the code that allocates

one set of points. The black lines extending to the right of this point indicate part

of the program that will compute one half of a partition of these nodes. The circled

nodes labeled “B” also compute half a partition, but have already completed their

work and have allocated the result. At this point in time, the program is holding

onto the entire original set plus half of the resulting partition. The same pattern

appears for each processor. Neither of the other two scheduling policies exhibit this

behavior.

n-Queens. The n-queens problem asks for a placement of n tokens on an n-by-n grid

such that no two tokens appear in the same row or column, or on the same diagonal.

In the terminology of the game of chess, this would be a placement of n queens on

the board such that no queen could attack any other queen. For a given n there may

be zero or more solutions; our implementation finds all solutions for each board

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 449

Fig. 14. Cost graphs for n-queens. This figure shows the graphs for n = 5 and the breadth-first

scheduler. This scheduler requires the most space when it is maintaining a large set of partial

placements.

size. This problem is representative of a wide class of constraint problems that can

be solved by some form of search. In this example, these constraints take the form

of partial placements of less than n pieces. We represent these placements as lists of

integer pairs, one element for each queen denoting the row and column where it is

placed.

Figure 14 shows the cost graphs for the instance of this problem with n = 5. Each

branch of the search after the initial placement can be computed independently,

and these branches are arranged roughly as five columns of nodes. The graphs are

highlighted to show the point at which the breadth-first scheduler reaches its high-

water mark for space use. The breadth-first scheduler performs relatively poorly in

this application because it explores too many branches in parallel and must maintain

the sets of constraints for each of these branches. The profiler predicts that the space

use for the breadth-first scheduler will grow faster than either of the other two

scheduling policies. This is also reflected in our MLton implementation, as shown

by the last two data points in Figure 10(d).

Barnes-Hut Simulation. Figure 10(e) shows space use for our implementation of the

Barnes-Hut simulation. This algorithm approximates the gravitational force among

particles in 3-space. The force on each particle is calculated either by computing

the pairwise force between two particles or by approximating the effect of a distant

set of particles as a single, more massive particle. Particles are organized using an

octree. This algorithm and representation are easily adapted to a parallel setting:

not only can the forces on each particle be computed in parallel, but the individual

components of this force can also be computed in parallel.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

450 D. Spoonhower et al.

0 100 200 300 400 500

0

50

100

150

input size (# rows/columns)

m
ea

su
re

d
m

ax
liv

e
(M

B
)

Explicit GCs
Automatic (10% error)
Automatic (20% error)
Automatic (50% error)

(a) measured space use

0 100 200 300 400 500

100

101

102

input size (# rows/columns)

no
rm

al
iz

ed
ex

ec
ut

io
n

ti
m

e
1

=
un

in
st

ru
m

en
te

d
(l

og
sc

al
e)

(b) instrumentation overhead

Fig. 15. Profiling space use. Four different space measurements (a) and the cost of obtaining

these measurements (b). Execution times are normalized to an uninstrumented version and

shown on a logarithmic scale.

Due to its complexity (e.g., use of modules, pattern matching), we have not

implemented a version of this application that is compatible with our profiling tools.

Applying our methodology informally, however, we expect the program to generate

very wide cost graphs. Like the matrix multiplication example, the breadth-first

scheduling policy performs poorly due to the large amount of available parallelism

and the size of the intermediate results. Though its performance is not as bad as in

the multiplication example, it is still significantly worse than the other two policies.

6.2 Overhead of space measurements

Measuring space use precisely can be expensive. Using the technique described

above, however, we can measure the high-water mark of space use within a fixed

bound. Here, we compare the quality and cost of these measurements with those

derived from a hand instrumented version. In Figure 15(a), we show space use for

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 451

Table 3. Profiling space use. These data are presented graphically in Figure 15. Measured space

use is the amount of space reported by each method. A bound on the actual space use can be

derived by adding the appropriate percentage. Time overhead is reported as the ratio between the

instrumented and uninstrumented execution times. Averages are reported for the time overhead

of restricted allocation measurements.

Measured space (MB) Time overhead

Automatic (% error) Automatic (% error)
Explicit

Input size Explicit GCs 10% 20% 50% GCs 10% 20% 50%

50 0.12 0.24 0.24 0.24 2.00 6.00 3.67 2.33

100 0.86 1.54 1.54 1.55 3.87 3.09 2.26 1.70

150 1.73 2.69 2.65 2.55 2.56 1.71 1.46 1.15

200 10.16 11.49 11.51 10.87 12.00 3.24 2.18 1.54

250 13.85 15.38 14.94 15.16 10.50 2.54 1.97 1.56

300 19.73 19.88 19.28 19.02 8.35 2.39 1.73 1.35

350 25.00 24.89 24.61 22.34 8.00 2.49 1.61 1.52

400 90.43 89.22 88.09 86.04 84.27 3.77 2.60 1.74

450 107.64 102.72 101.31 99.33 78.92 3.62 2.54 1.74

500 125.96 116.93 118.05 111.54 66.79 3.19 2.40 1.71

average 3.20 2.24 1.63

blocked matrix multiplication measured four different ways. Blocked multiplication

is a version of multiplication where the input matrices are partitioned and the

products of the partitions are computed before summing them to yield the final

result. It is often chosen because it offers much better cache behavior. We found it

to be an example that was difficult to instrument in a way that was accurate but

not prohibitively slow.

All data shown in this figure use the breadth-first scheduler and one processor. The

first series � shows the measurements obtained when additional garbage collections

are explicitly added by the programmer. The other three series show the results using

the restricted allocation technique with bounds of 10%, 20%, and 50%, respectively.

These bounds are shown with error bars, but only positive errors are shown (as

the true high-water mark cannot be smaller than the reported value). The reported

values appear at the bottom of the indicated ranges. The gap between inputs of sizes

of 150 and 200 as well as the one between 350 and 400 are due to an additional

level of recursion in the algorithm. That is, the algorithm has a fixed maximum size

at which submatrices are multiplied directly rather than by partitioning them, and

input sizes such as 200 and 400 require an additional partition. Table 3 shows the

data used in these plots. The space use measurements for the restricted allocation

technique are reported values; the true values may be 10%, 20% or 50% higher.

(For an input size of 500, the 50% datum indicates that as much as much as 167.31

MB were used.)

We take the measurements derived from the explicitly added garbage collections

to be the most accurate measurement of memory use. In each case, this technique re-

ported the greatest values. The data show that the restricted allocation measurements

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

452 D. Spoonhower et al.

are much more accurate than we might expect. For example, the 50% bound seems to

be overly conservative: the actual measurements are within 15% of the measurement

derived using explicit garbage collections.

In addition to requiring less knowledge on the part of the programmer and

yielding measurements with a bounded error, this technique requires less time to

perform the same measurements. Figure 15(b) shows the execution time of these

four instrumented versions. Values are normalized to the execution time of an

uninstrumented version and shown on a logarithmic scale. By “uninstrumented,” we

mean a version of the algorithm without any explicit calls to the garbage collector or

additional restrictions on the amount of allocation between collections; that is, the

allocator and garbage collector are the unmodified MLton versions. As in the case of

the space measurements themselves, the time required to take these measurements

increases significantly at input sizes of 200 and 400, when the size of the input

requires an additional level of recursion. In Table 3, we also report averages over

the range of input sizes for the restricted allocation technique. On average, the ratio

between the time required to measure space use with a 10% (20%, 50%) bound and

the time required by the uninstrumented version is 3.20 (2.24, 1.63, respectively).

6.3 Parallel efficiency

As the purpose of parallelism is to improve performance, we also report parallel

efficiency. Efficiency is a measure of how well an implementation scales up as more

processors are added. While we are still working to improve the performance of our

implementation, these data should be sufficient to convince the reader that we have

not “cooked” our implementation simply to match the space use predictions of our

semantic profiler.

We depart from common practice by plotting efficiency rather than execution

time or speed-up. While execution time is easy to interpret, it is difficult to use

plots of execution time to ascertain trends in data or to make comparisons between

different applications or scheduling policies. Plots showing speed-up ameliorate these

problems by normalizing parallel execution time using the sequential execution time.

However, it is still difficult to understand the effect on performance when using

a small number of processors (including the overhead for a single processor) as

speed-up devotes little space to this portion of the plot. In addition, comparing

trends in the performance requires the reader to compare the relative curvature of

different data sets. Finally, efficiency is a direct indication of the cost (or overhead)

of adding additional processors and makes it more clear how this cost might be

related to the number of processors.

Parallel efficiency is defined as 100·T1/(TP ·P), where T1 is the sequential execution

time and TP is the execution time on P processors. Equivalently, efficiency is equal

to the speed-up divided by the number of processors. Efficiency can be interpreted

as the percentage of processor cycles that are being used to run the application

rather than performing some form of communication or synchronization. Thus

100% efficiency corresponds to a linear speed-up. As an example, if a scheduling

policy is 80% efficient with two processors, then it will achieve a speed-up of 1.6. If

efficiency falls to 70% with three processors, then it will only achieve a speed-up of

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 453

1 2 3 4 5 6 7 8

40

60

80

100

processor cores

ef
fi

ci
en

cy

(a) matrix multiplication

1 2 3 4 5 6 7 8

40

60

80

100

processor cores

ef
fi

ci
en

cy

(b) mergesort

1 2 3 4 5 6 7 8

40

60

80

100

processor cores

ef
fi

ci
en

cy

(c) quickhull

1 2 3 4 5 6 7 8

40

60

80

100

processor cores

ef
fi

ci
en

cy

(d) n-queens

1 2 3 4 5 6 7 8

40

60

80

100

processor cores

ef
fi

ci
en

cy

breadth-first
depth-first
work-stealing

(e) Barnes-Hut simulation

Fig. 16. Parallel efficiency. As a measure of scalability, we plot efficiency as a function of the

number of processors. As discussed in the text, efficiency is defined as 100 ·T1/(TP ·P) where

T1 is the sequential execution time and TP is the execution time on P processors. 100%

efficiency is equivalent to a linear speed-up.

2.1. Intuitively, efficiency tells us how much more computational throughput we get

for each additional processor.

Though we might hope for applications and scheduling policies that are 100%

efficient, we expect some overhead from parallel execution. Practically speaking, we

are looking for applications and scheduling policies where efficiency is independent

of the number of processors. This indicates that adding additional processors will

continue to improve performance at the same rate. In plots such as those shown

below, efficiency that is independent of the number of processors will appear as a

horizontal line.

Figure 16 shows parallel efficiency for one to eight processors for five applications.

In these plots, we do not include the cost of garbage collection. As we argued above,

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

454 D. Spoonhower et al.

previous work has shown that garbage collection can be performed efficiently in

parallel. We do, however, include overhead due to synchronization and contention

for other shared resources.

We chose benchmarks for this set of measurements not based on interesting space

use patterns, but instead by looking for applications with a reasonable potential for

parallel execution. In each case the sequential execution time T1 is the execution

time on a single processor without any of the support required for parallel execution.

In our implementation, support for parallel execution is controlled using a compile-

time constant. Though we performed some experiments with variations in task

granularity, we report on only a single granularity for each example. In each case,

this granularity was chosen to limit the overhead when run on a single processor to

an acceptable amount (typically no more than 10%–20%).

Figure 16(a) shows overhead for a blocked version of matrix multiplication. Part

(b) shows overhead for parallel mergesort on uniformly randomly distributed input.

Part (c) shows the overhead of quickhull for points distributed uniformly on a circle.

Part (d) shows the overhead for the n-queens problem with n = 14 and where no

parallelism is used for subproblems of size 6 or less. Part (e) shows the overhead

for the Barnes–Hut simulation with points distributed uniformly randomly. Though

all of these applications show some potential for faster execution, some scale better

than others. In addition, there are some clear differences in the performance trends

for different scheduling policies. For example, in the matrix multiplication example,

the initial cost of adding parallelism is greater for the work-stealing scheduler when

compared to the depth-first scheduler (leading to lower efficiency with one processor).

This cost levels off as more processors are added: work stealing is more efficient for

five or more processors. In this case, the efficiency of the work-stealing scheduler is

less dependent on the number of processors. In Part (c), the point for the depth-first

schedule with one processor is not shown due to the ranges we selected for the plots;

this point lies at 113% efficiency. That is, the depth-first scheduler with one processor

is 13% faster than the sequential version of this algorithm. We attribute this to the

fact the scheduler is fixed at compile-time and that MLton is a whole-program

compiler: we believe this choice of scheduler causes a small perturbation of the code

in the inner loop of the algorithm that results in faster execution. In the cases of

mergesort and quickhull, there does not seem to be enough parallelism to efficiently

leverage all of the processors available on this hardware. In all cases, however,

using more processors leads to lower efficiency per processor, most likely because

of contention on the memory bus. In contrast, the n-queens problem provides many

opportunities for parallel execution: given a placement of pieces in the first k rows,

each valid placement in row k + 1 is considered in parallel. In this case, the more

efficient data structures of the work-stealing scheduler (e.g. per-processor queues)

lead to better use of parallel resources. The final point for the breadth-first scheduler

does not appear within the selected range; with eight processors, the breadth-first

scheduler is only 23% efficient. Finally, the Barnes-Hut simulation scales the best of

any of our applications. It performs significantly more sequential computation than

the other examples relative to the size of the data structures it builds. As in the case

of the Quickhull algorithm, the depth-first scheduler achieves an efficiency greater

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 455

than 100% (or equivalently a super-linear speed-up for up to three processors);

we believe this is again due to the whole-program optimizations performed by the

compiler.

7 Discussion

7.1 Alternative rules

There are a number of design choices latent in the inference rules given in Figure 4.

Different rules would have led to constraints that were either too strict (and

unimplementable) or too lax.

Consider as an example the following alternative rule for the evaluation of

function application. The premises remain the same, and the only difference from

the conclusion in Figure 4 is highlighted with a rectangle.

e1 ⇓ 〈f.x.e3〉�1 ; g1; h1 e2 ⇓ v2; g2; h2 · · ·
e1 e2 ⇓ v3; g1 ⊕ g2 ⊕ g3 ⊕ [n] ; h1 ∪ h2 ∪ h3 ∪ {(n, �1), (n, loc(v2))}

This rule yields the same extensional result as the version given in Figure 4, but

it admits more implementations. Recall that the heap edges (n, �1) and (n, loc(v2))

represent possible last uses of the function and its argument. This variation of the

rule moves those dependencies until after the evaluation of the function body.

This rule allows implementations to preserve these values, even in the case where

they are not used during the function application or in subsequent evaluation. This

includes the case where these values are bound to variables that do not appear in

the program text of the function body or after the application. This is precisely the

constraint described by Shao & Appel (1994) as “safe-for-space.”

In contrast, the original version of this rule requires that these values be considered

for reclamation by a garbage collector as soon as the function is applied. Note,

however, that the semantics does not specify how the implementation makes these

values available for reclamation: it is left to the implementer to determine whether

this is achieved through closure conversion, by clearing slots in the stack frame, or

by some other means.

As this example suggests, there is some leeway in the choice of the semantics itself.

Our goal was to find a semantics that describes a set of common implementation

techniques. When they fail to align, our experience suggests that either the semantics

or the implementation can be adjusted to allow them to fit together.

7.2 Program optimizations

In validating our work, we discovered one example where we were required to change

the language implementation. We came across an example where our implementation

failed to distinguish two scheduling policies as our profiler had predicted. Specifically,

instead of one policy leading to linear use of space and the other to quadratic use

of space, the program required quadratic space under both policies.

Some investigation revealed that the problem was not in our semantics or

our parallel implementation, but in an existing optimization in MLton: reference

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

456 D. Spoonhower et al.

flattening. Analogously to tuple flattening, references that appear in a heap-allocated

data structure (e.g., a record) may be flattened or treated as a mutable field within

that structure. At run time, such a reference is represented as a pointer to the

containing structure. Accesses to the reference must compute an offset from that

pointer.

This optimization can save some space by eliminating the memory cell associated

with the reference. However, it can also increase the use of space. As the reference

is represented as a pointer to the entire structure, all of the elements of the structure

will be reachable anywhere the reference is reachable. If the reference would have

outlived its enclosing structure then flattening will extend the lifetime of the other

components.

To avoid asymptotically increasing the use of space, MLton uses the types of

the other components of the structure to conservatively estimate the size of each

component. If any component could be of unbounded size then the reference is not

flattened. The problem was that this analysis was not sufficiently conservative in its

treatment of recursive types. Though a single value of a recursive type will only

require bounded space, an unbounded number of these values may be reachable

through a single pointer. Based on our reporting, this problem has been corrected

in a recent version of MLton. The fix requires this optimization to consider any

record that contains a field with a recursive type to be of potentially unbounded

size. With this change, the example that previously required quadratic space could

be run using only linear space (as a function of its input size).

As flattening and other program optimizations affect space use, it is critical that

the language provides a specification of performance at the level of the source

code. This specification can then be used to guide programmers expectations about

performance and validate compiler optimizations.

7.3 Nested parallelism

Another form of “flattening” appears in implementations of nested parallelism (e.g.,

Blelloch & Sabot 1990; Blelloch et al. 1994; Chakravarty & Keller 2000). Here,

flattening refers to a compilation technique where by nested parallelism (where

parallel tasks may spawn new parallel tasks) is transformed into flat parallelism

(where parallel tasks are spawned only at the top level). This automatically balances

work by simultaneously exposing all available parallelism.

Though this technique is largely implemented by the compiler and less so

by the language runtime, we can still reason about it using cost graphs and

our scheduling formalism: flattening can be described as a constrained form of

breadth-first scheduling. This characterization agrees with our experience with the

flattening implementation of NESL (Blelloch et al. 1994): examples such as matrix

multiplication required so much space that they were unrunnable for even moderately

sized inputs, requiring the user to scale back parallelism explicitly. These space use

problems in NESL are an important part of the motivation for the current work.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 457

8 Related work

Parallelism and Concurrency. Many researchers have studied how to improve per-

formance by exploiting the parallelism implicit in side-effect free languages. This

includes work on data-flow languages (e.g., Arvind et al. 1989), lazy parallel

functional languages (e.g., Aditya et al. 1995), and nested data parallel languages

(e.g., Blelloch et al. 1994; Chakravarty & Keller 2000; Peyton Jones et al. 2008).

Like these languages, we provide a deterministic semantics and rely on the language

implementation to spawn new tasks and synchronize on results. Unlike languages

such as Concurrent ML (Reppy 1999) or JoCaml (Conchon & Fessant 1999), we

provide no explicit concurrency constructs to the programmer. Manticore (Fluet

et al. 2007) subsumes both paradigms and provides for both implicit parallelism and

explicit concurrency.

Profiling. In their seminal work on space profiling for lazy functional programs,

Runciman & Wakeling (1993a) demonstrate the use of a profiler to reduce the space

use of a functional program by more than two orders of magnitude. Like the current

work, they measure space use by looking at live data in the heap. However, their

tool is tied to a particular sequential implementation. Sansom & Peyton Jones (1992,

1995) extend this work with a notion of “cost center” that enables the programmer

to designate how resource use is attributed to different parts of the source program.

There has been a series of works on profiling methods and tools for parallel

functional programs (Hammond & Peyton Jones 1992; Runciman & Wakeling

1993b; Hammond et al. 1995; Charles & Runciman 1998). This work focuses on

the overhead of parallel execution instead of how different parallel implementations

affect the performance of the application. None of this work measures how different

scheduling policies affect space use.

Scheduling. Scheduling policies and their effects on space use have been studied

extensively in the algorithms community (e.g., Blelloch et al. 1999; Blumofe &

Leiserson 1999). Our representation of parallel tasks as directed graphs is inspired

by this work. However, we use these graphs as part of a formal semantics rather

than simply as an abstract model of computation.

Most implementations of data parallel languages have provided only a single

scheduling policy that is either left unspecified or fixed as part of a compilation

technique. In contrast, Fluet et al. (2008) make scheduling policies explicit using an

intermediate language and support nested scheduling policies. It would be interesting

to see how our cost semantics could serve as a specification for such policies.

Evaluation strategies (Trinder et al. 1998) enable the programmer to explicitly

control the parallel evaluation structure (e.g., divide-and-conquer). Like much of

the work on profiling parallel functional programs, this focuses on when to spawn

parallel tasks and how much work to perform in each task (i.e., granularity) instead

of the order in which parallel tasks are evaluated.

In the course of their profiling work, Hammond & Peyton Jones (1992) considered

two different scheduling policies. While one uses a LIFO strategy and the other

FIFO, both use an evaluation strategy that shares many attributes with a work-

stealing policy. These authors found that for their implementation, the choice of

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

458 D. Spoonhower et al.

policy did not usually affect the running time of programs, with the exception of the

case where they also throttled the creation of new parallel threads. In this case, the

LIFO scheme gave better results. Except for the size of the thread pool itself, they

did not consider the effect of policy on space use.

Cost Semantics. Language semantics extended with some notion of cost have been

used to reason about the time complexity of sequential functional programs (Sands

1990; Rosendahl 1989; Roe 1991). Sansom & Peyton Jones (1995) used a cost

semantics in the design of their profiler. However, their profiling results are derived

from an instrumented version of their compiler and runtime system, not from the

semantics itself.

A cost semantics similar to the one used in the current work was introduced

by Greiner & Blelloch (1999). That work gave an upper bound on space use and

assumed a fixed scheduling policy (depth-first). Our semantics extends this work by

adding heap edges to the cost associated with each closed program. This enables

us to reason about different scheduling policies and attribute space use to different

parts of the program.

Lazy, purely functional programs can be evaluated in many different ways, and

different strategies for evaluation can yield wildly different performance results.

Ennals (2004) uses a cost semantics to compare the work performed by a range

of sequential evaluation strategies, ranging from lazy to eager. Like the current

work, he also uses cost graphs with distinguished types of edges, though his

edges serve different purposes. He does not formalize the use of space by these

different strategies. Likewise, program transformations that change the order of

evaluation can also affect performance. Gustavsson & Sands (1999) give a semantic

definition of what it means for a transformation to be “safe-for-space” (Shao

& Appel 1994). They provide several laws to help prove that a given transfor-

mation does not asymptotically increase the space use of sequential, call-by-need

programs.

Jay et al. (1997) describe a static framework for reasoning about the costs of

parallel execution using a monadic language. Static cost models have also been

used to automatically choose a parallel implementation at compile-time based

on hardware performance parameters (Hammond et al. 2003) and to inform the

granularity of scheduling (Loidl & Hammond 1996). This work complements ours in

that it focuses on how the sizes of program data structures affect parallel execution

(e.g., through communication costs), rather than how different parallel schedules

affect the use of space at a given point in time.

9 Conclusion

We have described and demonstrated the use of a semantic space profiler for parallel

functional programs. One beauty of functional programming is that it isolates

programmers from gritty details of the implementation and the target architecture,

whether that architecture is sequential or parallel. However, when profiling functional

programs, and especially parallel functional programs, there is a tension between

providing information that relates to the source code and information that accurately

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 459

reflects the implementation. In our profiling framework, a cost semantics plays a

critical role in balancing that tradeoff.

We have focused on using our framework to measure and reason about the

performance effects of different scheduling policies. One possible direction for future

work is to study other important aspects of a parallel implementation such as task

granularity. We believe there is a natural way to fit this within our framework, by

viewing task granularity as a part of the scheduling policy.

We invite readers to download and experiment with our prototype implementation,

available from the first author’s website3 or the shared-heap-multicore branch of

the MLton repository.

Acknowledgments

This work was funded in part by an IBM OCR gift, the Center for Computational

Thinking sponsored by Microsoft, and a gift from Intel. We would like to thank the

MLton developers for their support and advice. We would also like to thank Simon

Peyton Jones, the ICFP reviewers, and the referees for their helpful comments.

References

Aditya, S., Arvind, Jan-Willem, M. & Augustsson, L. (June 1995) Semantics of pH: A Parallel

Dialect of Haskell. Tech. Rep. Computation Structures Group Memo 377-1. MIT.

Appel, A. W. (1989) Simple generational garbage collection and fast allocation, Softw. Prac.

Exp., 19 (2): 171–183.

Appel, A. W., Duba, B. & MacQueen, D. B. (Nov. 1988) Profiling in the Presence of

Optimization and Garbage Collection. Tech. Rep. CS-TR-197-88. Princeton University.

Arvind, N., Rishiyur, S. & Pingali, K. K. (1989) I-structures: Data structures for parallel

computing, ACM Trans. Program. Lang. Syst., 11 (4): 598–632.

Barnes, J. & Hut, P. (1986) A hierarchical O(N log N) force-calculation algorithm, Nature,

324 (4): 446–449.

Blelloch, G. E., Hardwick, J. C., Sipelstein, J., Zagha, M. & Chatterjee, S. (1994) Implemen-

tation of a portable nested data-parallel language, J. Parallel Distrib. Comput., 21 (1): 4–14.

Blelloch, G. E., Gibbons, P. B. & Matias, Y. (1999) Provably efficient scheduling for languages

with fine-grained parallelism, J. ACM, 46 (2): 281–321.

Blelloch, G. & Greiner, J. (1995) Parallelism in sequential functional languages. In

Proceedings of the International Conferance on Functional Programming Language and

Computer Architecture. ACM, pp. 226–237.

Blelloch, G. E. & Sabot, G. W. (1990) Compiling collection-oriented languages onto massively

parallel computers, J. Parallel Distrib. Comput., 8 (2): 119–134.

Blumofe, R. D. & Leiserson, C. E. (1998) Space-efficient scheduling of multithreaded

computations, SIAM J. Comput., 27 (1): 202–229.

Blumofe, R. D. & Leiserson, C. E. (1999) Scheduling multithreaded computations by work

stealing. J. ACM, 46 (5): 720–748.

Burton, F. W. & Sleep, M. R. (1981) Executing functional programs on a virtual tree of

processors. In Proceedings of the Conference on Functional Program Language and Computer

Architecture. ACM, pp. 187–194.

3 http://www.cs.cmu.edu/~spoons/parallel/

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

460 D. Spoonhower et al.

Chakravarty, M. M. T. & Keller, G. (2000) More types for nested data parallel programming.

In Proceeding of the International Conferance on Functional Programming. ACM, pp. 94–

105.

Charles, N. & Runciman, C. (1998) An interactive approach to profiling parallel functional

programs. In Selected Papers of the Workshop on the Implementation of Functional

Language. Springer, pp. 20–37.

Cheng, P. & Blelloch, G. E. (2001) A parallel, real-time garbage collector, Sigplan Not., 36 (5):

125–136.

Conchon, S. & Fessant, F. L. (1999) Jocaml: Mobile agents for Objective-Caml. In Proceedings

of the International Symposium on Agent Systems and Applications. IEEE, pp. 22–29.

Cousot, P. & Cousot, R. (1977) Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of the

Symposium on Principles of Programming Language. ACM, pp. 238–252.

Ennals, R. (2004) Adaptive Evaluation of Non-Strict Programs. PhD thesis, University of

Cambridge.

Fluet, M., Ford, N., Rainey, M., Reppy, J., Shaw, A. & Xiao, Y. (2007) Status report: The

Manticore project. In Proceedings of the Workshop on ML. ACM, pp. 15–24.

Fluet, M., Rainey, M. & Reppy, J. (2008) A scheduling framework for general-purpose parallel

languages. In Proceedings of the International Conference on Functional Programming. ACM,

pp. 241–252.

Frigo, M., Leiserson, C. E. & Randall, K. H. (1998) The implementation of the Cilk-

5 multithreaded language. In Proceedings of the Conferance on Programming Language,

Design and Implementation. ACM, pp. 212–223.

Greiner, J. & Blelloch, G. E. (1999) A provably time-efficient parallel implementation of full

speculation, ACM Trans. Program. Lang. Syst., 21 (2): 240–285.

Gustavsson, J. & Sands, D. (1999) A foundation for space-safe transformations of call-by-

need programs. In Proceedings of Workshop on Higher Order Operational Techniques in

Semantics. Elsevier, pp. 69–86.

Hammond, K., Berthold, J. & Loogen, R. (2003) Automatic skeletons in template Haskell,

Parallel Process. Lett., 13 (3): 413–424.

Hammond, K., Loidl, H.-W. & Partridge, A. S. (1995) Visualising granularity in parallel

programs: A graphical winnowing system for Haskell. In Proceedings of Conferance on

High Performance Functional Computing. Denver, CO, pp. 208–221.

Hammond, K. & Peyton Jones, S. L. (Sept. 1992) Profiling scheduling strategies on the GRIP

multiprocessor. In Proceedings of the International Workshop on the Parallel Implementation

of Functional Language. RWTH Aachen, Germany, pp. 73–98.

Jay, C. B., Cole, M., Sekanina, M. & Steckler, P. (1997) A monadic calculus for parallel

costing of a functional language of arrays. In Proceedings of the International Euro-Par

Conferance on Parallel Processing. Springer-Verlag, pp. 650–661.

Lieberman, H. & Hewitt, C. (1983) A real-time garbage collector based on the lifetimes of

objects, Commun. ACM, 26 (6): 419–429.

Loidl, H.-W. & Hammond, K. (1996) A sized time system for a parallel functional language.

In Proceedings of the Glasgow Workshop on Functional Programming. Department of

Computing Science, University of Glasgow.

Milner, R., Tofte, M., Harper, R. & MacQueen, D. (1997) The Definition of Standard ML

(Revised). MIT Press.

Peyton J., Simon, L., Roman, K., Gabriele, K. & Chakravarty, M. M. T. (2008) Harnessing

the multicores: Nested data parallelism in Haskell. In Proceedings of the IARCS Annual

Conferance on Foundations of Software Technology and Theoretical Computer Science.

Leibniz International Proceedings in Informatics.

Preparata, F. P. & Shamos, M. I. (1988) Computational Geometry – An Introduction, 2nd ed.

Springer-Verlag.

Reppy, J. H. (1999) Concurrent Programming in ML. Cambridge University Press.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

Space profiling for parallel functional programs 461

Roe, P. (1991) Parallel Programming using Functional Languages. PhD thesis, Department of

Computing Science, University of Glasgow.

Röjemo, N. & Runciman, C. (1996) Lag, drag, void and use–heap profiling and space-efficient

compilation revisited, Sigplan Not., 31 (6): 34–41.

Rosendahl, M. (1989) Automatic complexity analysis. In Proceedings of the International

Conferance on Functional Programming Language and Computere Architecture. ACM, pp.

144–156.

Runciman, C. & Röjemo, N. (1996) New dimensions in heap profiling, J. Funct. Program., 6

(4): 587–620.

Runciman, C. & Wakeling, D. (1993a) Heap profiling of lazy functional programs, J. Funct.

Program., 3 (2): 217–245.

Runciman, C. & Wakeling, D. (1993b) Profiling parallel functional computations (without

parallel machines). In Proceedings of the Glasgow Workshop on Functional Programming.

Springer-Verlag, pp. 236–251.

Sands, D. (Sept. 1990) Calculi for Time Analysis of Functional Programs. PhD thesis,

Department of Computing, Imperial College, University of London.

Sansom, P. M. & Peyton Jones, S. L. (1992) Profiling lazy functional programs. In Proceedings

of the Glasgow Workshop on Functional Programming. Springer-Verlag, pp. 227–239.

Sansom, P. M. & Peyton Jones, S. L. (1995) Time and space profiling for non-strict, higher-

order functional languages. In Proceedings of the Symposium on Principles of Program.

Languange. ACM, pp. 355–366.

Shao, Z. & Appel, A. W. (1994) Space-efficient closure representations. In Proceedings of the

Conferance on LISP and Functional Programming. ACM, pp. 150–161.

Trinder, P. W., Hammond, K., Loidl, H.-W. & Peyton Jones, S. L. (1998) Algorithm + Strategy

= Parallelism, J. Funct. Program., 8 (1): 23–60.

Ungar, D. (1984) Generation scavenging: A non-disruptive high performance storage

reclamation algorithm. In Proceedings of the Software Engineering Symposium on Practical

Software Development Environments. ACM, pp. 157–167.

Weeks, S. (2006) Whole-program compilation in MLton. In Proceedings of the Workshop on

ML. ACM, p. 1.

https://doi.org/10.1017/S0956796810000146 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796810000146

