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1. Introduction.
The hypergeometric function® F(a, b; c; z) is analytic in the domain
|arg(—z)| <=, and, when |z| <1, may be represented by the series
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When |z|=1 in the domain |arg(—z)| <=, this series converges? to
F(a, b; c; 2)if R(a+b—c) < 0 (integral values of ¢, b and ¢ are excluded
in the present paper).

This function belongs to a more general class of functions which may be
represented, under certain conditions, by the series
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For a discussion of this class of functions, fractional integrals will be
employed.

2. Fractional integrals.

A A-th integral of F(a, b; c; z) along a simple curve I from 0 to z is
defined?® by
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where y is the least non-negative integer such that R(A)+y > 0; the
integration and differentiation being along .

THEOREM 1. If | lies in |2| <1, then
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1 Whittaker and Watson, Modern Analysis (1927), Ch. XIV.
2 Ibid., pp. 25 and 57.
3 Fabian, Quart. J. of Math., 7 (1936), 252. Cf. the Riemann-Liouville integral.
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This equality continues to hold when )z| = 1in the domain | arg (—z)| <=,
provided that B(a--b—c—A) < 0.

Proof. The first part of the theorem follows immediately by applying
the operator D~ to each term of the series
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To prove the second part of the theorem, we note first that each branch
of D)) F(a, b; c; 2) is analytic in and on the circle |z|=1 in the
domain |arg(—z)|<w, 250, since F(a, b; c; 2) is analytic in this
region'. The required conclusion will then follow if we prove that the
series stated in the theorem converges when |z|=1, |arg(—z)| <=, and
R(a+b—c—2A) <O0.

To prove this, denote the n-th term of this series by «,. Then we
have, when |z| =1,
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Hence, by a known theorem?, this series converges absolutely when

|z|=1, if R(@+b—c—A)<0.
This completes the proof.

3. The more general class of functions.

THEOREM 2. For non-integral values of a, b, ¢ and A, there exists a
Sfunction S(a, b; ¢, A; z) which consists of branches analytic in the finite
part of the domain |arg(—z)| <, z#0; and which, when |z| = 11n this
domain and B(a+b—c—2A) << 0, may be represented by the series
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1 Fabian, Math. Gazette, 20 (1936), 249.
2 Whittaker and Watson, op. cit., p. 23.
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Proof. This series may be written
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that is
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+zx—a§ —c+1)(—c42)...(—c+n)(=A)(—A+D...(—A+n—1) (_1_>"—a
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By Theorem 1, this represents the function
FQA+1) D) F(a, b; c; 2)
+T'(1—a).2v¢ D4 Ly) F(1—¢, —A; 1—b; w)—2*

when |z| =1, |arg(—2)| <w, and R(a+b—c—A) <0; w being 1/z, and
L the path of integration in the w-plane.

If we denote this function by S(a, b; ¢, A; 2), each branch of
S(a, b; ¢, A; z) is analytic in the finite part of the domain |arg(—z)| <,
z # 0, by a previous theorem!.

Hence the conclusion.

1 Fabian, Math. Gazette, 20 (1936), 249.
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