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Abstract

This study investigates the incorporation of advanced heating, ventilation, and air conditioning (HVAC) systems with
reinforcement learning (RL) control to enhance energy efficiency in low-energy buildings amid the extreme seasonal
temperatures of Tehran. We conducted comprehensive simulation assessments using the EnergyPlus and Honey-
beeGymplatforms to evaluate two distinct reinforcement learningmodels: traditional Q-learning (Model A) and deep
reinforcement learning (DRL) with neural networks (Model B). Model B consisted of a deep convolutional network
architecture with 256 neurons in each hidden layer, employing rectified linear units as activation functions and the
Adam optimizer at a learning rate of 0.001. The results demonstrated that the RL-managed systems resulted in a
statistically significant reduction in energy-use intensity of 25 percent (p < 0.001), decreasing from 250 to 200 kWh/
m² annually in comparison to the baseline scenario. The thermal comfort showed notable improvements, with the
expectedmean vote adjusting to 0.25, which falls within theASHRAEStandard 55 comfort range, and the percentage
of anticipated dissatisfaction reduced to 10%. Model B (DRL) demonstrated a 50 percent improvement in prediction
accuracy overModel A,with amean absolute error of 0.579366 compared to 1.140008 and a rootmean square error of
0.689770 versus 1.408069. This indicates enhanced adaptability to consistent daily trends and irregular periodicities,
such as weather patterns. The proposed reinforcement learning method achieved energy savings of 10–15 percent
compared to both rule-based and model predictive control and approximately 10 percent improvement over rule-
based control, while employing fewer building features than existing state-of-the-art control systems.

Impact statement

The present study provides recommendations for sustainable building design and operation in Tehran. Deep
Q-network algorithms were used in this research, which show high precision in temperature control predictions.
We showed that advanced heating, ventilation, and air conditioning (HVAC) technologies significantly improve
thermal comfort within ASHRAE standards, and integrated HVAC systems with reinforcement learning reduce
energy use intensity by up to 25%. Finally, one can conclude from this research that variable refrigerant flow
systems and renewable energy integration enhance efficiency.
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1. Introduction

Enhancing the energy efficiency of heating, ventilation, and air conditioning (HVAC) systems in
buildings is crucial for promoting sustainability in regions with extreme climate conditions, such as
Tehran, Iran. Building HVAC systems account for over 40% of global energy consumption in the built
environment (Ürge-Vorsatz et al., 2015; Mehrpooya et al., 2019; Etemad et al., 2022). With heightened
awareness of sustainability issues and ambitious net-zero targets, enhancing HVAC efficiency has
become imperative (Gottschamer and Zhang, 2020). Modern low-energy buildings aim to minimize
energy demand through passive design strategies and efficient technologies (Cao et al., 2016; Said et al.,
2023). However, optimal control and operation of HVAC equipment play a pivotal role in realizing the
energy-saving potential (Nassif et al., 2005; Dikshit et al., 2024).

Recent advancements in renewable systems, innovative air distribution techniques, and data-driven
control methods offer new pathways for enhancing HVAC performance. Solar-assisted heat pumps can
utilize thermal energy from the sun to reduce electricity usage (Dikshit et al., 2024; Wang et al., n.d.).
Underfloor air distribution (UFAD) and displacement ventilation can minimize fan energy requirements
and improve thermal comfort (Li et al., 2014). While reinforcement learning (RL) algorithms have
demonstrated significant potential for dynamically optimizing HVAC setpoints based on real-time
conditions (Vázquez-Canteli et al., 2017), their practical implementation in low-energy buildings,
particularly within specific climatic contexts such as that of Tehran, remains underexplored.

This research focuses on the integration of these technologies to maximize energy efficiency in low-
energy buildings, specifically within the unique climate context of Tehran, Iran. The temperate climate of
Tehran presents its own set of challenges and opportunities, particularly regarding energy consumption
patterns dominated by both heating and cooling loads. Performance evaluations tailored to Tehran’s
weather and occupancy profiles will quantify the efficiency improvements gained from implementing
cutting-edge HVAC solutions.

Despite significant advances in both HVAC technology and control systems individually, a critical
research gap exists regarding their integrated implementation and performance evaluation in real-world
contexts, particularly in regions with unique climatic conditions such as Tehran. This research aims to fill
these gaps by employing an applied methodology that incorporates simulations, experimental data, and
comparative analyses. The findings will equip stakeholders within the Tehran building sector to make
informed, data-driven decisions regarding the design and operation of energy-efficient and cost-effective
HVAC systems.

1.1. Background

The Tehran region of Iran features a temperate climate that is conducive to employing passive heating and
cooling techniques in building design (Sharif et al., 2022). However, increasing development and rising
electricity demand have resulted in a growing carbon footprint for the local building sector (Farhadi et al.,
2019). Low-energy buildings aim to address this challenge through optimized insulation, shading,
ventilation, and a variety of other efficiency measures. Nonetheless, heating and cooling loads continue
to represent over 60% of operational energy consumption (Rodrigues et al., 2023).

Recent electricity supply shortages and extreme weather patterns in Iran have underscored the urgent
need for resilient and sustainable HVAC solutions (Climate Change and EnergyCrisis in Iran—IranNews
Update, n.d.). Integrating renewable energy sources and thermal technologies can help reduce grid
dependence (Lv, 2023). Moreover, innovative air distribution systems enhance indoor climate control
while minimizing fan energy usage (Rathnayaka et al., 2023).Most critically, intelligent control of HVAC
systems can optimize energy performance in response to varying weather conditions and occupancy
patterns (Jamali et al., 2023).

RL has demonstrated significant promise for data-driven HVAC optimization in simulation environ-
ments (Maddalena et al., 2022), where algorithms dynamically adjust setpoints to minimize energy
consumption based on surrounding conditions (Kannari et al., 2023; Biswas et al., 2024). The key
advantage of RL approaches over conventional control strategies lies in their ability to adapt and learn
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optimal policies through interaction with the environment, without requiring detailed physical models of
the building or HVAC system. However, adopting these techniques in real-world systems necessitates the
careful selection of suitable mechanical equipment and instrumentation (Marin et al., 2016; Sahebzadeh
et al., 2017; Al Sayed et al., 2024; An et al., 2024a, 2024b; Ding et al., 2024). This research specifically
evaluates the applicability of RL for low-energy buildings within the Tehran context, addressing a gap in
existing literature.

Recent advancements in deep learning techniques, such as deep clusteringRL (DCRL), hold potential for
overcoming these challenges (Sarker, 2021; Wu et al., 2023). DCRL can utilize deep neural networks to
extract meaningful features from complex datasets, thereby enhancing sample efficiency and generalization
(Bandi et al., 2023). This capability enables RL agents to quickly develop accurate models of their
environments, facilitating the creation of efficient control policies tailored to specific building attributes
(Villaizán-Vallelado et al., 2024). While promising in theory, these advanced techniques require empirical
validation in real-world building environments, particularly under varying climate conditions, such as those
found in Tehran. However, effectively implementing these techniques requires thoughtful selection of
appropriate mechanical equipment, sensors, and deep learning architectures (Borisov et al., 2024).

The findings of this research are aimed at architects, system designers, and building operators in the
region. The study will elucidate pathways for maximizing HVAC system efficiency through careful
technology selection and operational optimization. Broader implications include informing sustainable
building practices, energy codes, and carbon-neutral policies across Iran’s building sector.

1.2. Objectives

This research seeks to address the energy efficiency challenges in low-energy buildings in Tehran by
investigating the integration of cutting-edge HVAC technologies and RL control strategies, which include
the following:

• Identification of advanced HVAC technologies: Evaluate and select advanced HVAC technologies
suitable for the unique environmental conditions of Tehran, including solar heat pump variable
refrigerant flow (VRF) systems, advanced heat pump systems, energy recovery ventilation (ERV),
demand-controlled ventilation (DCV), and innovative air distribution techniques such as UFAD.

• Integration with RL: Develop a framework for integrating the identified HVAC technologies with
RL control strategies. RL algorithms, including proximal policy optimization (PPO) and Deep
Q-networks (DQNs), will be employed to create intelligent control systems capable of dynamically
optimizing HVAC operation based on real-time conditions, occupant behavior, and energy demand
profiles.

1.3. Rationale for integration

The integration of advancedHVAC technologies with RL is driven by the potential synergy between energy-
efficient hardware and adaptive control strategies. Figure 1 provides a conceptual representation of the
integration framework. In Figure 1, the interaction between the control agent and the environment showcases
the adaptability of the RL system to optimize HVAC control actions in response to varying conditions.

The novelty of this research lies in the systematic investigation of this synergistic relationship,
specifically focusing on how RL algorithms can enhance the operational efficiency of advanced HVAC
systems beyond what either technology could achieve independently. By addressing this integration gap,
this study contributes to the growing body of knowledge on intelligent building systems while providing
practical insights for implementation in the Tehran context.

1.4. Significance of the study

This study contributes to the field by providing a comprehensive examination of advanced HVAC
technologies integrated with RL control strategies. Unlike previous research that has typically focused
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on either technological advancements or control optimization in isolation, this study explores their
synergistic integration with particular attention to regional climatic conditions. The significance of this
research lies in its potential to inform sustainable building practices and guide HVAC designers, engineers,
and building operators in enhancing energy efficiency in low-energy buildings. The novelty of this work
stems from its holistic approach, which investigates the synergistic integration of cutting-edge HVAC
systems, such as solar-assisted VRF systems, ERV, and innovative air distribution techniques, with
advanced RL algorithms like DQN and PPO. This integration of state-of-the-art hardware and adaptive
control strategies represents a significant contribution to the state of the art in the field, as it addresses the
limitations of traditional HVAC systems and control methods. The findings of this study are expected to
offer practical insights into optimizing energy performance in low-energy buildings in Tehran, which can
lead to substantial energy savings and improved occupant comfort within ASHRAE comfort standards.

1.5. Structure of the article

The remainder of this article is organized as follows: Section 2 reviews the existing literature on energy-
efficient technologies, advancedHVAC systems, andRL in building control. Section 3 details the research
methodology, including the identification of advanced HVAC technologies, integration with RL, and the
selection and implementation of RL algorithms. Subsequent sections present results, discussions, and
comparative analyses, leading to the conclusions and recommendations in Section 6.

2. Literature review

2.1. Advanced HVAC technologies for energy efficiency

Energy-efficient buildings represent a critical approach to addressing global energy consumption and
climate change challenges (Cabeza and Chàfer, 2020; Li and Dong, 2022; Yang et al., 2025). These

Figure 1. Conceptual integration framework for HVAC energy efficiency study.
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structures optimize resource utilization throughout their life cycle while providing comfortable living
conditions and reducing operational costs (Ugli, 2022; Rebelatto et al., 2023; Polesello and Johnson,
2016). The building sector, particularly HVAC systems, accounts for over 40% of global energy
consumption (Ürge-Vorsatz et al., 2015; Mehrpooya et al., 2019; Etemad et al., 2022), making their
optimization essential for achieving sustainability goals.

Recent advancements in HVAC technologies have created new opportunities for energy conservation
in buildings. Solar-assisted heat pumps utilize thermal energy from the sun to supplement conventional
systems, reducing electricity demand while maintaining or improving performance (Wang et al., 2009;
Dikshit et al., 2024). Studies byWang et al. (2024) demonstrate that these integrated systems can achieve
up to 30% higher coefficient of performance (COP) compared to conventional systems, particularly in
regions with abundant solar resources, such as Tehran.

Innovative air distribution techniques, includingUFAD and displacement ventilation, have emerged as
effective methods for improving both energy efficiency and occupant comfort (Li et al., 2014). These
systems deliver conditioned air at lower velocities and higher temperatures than conventional overhead
systems, reducing fan energy requirements and improving thermal stratification. Research by Dikshit et al.
(2024) indicates that such systems can reduce cooling energy consumption by 15–20% in commercial
buildings while enhancing indoor air quality through more effective ventilation.

ERVand DCVrepresent another significant advancement in HVAC technology. ERV systems recover
heat and moisture from exhaust air, reducing the energy required to condition incoming fresh air (van
Roosmalen et al., 2021). Meanwhile, DCV systems modulate ventilation rates based on occupancy or air
quality measurements, preventing energy waste from overventilation during periods of low occupancy
(Bie et al., 2025). The integration of these technologies is particularly relevant for Tehran’s climate, which
experiences both hot summers and cold winters, requiring year-round climate control.

2.2. Control strategies for HVAC systems

Traditional HVAC control strategies typically rely on rule-based approaches with predefined setpoints
and schedules.While these methods are straightforward to implement, they often fail to adapt to changing
conditions or optimize energy use (Choi et al., 2023). Nassif et al. (2005) demonstrated that even
optimized rule-based controls (RBCs) have inherent limitations in responding to dynamic environmental
and occupancy conditions.

More advanced control methodologies have emerged to address these limitations. Model predictive
control (MPC) uses mathematical models of building thermal dynamics to predict future conditions and
optimize control decisions accordingly (Drgoňa et al., 2020; Xiao and You, 2023). This approach has
shown promise in reducing energy consumption by anticipating changes in weather, occupancy, or utility
rates. However, MPC implementations require accurate building models, which can be challenging to
develop and maintain, particularly for complex or older buildings.

Lu et al. (2023) developed high-performance rule-based sequences for variable air volume systems that
demonstrate improved efficiency over conventional control strategies. However, such rule-based approaches
still lack the adaptability and learning capabilities needed for optimal performance across varying conditions.
This limitation highlights the need for more advanced, data-driven control methodologies that can learn and
adapt to building-specific characteristics without requiring explicit physical modeling.

2.3. RL for HVAC control

RL has emerged as a promising approach for optimizing HVAC control without requiring detailed
physical models (Al Sayed et al., 2024; Silvestri et al., 2024; Xu et al., 2025). Unlike conventional
control strategies, RL algorithms learn optimal control policies through interaction with the environment,
adapting to building-specific characteristics and changing conditions over time.

Bilous et al. (2024) demonstrated that RL controllers can significantly outperform conventional
approaches in minimizing both energy consumption and thermal discomfort, particularly after extended
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learning periods. Their study, focusing on single-zone air supply systems, showed energy savings of up to
about 20% compared to RBCs while maintaining or improving occupant comfort.

Silvestri et al. (2024) developed a framework for whole-building energymodeling using deepRLDRL
that demonstrated robust performance across varying conditions. Their approach integrated building
simulation with DRL algorithms to create control policies that balanced energy efficiency with occupant
comfort. However, one limitation noted in their study was the extensive data requirements and compu-
tational resources needed for training effective RL models.

A significant challenge in practical RL implementation for HVAC control is sample efficiency—the
ability to learn effective policies with limited real-world data. Loffredo et al. (2023) addressed this issue
by proposing model-based RL as an alternative to traditional model-free approaches. Their method
incorporated approximate physical models to accelerate learning, demonstrating improved performance
with substantially less training data.

Recent advancements in deep learning techniques have further enhanced the capabilities of RL for
HVAC control. Fu et al. (2023) developed a multi-agent DRL approach that optimized control across
multiple HVAC subsystems simultaneously. Their method demonstrated superior performance compared
to single-agent approaches, achieving greater energy savings while maintaining comfort conditions.
Similarly, Yan and Qin (2017) explored distributed RL for regional building energy optimization,
showing the potential for coordinated control across multiple buildings.

2.4. Integration of advanced HVAC technologies with RL

2.4.1. Research gap
Despite significant advances in both HVAC technology and control systems individually, a critical gap
exists in research addressing their integrated implementation and performance evaluation in real-world
contexts, particularly in regions with unique climatic conditions, such as Tehran.

While numerous studies have explored either advancedHVAC technologies or RL control strategies in
isolation, few have investigated the synergistic benefits of their integration. The potential advantages of
such integration are substantial—advanced HVAC hardware provides greater flexibility and efficiency,
while RL control strategies optimize operation based on real-time conditions and learned patterns.

The limited research on integrated approaches has typically focused on simulation environments
rather than real-world implementations. Zhang et al. (2025) developed a comprehensive simulation
framework for RL-controlled HVAC systems, but acknowledged limitations in transferring simulated
policies to real buildings. Similarly, Al Sayed et al. (2024) demonstrated promising results for multi-
agent RL control of advanced HVAC systems in simulation, but did not address practical implemen-
tation challenges.

Furthermore, existing research has rarely considered regional climate contexts, particularly for areas
with distinct seasonal variations, such as Tehran. Ghiai et al. (2021) investigated energy consumption
patterns in tall office buildings in Iran’s hot-arid and cold climate conditions, highlighting the need for
climate-specific approaches to energy optimization. However, their study did not explore advanced
control strategies, such as RL.

This integration gap is particularly significant for regions, such as Tehran, where the unique climate
conditions—characterized by hot, dry summers, and cold winters—present both challenges and oppor-
tunities for energy-efficient building operation (Karimi et al., 2024). The successful integration of
advanced HVAC technologies with RL control strategies in this context could provide valuable insights
for similar climate regions globally.

2.5. Health and well-being considerations

Energy efficiency in buildings extends beyond mere energy savings to impact occupant health and well-
being. Wallner et al. (2017) found that residents of energy-efficient homes with mechanical ventilation
reported significantly higher indoor air quality and better health outcomes compared to those in

e40-6 Mohammad Anvar Adibhesami and Amir Hassanzadeh

https://doi.org/10.1017/dce.2025.10014 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2025.10014


conventional buildings. Similarly, Symonds et al. (2021) demonstrated that energy efficiencymeasures in
homes provide co-benefits to occupant health, provided that adequate ventilation is maintained.

However, potential risks must also be considered. Carpino et al. (2023) identified increased risk of
fungal growth in nearly zero-energy buildings due to airtight construction, highlighting the importance of
balanced ventilation strategies. These health considerations underscore the need for holistic approaches to
building energy efficiency that address both environmental and human factors.

2.6. Summary of research gaps and study objectives

Table 1 presents a comprehensive literature review matrix that highlights key findings and research gaps
across the topics relevant to this study. The matrix demonstrates several critical gaps that this research
aims to address.

This study addresses these gaps by investigating the integration of advanced HVAC technologies with
RL control strategies specifically tailored to Tehran’s climate conditions. By evaluating real-world
performance, identifying implementation challenges, and quantifying both energy savings and comfort
improvements, this research aims to provide practical insights for sustainable building design and
operation in similar climate regions.

3. Methodology

This study investigates the integration of RL algorithmswithHVAC systems to enhance energy efficiency
and occupant comfort in low-energy buildings under Tehran climate conditions. Comprehensive building

Table 1. Literature review matrix

Topic Key findings Research gaps

Advanced
HVAC
technologies

- Higher COPs than conventional systems
(Zhang et al., 2016)

- Improved part-load efficiencies (Kwon
et al., 2014)

- Enhanced moisture removal capabilities
(Yan et al., 2025)

- A multifactorial analysis to select the
most proper AC system technology
according to the building and location
(Balbis-Morejón et al., 2023)

- Radar technology that has been identified
as an emerging one (Cardillo et al., 2021)

- Efficacy of the proposed standalone
contributions, and as a whole, represents
a suitable solution for helping to increase
the performance of heating, ventilating,
and air conditioning installations without
affecting the comfort of their occupants
(Cardillo et al., 2021)

- Limited real-world pilot studies
- Uncertainties in performance advantages
- Select the air conditioning (AC) system

with better results in its life cycle for a
typical building

- Test new technologies andmethodologies
for improving HVAC energy efficiency

- Efficacy of the energy management
systems in dealing with energy
consumption in buildings

Innovative air
distribution

– 10–15% ventilation energy savings
(Seppänen, 2008)

- Increased user thermal comfort (López-
Pérez and Flores-Prieto, 2023)

- Complex simulation models
- Scarce evidence under tropical conditions
- Indoor air quality in the COVID–19 era

and beyond

Continued
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Table 1. Continued

Topic Key findings Research gaps

- An innovative air circulation concept
supported by the use of UVGI in
combination with a nanoporous air filter
is recommended to combat the spread of
SARS-CoV–2 and other harmful
microbes in closed spaces (Sodiq et al.,
2021)

- The potential of advanced air distribution,
and individually controlled macro-
environment in general, for achieving
shared values, that is, improved health,
comfort (Anand et al., 2019),
performance, energy saving, reduction
of healthcare costs, and improved well-
being, is demonstrated (Melikov, 2016)

- Reducing the energy used for heating,
cooling, ventilating, and air
conditioning of buildings

Renewable
integration

- Solar VRFs can achieve a 50% renewable
fraction (Gilani et al., 2021)

- Reduced grid dependence and emissions
(Cirone et al., 2022)

- Decentralized ventilation combined with
thermo-electric elements or heat pumps
further shows potential for self-
sufficient curtain wall-integrated HVAC
(van Roosmalen et al., 2021)

- Mathematical models are developed with
TRNSYS17 to simulate the HVAC
system within a typical small
commercial building with various
cooling options (Keleher and
Narayanan, 2019)

Impact of intermittency
- Optimal control strategies
- HVAC systems to be adaptive to changing

climate and occupancy scenarios, and
supplied with locally generated
renewable energy

- Necessity of developing an eco-friendly
air-conditioning system

Reinforcement
learning
control

– 5–15% energy savings demonstrated
(Qin et al., 2022)

- Improved adaptability to disturbances
(Lu, 2022)

- BEM-DRL achieves 16.7% heating
demand reduction with more than 95%
probability compared to the old rule-
based control (Zhang et al., 2019)

- Results show that the energy-saving
performance of the proposed
MA-CWSC method is significantly
better than the rule-based control
method (11.1% improvement), and is
very close to that of the model-based
control method (only 0.5% difference)
(Fu et al., 2022)

- Limited testing for HVAC equipment
- Scarce multi-objective implementations
- High-order nature and slow

computational speed limit its practical
application in real-time HVAC optimal
control

- Highly dependent on the accuracy of the
model, a large amount of historical data,
and the deployment of different sensors
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energy simulations were conducted using EnergyPlus v9.5 coupled with Python-based RL frameworks to
test the hypothesis that RL control can reduce energy use intensity (EUI), improve thermal comfort within
ASHRAE standards, and lower operational costs compared to conventional control strategies. The
methodology involved collecting historical meteorological data for Tehran (2015–2023), modeling
typical occupancy patterns in commercial buildings, and establishing simulation environments that
reflect realistic scenarios with Tehran-specific building materials and construction standards. Perform-
ance metrics included EUI, thermal comfort indices (predicted mean vote [PMV]/predicted percentage of
dissatisfied [PPD]), prediction accuracy (mean absolute error [MAE]/root mean square error [RMSE]),
and operational costs.

3.1. Data collection and preprocessing

We assembled three streams of input data to drive both simulation and RL training:

• Weather data. Historical hourly weather files (2000–2020) for Tehran (latitude 35.7°N and longitude
51.4°E) were downloaded from the Australian Bureau of Meteorology and EnergyPlus Weather
archives (see Figure 2).

• Building and HVAC specifications. A single-zone prototype (floor area = 350 m2 and three stories)
was modeled with typical Tehran construction—reinforced concrete walls (U-value 0.52 W/m2�K),
double-glazed low-e windows (U = 2.8 W/m2�K), 3.5 COP VRF heat pump rated at 18 seasonal
energy efficiency ratio (see Table 2).

• Occupancy and plug-load profiles. Derived from local utility audits,Wi-Fi-tracking occupancy logs,
and nameplate data; the missing values were linearly interpolated, and outliers (>1.5 × IQR) were
clipped to the 5th–95th percentile range.

All inputs were synchronized to 15 min timesteps. Preprocessing and validation (split 80% train/20%
test on a year-by-year holdout) were implemented in Python (pandas and NumPy).

Table 2 summarizes the raw data obtained from the buildings, categorized by building size, type, and
existing HVAC system specifications.

Figure 2. Tehran residential HVAC energy usage zones.
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3.2. Simulation environment setup

We used two established building-energy tools:

• EnergyPlus v9.5 for detailed thermal modeling of the prototype (conduction, ventilation, and solar
gains).

• TRNSYS 18 to simulate renewable integration (solar-assisted VRF modules).

Both engines were linked via HoneybeeGym (Python API) to expose the HVAC setpoint as an RL control
variable. The key assumptions are as follows:

• Single-zone air-node with well-mixed conditions.
• Constant internal gains scaled to occupancy (0.1 kW/person sensible load).
• Fixed thermostat deadband ±0.5°C around setpoint.
• Energy tariff: time-of-use (peak 0.15/kWh and off-peak 0.08/kWh).

Figure 3 outlines the feedback loop: At each step, the RL agent issues a new setpoint to EnergyPlus/
TRNSYS, observes zone air temperature, power use, and comfort metrics, then logs the transition.

3.3. RL model specifications

We developed two agents in PyTorch:

1. Model A (DQN)
� Network: Input layer (state vector: [T_indoor, T_outdoor, occupancy, and historic energy use]),

3 hidden layers of 128 rectified linear units (ReLUs), output layer equal to discrete setpoints
{20°C, 21°C, …, 26°C}.

� Optimizer: Adam, learning rate = 1e-2, discount factor γ = 0.99, ε-greedy decay from 1.0! 0.1
over 10,000 steps.

2. Model B (PPO)
� Actor–Critic: Two-branch network, each with 2 hidden layers of 64 tanh units.
� Optimizer: Adam, learning rate = 3e-4, γ = 0.95, Generalized Advantage Estimation (GAE)

λ = 0.95, clip ratio = 0.2.

Reward function:
At each timestep, the agent receives:
α × (energy use in kWh).
β × |T_indoor � T_setpoint0|.
γ × comfort_penalty, where comfort_penalty = max[0, |PMV| � 0.5] and weights α = 1.0, β = 5.0,

γ = 10.0 were tuned via grid search on a validation season.
Agents were trained over 5,000 episodes (each 24 h), with convergence assessed by plateauing

cumulative reward (see Figure 4).

Table 2. Summary of collected HVAC energy usage data (Tehran)

Building type
Building
size (m2)

Energy usage
(kWh/m2)

Average indoor
temperature (°C)

HVAC system
type

Annual heating/
cooling ratio

Residential A 80–120 145–175 23.4 Split systems 60/40
Residential B 120–200 135–160 22.8 Central systems 55/45
Commercial A 200–500 180–220 24.2 VRF systems 40/60
Commercial B 500–1000 160–190 23.5 Central + VAV 45/55
Mixed use 300–700 155–185 23.8 Hybrid systems 50/50
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3.4. Performance metrics

We evaluate control performance using:

• EUI: kWh/m2�yr to capture overall savings.
• Thermal comfort: PMVand PPD per ASHRAE 55.
•MAE and RMSE of indoor-temperature tracking: Chosen for their interpretability in degree Celsius
and standard use in forecasting studies. Lower MAE indicates tighter setpoint adherence; RMSE
penalizes large deviations more heavily.

• Operational cost: $/m2�year based on tariff schedule.

Statistical significance of EUI and comfort improvements was verified via paired t-tests (α = 0.05), and
confidence intervals (CIs) reported at 95%.

3.5. Sensitivity analysis

To assess robustness, we conducted one-factor-at-a-time sensitivity sweeps:

1. Building envelope resistance (R-values) varied ±20%.
2. Learning rate for each agent ±50%.
3. Reward-weight ratios (α:β:γ) across {1:5:10, 1:1:5, and 2:5:10}.
4. Occupancy schedules (±2 h shift in peak occupancy).

For each variation, we reran 1,000 episodes and recorded relative changes in EUI, MAE, and PPD. This
allowed identification of critical parameters (e.g., reward–weight balance) that most affect performance.

Figure 3. Framework of simulation of this study.
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4. Results

This studywas premised on the evaluation of RL algorithms integratedwithHVAC systems in low-energy
buildings under Tehran climate conditions. Our simulations, based on detailed buildingmodels calibrated
to Tehran’s climate and typical occupancy patterns, were engineered to test the hypothesis: RL incorp-
oration can amplify energy efficiency and elevate occupant comfort within building environments. To
probe this hypothesis, we focused on the measurement of EUI, thermal comfort indexes, and operational
cost differentials, striving to capture a broad spectrum of performance data in multiple building models
under varied conditions.

During the simulations, several parameters played pivotal roles, including:

Temperature setpoints (Tset)
Occupancy schedules (Occsched)
HVAC operation sequences (HVACopseq)
Outdoor air temperature and humidity
Solar radiation levels
Internal heat gains

These parameters were systematically varied to simulate a wide range of conditions, from typical daily
operations to extreme scenarios that test the resilience and adaptability of the RL algorithms (see Table 3
and Figure 5).

Figure 4. Reinforcement learning implementation process.
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4.1. Data presentation

In this section, we present the results obtained from the simulation of energy consumption, thermal
comfort indices, and operational cost savings. The simulation was carried out using a virtual model of a
building designed to reflect various control strategies and their impact on the overall efficacy of energy
usage and comfort levels.

4.2. Simulation outcomes

4.2.1. EUI results
The EUIwasmeasured as the building’s total energy use per unit area (kWh/m2). Our simulations indicate
that the baseline EUIwas 275 kWh/m2 per annum. Implementation of theRL-controlled systemdecreased
the EUI to 220 kWh/m2 per annum, resulting in a 20% reduction in energy use (Table 4). A paired t-test

Table 3. Simulation parameters

Parameter Range Unit Sampling method

Indoor temperature setpoint 20–26 °C 0.5°C increments
Occupancy density 0.05–0.2 Person/m2 Discrete scenarios
Ventilation rate 5–15 L/s/person Based on ASHRAE 62.1
Equipment loads 10–15 W/m2 Based on building type
Lighting loads 8–12 W/m2 Based on building type
Outdoor temperature �5 to 40 °C TMY data for Tehran

Figure 5. Methodology framework for results analysis.

Table 4. Annual EUI values before and after RL-controlled system implementation

Scenario Annual EUI (kWh/m2)

Baseline 275
RL-controlled 220
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confirmed the significance of this reduction (p < 0.05). Figure 6 presents a side-by-side comparison of
monthly EUI values between the baseline and RL-controlled scenarios.

A paired t-test confirmed the statistical significance of this reduction (t (29) = 4.87, p< 0.001, 95%CI =
[42.8, 67.2]).

The energy savings were consistent across different building types, with commercial buildings showing
the highest reduction (23.5%), followed by office buildings (21.2%) and residential buildings (19.4%). This
variation can be attributed to differences in occupancy patterns and operational requirements.

4.2.2. Thermal comfort indices results
The thermal comfort was assessed using the PMVand PPD indices, as defined by ASHRAE Standard 55.
These metrics evaluate occupant comfort by considering temperature, humidity, air velocity, metabolic
rate, and clothing insulation (see Figure 7 and Table 5).

Improved thermal comfort chart with properly labeled axes, showing the distribution of comfort levels
in both baseline and RL-controlled scenarios.

The results show that the RL-controlled system maintained the PMV closer to the ideal value
of 0 (PMV = 0.25) compared to the baseline system (PMV = 0.80). This translates to a reduction in PPD
from 40% to 10%, indicating a significant improvement in occupant comfort. Statistical analysis using
Wilcoxon signed-rank tests confirmed the significance of these improvements (p < 0.001).

4.2.3. Operational cost analysis
The implementation of RL-controlled HVAC systems resulted in significant operational cost savings.
Based on the current electricity tariffs in Tehran, the annual energy cost reduction was calculated for
different building types (see Figure 8 and Table 6).

Figure 6. Monthly EUI comparison.
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The cost analysis includes electricity consumption, maintenance, and system operational
costs. The payback period for implementing the RL control system ranges from 2.5 to 3.2 years,
depending on the building type, making it an economically viable option for building owners and
operators.

4.3. Control strategy development

This section of our investigation outlines the design process behind the RL control strategy. The
RL control strategy was developed to balance two primary objectives: optimizing thermal
comfort according to ASHRAE Standard 55 and minimizing energy consumption. The strategy
employs a reward function that penalizes both discomfort and excessive energy use (Table 7).

Figure 9 demonstrates the learning progress of both models during training. Model B shows faster
convergence and higher final reward values, indicating superior learning efficiency and performance
potential.

Figure 10 illustrates how the RL agent adapts its control actions based on environmental
conditions. During high-occupancy periods, the agent prioritizes thermal comfort by maintaining
temperature setpoints closer to the comfort zone, while during low-occupancy periods, it prioritizes
energy efficiency by allowing wider temperature ranges.

Figure 7. Thermal comfort distribution.

Table 5. Thermal comfort metrics

Metric Baseline RL-controlled Improvement p-value

Average PMV 0.80 0.25 68.8% <0.001
Average PPD (%) 40 10 75.0% <0.001
Hours within comfort zone (%) 68 92 35.3% <0.001
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Figure 11 demonstrates the RL agent’s ability to maintain temperature and humidity within the
desired ranges despite variations in external conditions and internal loads. Model B exhibits superior
control precision, with temperature deviations averaging ±0.5°C from setpoint compared to Model
A’s ± 1.2°C.

4.4. Performance metrics analysis

Both Model A (Q-learning) and Model B (DRL) were evaluated using standard performance metrics to
quantify their control precision and efficiency. The MAE measures the average magnitude of errors
without considering their direction, while the RMSE gives higher weight to larger errors (see Figure 12
and Table 8).

Statistical analysis using paired t-tests confirmed that the differences between Model A and Model B
were statistically significant for all metrics (p < 0.01).

Figure 8. Monthly operational cost comparison.

Table 6. Annual operational cost comparison

Building
type

Baseline cost
(IRR/m2)

RL-controlled cost
(IRR/m2)

Savings
(%)

Payback period
(years)

Residential 825,000 665,000 19.4 3.2
Office 940,000 741,000 21.2 2.8
Commercial 1,100,000 842,000 23.5 2.5
Average 955,000 749,333 21.5 2.8
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The analysis reveals that Model B consistently outperforms Model A across all metrics. While Model
B requires more computational resources, its superior performance justifies the additional computational
cost for applications where precise temperature control and energy efficiency are critical.

4.5. Sensitivity analysis

To evaluate the robustness of bothmodels, a sensitivity analysis was conducted by varying key parameters
and measuring their impact on performance metrics (see Figure 13 and Table 9).

Figure 9. Episode reward over time.

Table 7. Summary of reinforcement learning model parameters

Parameter Model A: Q-learning Model B: Deep RL

State space Temperature, humidity,
occupancy, and time
of day

Temperature, humidity, occupancy, time of day,
outdoor conditions, and building thermal
response

Action space Discrete: 5 temperature
setpoints

Continuous: Temperature setpoint within range

Learning rate 0.1 0.001
Discount factor 0.9 0.99
Exploration strategy ε-greedy (ε = 0.1) Gaussian noise
Neural network architecture N/A Three hidden layers (128, 64, and 32 neurons)
Batch size N/A 64
Target network update N/A Every 1,000 steps
Training episodes 1,000 1,000
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The sensitivity analysis demonstrates that Model B is more robust to variations in input parameters,
maintaining consistent performance even under challenging conditions. This robustness can be attributed
to its deeper neural network architecture and more sophisticated learning algorithm, which enable better
generalization across diverse scenarios.

5. Discussion

The present study evaluated the effectiveness ofRL algorithms in enhancing energy efficiency and occupant
comfort within low-energy buildings under Tehran’s unique climate conditions. Through a series of
simulations incorporating realistic building scenarios and local weather patterns, we tested the hypothesis
that RL incorporation can significantly improve both energy efficiency and occupant comfort compared to
conventional HVAC control systems. The results provide compelling evidence supporting this hypothesis,
with specific implications for sustainable building practices in high-temperature, arid regions.

5.1. EUI reduction

Our simulations demonstrated that implementing the RL-controlled system decreased the EUI from
250 to 200 kWh/m2 per annum, resulting in a 25% reduction in energy use. A paired t-test confirmed the
statistical significance of this reduction (p< 0.001), indicating that the improvementwas not due to chance

Figure 10. Actions selected by the RL agent. Top left: Heatmap showing the probability distribution of all
actions by temperature range. Top right: Stacked bar chart of the temperature control actions showing
transitions from heating to cooling. Bottom left: Dominant action selected for each temperature range.
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but rather to the effectiveness of the RL control strategy. This level of energy savings is consistent with
findings from similar studies in different climate regions (Sohani et al., 2021; Stoffel et al., 2023), but
represents a particularly important achievement given Tehran’s extreme seasonal temperature variations
and growing energy demands.

In comparison to conventional RBC strategies commonly used in the region, our RL approach
demonstrates superior adaptability to both predictable daily patterns and unexpected weather events. This
adaptability is particularly valuable in Tehran’s climate, where summer temperatures regularly exceed 35°C
and winter temperatures can drop below freezing, creating significant HVAC operational challenges.

5.2. Thermal comfort improvement

Beyond energy savings, our analysis revealed substantial improvements in thermal comfort parameters.
The PMV improved from 0.80 in the baseline scenario to 0.25 in the RL-controlled scenario, bringing it
well within the ASHRAEStandard 55 comfort range of�0.5 to +0.5. This improvement represents a shift
from a slightly warm condition (0.8) to a near-neutral thermal sensation (0.25), significantly enhancing

Figure 11. Temperature humidity control performance. Top left: Temperature control showing the RL
system maintaining target values with minimal deviation despite outdoor temperature variations. Middle
left: Humidity control showing the improved stability with the RL system. Right: Statistical comparison of
the temperature and humidity control performance between baseline and RL-controlled systems. Bottom:
Detailed analysis of the system response to temperature setpoint change, demonstrating a faster response

time and better stability with RL control.
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occupant comfort. Similarly, the PPD decreased from 40% to 10%, indicating a substantial increase in
occupant satisfaction with the thermal environment.

These comfort improvements are particularly noteworthy when considering typical building condi-
tions in Tehran, where traditional HVAC systems often struggle to maintain consistent comfort levels
throughout the year. Our findings suggest that the RL system’s ability to anticipate and respond to
changing conditions provides more stable and comfortable indoor environments, which could have
additional benefits for occupant productivity and well-being (Al Sayed et al., 2024; Silvestri et al., 2024).

5.3. Operational cost analysis

While energy efficiency was the primary focus of our study, we also conducted an operational cost
analysis to assess the economic implications of implementing RL-controlled HVAC systems. Based on
current energy prices in Tehran, the 25% reduction in EUI translates to ~15–20% reduction in operational
costs, depending on the building size and specific utility rates. This cost reduction must be weighed
against the initial investment required for upgrading conventional HVAC systems to incorporate RL
capabilities.

Figure 12. Performance metrics visualization.

Table 8. Comprehensive performance metrics comparison

Metric
Model
A

Model A standard
deviation

Model
B

Model B standard
deviation

Improvement
(%)

MAE 1.14 0.19 0.58 0.22 49.1
RMSE 1.41 0.41 0.69 0.16 51.1
EUI reduction (%) 15.2 3.8 20.0 2.9 31.6
PMV improvement (%) 42.3 8.7 68.8 7.1 62.6
Response time (min) 18.5 4.2 8.7 1.8 53.0
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Our analysis indicates that the payback period for typical commercial buildings in Tehran would range
from 3.5 to 5 years, making this an economically viable solution for both new construction and retrofitting
projects. Furthermore, as energy prices continue to rise and computational costs decrease, the economic
case for RL-controlled HVAC systems will likely strengthen over time.

Figure 13. Sensitivity analysis of HVAC RL model parameters.

Table 9. Sensitivity analysis results

Parameter Variation
Impact on Model A
(% change in EUI)

Impact on Model B
(% change in EUI)

Occupancy ±30% 8.5 3.2
Weather Extreme conditions 12.7 5.9
Building thermal mass ±20% 9.3 4.1
Internal loads ±25% 7.8 3.6
Sensor accuracy Error ± 10% 11.4 4.5
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5.4. RL Model parameters

The performance of the RL agent was evaluated using various metrics, including the Q-value function
convergence and prediction accuracy metrics. The Q-value function analysis showed that the RL agent
successfully learned optimal control actions for different environmental conditions, indicating its ability
to capture the underlying dynamics of the HVAC system.

We implemented two distinct RL architectures: Model A using traditional Q-learning and Model B
employing DRL with neural networks. The specific architecture for Model B consisted of a four-layer
neural network with 256 neurons in each hidden layer, utilizing ReLU activation functions and Adam
optimization with a learning rate of 0.001. This network architecture was selected after systematic testing
of multiple configurations.

The prediction accuracy metrics, such as MAE and RMSE, further confirmed the efficacy of the RL
agent in achieving desired thermal conditions. For Model B, we achieved an MAE of 0.579366 and
RMSE of 0.689770, representing ~50% improvement over Model A’s performance (MAE: 1.140008 and
RMSE: 1.408069). These findings highlight the potential of advanced RL algorithms in optimizing
HVAC temperature control in low-energy buildings under Tehran’s specific climate conditions.

5.5. Comparative analysis with existing control methods

To better contextualize our findings, we conducted additional comparisons between our RL approach and
other established HVAC control strategies, including RBC andMPC.While RBC systems are common in
Tehran’s building stock due to their simplicity and low implementation cost, they demonstrated signifi-
cantly lower performance in both energy efficiency (12–15% higher EUI) and thermal comfort (PMV
averaging 0.75) compared to our RL approach.

MPC systems showedmore competitive performance, achieving energy savings ~15% below baseline
(compared to our 25%), while maintaining acceptable comfort levels (PMVaveraging 0.40). However,
MPC systems require detailed building models that are often difficult and expensive to develop for
existing structures, particularly in the Tehran context where building documentation may be incomplete.
OurRL approach offers the advantage ofmodel-free operation, learning optimal control strategies directly
from environmental interactions.

Additionally, we compared our models with existing studies that implemented similar RL approaches
in different climate contexts (Maddalena et al., 2022; Kannari et al., 2023; Stoffel et al., 2023). Our results
demonstrated that the performance benefits of RL control may be even more pronounced in regions with
extreme climate conditions, such as Tehran, suggesting that buildings in such environments have themost
to gain from advanced control strategies.

5.6. Broader implications for urban sustainability

The findings from this study have significant implications for urban sustainability in Tehran and similar
climate regions.With buildings accounting for ~40% of energy consumption in Iran (Ghiai et al., 2021), a
widespread adoption of RL-controlled HVAC systems could contribute substantially to national energy
conservation goals and emission reduction targets.

The scalability of our approach is promising, as the core RL algorithms can be adapted to
various building types and sizes with minimal modification. While our study focused on commercial
low-energy buildings, similar principles could be applied to residential buildings, educational
facilities, and healthcare institutions, each with their specific occupancy patterns and comfort
requirements.

Furthermore, the integration of RL-controlled HVAC systems with smart grid technologies could
enable demand–response capabilities, allowing buildings to adjust their energy consumption based on
grid conditions. This would not only improve grid stability but could also provide additional cost
savings through participation in demand–response programs, which are beginning to emerge in
Tehran’s energy market.
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5.7. Limitations and future work

However, it is essential to acknowledge the limitations of the current study. While our simulation
environment incorporated realistic building parameters and historical weather data from Tehran, real-
world implementation may face additional challenges not captured in our models. These include sensor
inaccuracies, mechanical system degradation over time, unpredictable occupant behaviors, and integra-
tion with existing building management systems.

Our study was also limited to simulated environments and did not include extensive real-world testing
and validation of the RL algorithms. Factors, such as occupant behavior, sensor inaccuracies, and
unpredictable weather patterns, may impact the performance of the RL models in practical scenarios.
Additionally, the study did not extensively explore the impact of different deep learning architectures and
hyperparameters on the performance of the RL algorithms.

Future research should address these limitations through pilot implementations in actual buildings across
Tehran, allowing for the collection of real-world performance data and refinement of the RL algorithms
based on operational experience. Additionally, extending the research to incorporate multi-objective
optimization—simultaneously addressing energy efficiency, thermal comfort, indoor air quality, and
operational costs—would provide a more comprehensive approach to sustainable building management.

Further work should also investigate the effectiveness of combining RL approaches with transfer
learning techniques to reduce the initial learning period when deploying to new buildings, potentially
accelerating the adoption of these technologies across the building stock.

In summary, our findings demonstrate that RL offers a promising approach to HVAC control
optimization in low-energy buildings under Tehran climate conditions, with significant potential for
energy savings, improved thermal comfort, and reduced operational costs. As computational capabil-
ities continue to advance and climate challenges intensify, such intelligent control strategies will likely
become increasingly essential components of sustainable building design and operation in urban
environments worldwide.

6. Conclusion and recommendations

This study demonstrates the significant potential of RL strategies to enhance HVAC energy efficiency in
low-energy buildings under Tehran’s unique climate conditions. Our comprehensive simulation-based
analysis has yielded several important findings that contribute to advancing sustainable building practices
in arid regions with extreme seasonal temperature variations.

The comparative evaluation of two RL models reveals that Model B (DRL) consistently outperforms
Model A (Q-learning) in temperature control precision, with ~50% improvement in prediction accuracy
metrics (MAE: 0.579366 vs. 1.140008 and RMSE: 0.689770 vs. 1.408069). This superior performance
translated into a 25% reduction in EUI (from 250 to 200 kWh/m2 per annum) and substantial improvements
in thermal comfort parameters, bringing the PMV well within ASHRAE Standard 55 comfort range (from
0.80 to 0.25) and reducing the PPD from 40% to 10%.

These energy efficiency gains are particularly significant in Tehran’s context, where buildings account
for ~40% of the total energy consumption (Ghiai et al., 2021) and face unique challenges due to extreme
seasonal temperature variations. When compared with conventional control strategies commonly
employed in the region, our RL approach demonstrates superior adaptability and performance, with
potential annual operational cost savings of 15–20% and a projected payback period of 3.5–5 years,
depending on building characteristics and utility rates.

While Model B’s implementation does require greater computational resources than conventional
control systems or simpler RL approaches like Model A, the economic analysis indicates that the
additional investment is justified by the significant energy savings and improved occupant comfort. This
aligns with findings from similar studies in different climatic regions (Choi et al., 2023; Al Sayed et al.,
2024), although our results suggest that the performance benefits of RL control are evenmore pronounced
in regions with extreme climate conditions, such as that of Tehran’s.
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However, it is essential to acknowledge the limitations of the current study. The research was confined
to simulated environments and did not include extensive real-world testing and validation of the RL
algorithms. Factors, such as occupant behavior, sensor inaccuracies, and unpredictable weather patterns,
may impact the performance of the RL models in practical scenarios. Additionally, the study did not
extensively explore the impact of different deep learning architectures and hyperparameters on the
performance of the RL algorithms.

Furthermore, integration challenges with the existing building management systems and the need for
specialized expertise in maintaining RL-controlled HVAC systems represent practical barriers to the
widespread adoption that must be addressed through further research and industry collaboration. Despite
these limitations, the potential benefits in terms of energy conservation, reduced operational costs, and
improved occupant comfort present a compelling case for the continued development and implementation
of RL-controlled HVAC systems.

6.1. Recommendations

6.1.1. Adoption of Model B
Given its superior performance, Model B should be considered for deployment in HVAC temperature
control systems, particularly in environments where precision temperature control is critical for energy
conservation and occupant comfort.

6.1.2. Cost–benefit analysis
• While our economic analysis indicates a favorable payback period of 3.5–5 years for Model B
implementation,we recommend that buildingowners and facilitymanagers conduct site-specific cost–
benefit analyses before full-scale implementation. These analyses should account for the following:

• Initial capital investment for hardware and software upgrades
• Projected energy savings based on building-specific characteristics
• Potential utility rebates or incentives for energy efficiency improvements
• Maintenance requirements and associated costs

Staff training is needed for system operation and monitoring.

6.1.3. Further research and development
This study highlights several promising directions for future research to advance the practical imple-
mentation of RL-controlled HVAC systems:

1. Real-world pilot implementations in diverse building types across Tehran to validate simulation
results and identify practical implementation challenges.

2. Integration with broader urban sustainability initiatives, including smart grid applications and
demand–response programs that are beginning to emerge in Tehran’s energy market.

3. Development of transfer learning techniques to reduce the initial learning periodwhen deploying to
new buildings, potentially accelerating widespread adoption.

4. Incorporation of multi-objective optimization approaches that simultaneously address energy
efficiency, thermal comfort, indoor air quality, and operational costs.

5. Investigation of hybrid control strategies that combine the adaptability of RLwith the predictability
of MPC to leverage the strengths of both approaches.

6. Exploration of lightweight RL models that maintain performance while reducing computational
requirements, making implementation more feasible in existing buildings with limited computa-
tional infrastructure.

The findings from this study provide valuable insights for various stakeholders in the building sector,
including designers, operators, policymakers, and researchers working toward sustainable built environ-
ments. By demonstrating the significant potential of RL-controlled HVAC systems to improve energy
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efficiency while maintaining occupant comfort in Tehran’s challenging climate, this work contributes to
the broader goal of reducing the buildings’ environmental impact while enhancing their functionality and
user experience (Wallner et al., 2017; Symonds et al., 2021).

As climate change intensifies and urbanization continues to accelerate, particularly in regions with
extreme climates, such as Tehran, intelligent building control strategies will become increasingly essential
components of sustainable development. This study represents an important step toward realizing the
potential of data-centric engineering approaches to address these critical challenges.

Nomenclature
Abbreviation Definition
COP coefficient of performance
DCRL deep clustering reinforcement learning
DCV demand-controlled ventilation
DQN deep Q-networks
DRL deep reinforcement learning
EER energy efficiency ratio
ERV energy recovery ventilation
EUI energy use intensity
HVAC heating, ventilation, and air conditioning
MAE mean absolute error
PMV predicted mean vote
PPD predicted percentage of dissatisfied
PPO proximal policy optimization
RL reinforcement learning
RMSE root mean square error
SEER seasonal energy efficiency ratio
UFAD underfloor air distribution
VRF variable refrigerant flow

Formula Definition
COP ratio of useful heating or cooling provided to work required
EER ratio of output cooling energy to input electrical energy at a specific operating condition
SEER ratio of output cooling energy to input electrical energy over an entire cooling season
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