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INDUCTION AND RESTRICTION OF TT-PARTIAL 
CHARACTERS AND THEIR LIFTS 

I. M. ISAACS 

ABSTRACT. Let G be a finite 7r-separable group, where -n is a set of primes. The 
7r-partial characters of G are the restrictions of the ordinary characters to the set of ir-
elements of G. Such an object is said to be irreducible if it is not the sum of two nonzero 
partial characters and the set of irreducible n- partial characters of G is denoted ln(G). 
(If/? is a prime and n = pf, then I^G) is exactly the set of irreducible Brauer characters 
at/?.) 

From their definition, it is obvious that each partial character </? G ln(G) can be 
"lifted" to an ordinary character x € Irr(G). (This means that ip is the restriction of x to 
the 7r-elements of G.) In fact, there is a known set of canonical lifts Bn(G) C Irr(G) for 
the irreducible 7r-partial characters. In this paper, it is proved that if 2 ^ 7r, then there is 
an alternative set of canonical lifts (denoted D^G)) that behaves better with respect to 
character induction. 

An application of this theory to M-groups is presented. If G is an M-group and S C 
G is a subnormal subgroup, consider a primitive character 0 e \rv{S). It was known 
previously that if | G : S\ is odd, then 6 must be linear. It is proved here without restriction 
on the index of S that 0(1) is a power of 2. 

1. Introduction. This paper is intended to serve a double purpose. We obtain a few 
new results in the 7r-character theory of 7r-separable groups and we use some of these to 
study the character theory of subnormal subgroups of M-groups. 

Consider M-groups first. Suppose that S <M G, where G is an M-group, and suppose 
7 € Irr(«S) is primitive. In [3], we showed that if S has odd index, then 7 must be linear 
and it is a consequence of our work here that 7 must also be linear in the case where S 
has odd order. In fact, we have more. 

THEOREM A. Let S <W G, where G is an M-group. Ifl G Irr(5) is primitive, then 
7(1) is a power of 2. 

We mention that the case of Theorem A where S< G is the main theorem of [1], but 
the result for subnormal subgroups does not follow from this. Our actual result here is 
an even stronger necessary condition for a group S to be subnormally embedded in an 
M-group, but unfortunately, our condition does not imply that the S must be an M-group, 
even when it is known to have odd order. 

We turn now to 7r-character theory, with a brief review of definitions and basic re­
sults. (The reader may wish to consult the expository papers [8], [5] and [7] for more 
information and for proofs of some of the key theorems.) 
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INDUCTION AND RESTRICTION OF TT-PARTIAL CHARACTERS 1211 

Fix a set 7r of prime numbers and let G be a 7r-separable group. The ^-partial char­
acters of G are the restrictions of the ordinary characters to the set G° of 7r-elements of 
G. (We write x° to denote the restriction of x £ Char(G) to G°.) A 7r-partial character 
is irreducible if it cannot be written as a sum of two nonzero 7r-partial characters and we 
write ^(G) to denote the set of all irreducible 7r-partial characters of G. If \ G Char(G), 
it is immediate that we can write x° = £<*</? <£, where <p runs over I^G) and the coef­
ficients a<p are nonnegative integers. (In fact, these coefficients are uniquely determined 
by x because ITT(G) is actually a basis for the complex vector space of class functions 
defined on G°.) Given ip £ I^G), we can certainly write (p = x° for some character x of 
G, and in this situation it is clear that \ must lie in Irr(G). In other words, each irreducible 
7r-partial character of G can be lifted to an ordinary irreducible character. 

It is possible to 'predetermine' a complete set of lifts for the irreducible 7r-partial 
characters of a 7r-separable group G. There is, in other words, a canonically defined subset 
B^G) C Irr(G) such that the map x •—• X° is a bijection from B7r(G) onto I^G). (The 
definition and principal properties of the set B7r(G) appear in [2] and an exposition of this 
material can be found in [7].) 

The function B ^ ), which assigns to each 7r-separable group G a particular set of 
irreducible characters of G, behaves well with respect to normal subgroups: if x G B7r(G) 
and N < G, then all irreducible constituents of the restriction \N lie in B^{N). (As is 
explained in [8], this fact about the set-valued function B7r( ) is crucial in establishing the 
analog of Clifford theory for the irreducible 7r-partial characters.) 

There are some respects, however, in which the behavior of the function B ^ ) is 
not under good control. Suppose, for example, that H is an arbitrary subgroup of G. If 
X G B7r(G), then even if we know that \H is irreducible, we cannot always conclude 
that XH lies in B^H). Similarly, if we start with ijj G B^H), where \j)G is known to be 
irreducible, it does not follow that ^G lies in B7r(G). 

In the case where G has odd order, it is an easy consequence of Lemma 3.1 of [6] that 
the restriction and induction conclusions of the previous paragraph actually are valid. In 
fact, an even stronger induction result holds: given that \G\ is odd and that ^G = x £ 
Irr(G), then -0 e B^H) if and only if x £ B7r(G). (The additional information here, of 
course, is the 'if assertion, which appears as Theorem 8.6 of [8].) 

For groups of even order, one can use Lemma 3.3 of [6] to prove weak forms of the 
restriction and induction theorems for B^(), but only when 2 G TT. In the case where 
2 ^ 7r, on the other hand, strong replacements for these theorems are available, provided 
that we are willing to make certain changes. Specifically, we must replace B^( ) by a 
suitable alternative function D7r() that also assigns a certain subset of Irr(G) to each 7r-
separable group G and we must work with a twisted form of character induction called 
7r-induction. 

Definitions and properties of 7r-induction and of the function Dn() can be found in [4], 
and we review some of this material in Section 2, following this introduction. We prove 
here that D7r(G) (like B7r(G)) is a set of lifts for the irreducible 7r-partial characters of G. 
In general, Dn(G) can be different from B^G) and we stress that D^(G), unlike B^G), 
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is defined only when 2 $ ir. (We mention that the definition of D7r(G
!) was suggested by 

unpublished work of E. C. Dade.) 

THEOREM B. Let G be it-separable, where 2 $ ir. Then the map x h_> X° defines a 
bijection from D^(G) onto \^{G). 

Using Theorem B, it is easy to deduce the following. 

COROLLARY C. IfG has odd order and 2 g ir, then D^G) = B7r(G). 

By Theorem 7.10 of [4], the function D^() (like B ^ )) respects restriction to normal 
subgroups, but unlike B7r(), it is also reasonably well-behaved upon restriction to non-
normal subgroups. 

THEOREM D. Let H Q G, where G is it-separable and 2 ^ir.Ifx € DTT(G) and 
\f) = XH is irreducible, then if) G Dn(H). 

In view of Corollary C, we see that for odd-order groups, Theorem D implies the 
restriction theorem for B7r(), to which we referred earlier. 

The induction theorem for the function Dn() is known. It was first proved in unpub­
lished work of Dade and it appears as Theorem 7.3 of [4]. For comparison with Theo­
rem D and because together with Theorem B, we use it to prove our M-group theorem, 
we state this result below as Theorem E. 

We must first give at least a cursory description of 7r-induction, however. (More detail 
can be found in Section 2, and still more appears in [4].) If 2 $ TX and G is 7r-separable, 
then 7r-induction from a subgroup H C G is a certain map 0 \—+ 9*G from Char(//) to 
Char(G). Like the ordinary induced character 0G, the 7r-induced character 8*G has degree 
equal to \G : H\ 6(1). More generally, 0"G(x) = 0G(x) for all odd-order elements x G G. 
(For odd-order groups, therefore, 7r-induction is the same as ordinary induction, and so 
by Corollary C, the induction theorem for Bu() in odd-order groups (to which we referred 
earlier) is a consequence of Theorem E.) 

THEOREM E. Let H C G, where G is it-separable and 2 $ ir. Suppose ij) G Irr(iZ) 
and that \ = ^G is irreducible. Then \ G D^G) iffty G D^H). 

We mention that the ' i f part of Theorem E is immediate from the definition of the 
function D ^ ) and the properties of 7r-induction; it is only the 'only if part that requires 
work. 

Since we are assuming that 2 ^ ir and we know that 9G and 8*G agree on elements 
of odd order, we see that these characters agree on the set G° of 7r-elements of G. It 
follows that (07rG)° = (0G)° for all characters 9 ofH, and so from the point of view of 
7r-partial characters, 7r-induction is exactly the same as ordinary induction. It is induction 
of 7r-partial characters that we consider next. 

Recall from [8] that a character \ G Irr(G) is supermonomial if whenever \ — ̂ G> 
where i/> is a character of a subgroup of G, then -0 is monomial. Analogously, a partial 
character </? G ITT(G) is monomial if it is induced from a linear 7r-partial character of a 
subgroup and ip is supermonomial'xievery 7r-partial character that induces it is monomial. 
Our principal supermonomiality result, used to prove Theorem A, is the following. 
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THEOREM F. Let G be p-solvable, where p is an odd prime. Choose (f G lp(G) and 
let \ be the unique lift oftp in Dp(G). The following are then equivalent, 

(i) (p is monomial, 
(ii) x ^ monomial. 

(Hi) Both (p and x are supermonomial. 

The fact that monomial characters in DP(G) must be supermonomial is a generaliza­
tion of Theorem 10.2 of [8], which is the odd-order case of this result. (In [8], the theorem 
is stated for Bp(G), but we know that Bp(G) = Dp(G) when \G\ is odd.) 

Theorem A is not the only result about primitive characters of subgroups of M-groups 
that can be proved using techniques of this paper. Instead of discussing other theorems 
of this type here, we refer the reader to [9]. 

2. Sign characters and twisted induction. In this section we recall some def­
initions and facts from [4], and in particular, we review the definition of the subset 
DTT(G) C Irr(G). The key to this is the it-standard sign character Stein), defined for 
each subgroup H C G, where G is 7r-separable and 2 ^ it. This is a linear character 
of H that has values ± 1 ; it is determined by the action of H on the 7r-factors of an H-
composition series for G. (We refer the reader to Section 2 of [4] for the full definition of 
8(G:H)-) Among the properties of the 7r-standard sign character are the following, which 
are sufficient to determine it uniquely. 

LEMMA 2.1. Given H C G, where G is it-separable and 2^ it, we have the follow­
ing. 

(a) If\G:H\ is a it*-number, then Stein) — 1//-
(b) If\G:H\isa it-number and H is a maximal subgroup, then 8(G:H) is the permu­

tation sign character of the action ofH on the right cosets ofH in G. 
(c) IfHCKCG, then6{G:H) = (8(G:K))H8{K:H)-

PROOF. Parts (a) and (c) are respectively Theorem 2.5(c) and Theorem 2.5(b) 
of [4], while (b) is immediate from Corollary 2.9(a) of that paper and the fact that 
the sign character of an action is exactly the determinant of the associated permutation 
representation. • 

Continuing to assume that G is 7r-separable, with 2 ^ it, we recall from [4] that if 0 G 
Char(//), then the it-induced character 8*G of G is the character (<S0)G, where 8 = Staff)-
Since 6(G-.H) is trivial if | G : H\ is a irf-number, we see that 7r-induction from subgroups of 
V-index agrees with ordinary induction. Also, for arbitrary subgroups H C G, if x G G 
has odd order, then ^G(JC) = 9G(x). (This is because 8(y) = 1 for every element}; ofH 
that is conjugate in G to JC.) 

In general, 7r-induction enjoys many of the familiar properties of ordinary induction. 
It is transitive, for example. In other words, if H C K C G and 8 G Char(//), then 
(QirKyG _ QKG (jfas j s a n 1 ^ ^ ^ consequence of Lemma 2.1 (c).) Somewhat more 
interesting is the situation where G = XY for subgroups X and Y. If 9 G Char(T), it is 
a well-known consequence of Mackey's theorem that (0G)x = {QxrwY- The analog of 
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this formula for 7r-induction would be immediate if we knew that (8(G;Y))XC\Y
 = 8(x-JcnY), 

but in [4], this was proved only under the additional assumption that one ofXor Y is the 
product of J H Y with a normal subgroup of G. In fact, it is not very difficult to prove 
the general case. (In order to give a self-contained proof here, we do not assume the part 
of this result that appears in [4].) We require the following lemma, which, except for its 
dependence on the odd-order theorem, is entirely routine. 

LEMMA 2.2. Let G be it-separable, where 2 $ n, and suppose Oy (G) = 1. Then all 
core-free maximal subgroups ofG are conjugate. 

PROOF. Let N be a minimal normal subgroup of G. Then N is a 7r-group, and thus is 
of odd order and hence is an abelian/7-group for some prime p G IT. IfX is a core-free 
maximal subgroup of G, then N £ X and thus NX — G and N n X — 1. It follows that 
CG(N)nX< G, and we conclude that CG(N) = N. 

lfN=G thenX = 1 and there is nothing to prove. We can thus assume that N < G 
and we let K/N be a chief factor of G. We claim that K/N is a//-group. This is certainly 
true if K/N is a IT' -group, and so we can assume it is a 7r-group. It thus has odd order, and 
hence it is an abelian #-group for some prime q. But q ^ p\ otherwise, K is a^-group 
and TV C Z(K), which contradicts the fact that N is self-centralizing. 

We see now that XD K is a /?-complement in K and that X = NG(XDK). Since all 
/7-complements in K are conjugate, their normalizers in G are also conjugate, and the 
result follows. • 

LEMMA 2.3. LetX, F C G , where G is ^-separable and 2 $ IT. Assume thatXY = G 
and write D = XHY. Then 

(a) (S(G:Y))D = S(x-.Dy 

(b) (8(GX))D = 8(Y:D)-

(c) If 9 e Char(F), then (Q*G)X = (0Dyx. 

PROOF. We observe first that (a) and (b) imply each other for each choice of sub­
groups X and Y with XY = G. To see this, we argue that since 8(Y-.D) is nonvanishing, 
the assertion of (a) is equivalent to the equation 8(X:D)8(Y.D) = (8(G:Y))D8(Y:D)- Since the 
right side of this equation is equal to S(G-.D) by Lemma 2.1(a), it follows that (a) is true iff 
8(G:D) — 8(X:D)8(Y:D), which is symmetric i n l a n d Y. It follows that (b) is also equivalent 
to this equation, and hence (a) and (b) are equivalent to each other. 

We now prove parts (a) and (b) by induction on the index \G : D\. If X = G, then 
D = Y and (a) is trivially true, and it follows that (b) holds too. Similarly, (a) and (b) 
hold if 7 = G, and thus we may thus assume that X and Y are each proper in G. 

Suppose that X < H < G for some subgroup H. Observe that HY = G and that 
XE — H, where we have written E = HilY. Since H > X, we see that E > D and thus 
\G:E\<\G:D\. Also \H:D\<\G:D\ since H < G, and hence two applications of 
the inductive hypothesis yield that 8{X.D) — (8(H-.E))D = ((8(G.Y))E)D- Thus (a) holds, and 
so (b) holds too, and similarly, both (a) and (b) hold if Y is not maximal in G. 

We can now assume that each of X and Y is a maximal subgroup of G. In particular, 
since G is 7r-separable, each of the indices \G : X\ and \G : Y\ is either a 7i-number or 
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a V-number. Suppose that one of these indices (say \G : 7|) is a V-number. Then also 
\X: D\ is a 7r'-number and hence 6(G:Y) = 1 Y and 8(X:D) = ID and assertion (a) follows. 
Since (a) and (b) both hold if either of the two indices \G : X\ or \G : Y\ is a ^-number, 
we can assume that both indices are 7r-numbers and hence \G : D\ is a 7r-number. 

Now let M = corecOD) and suppose that M < corGG(Y). Writing N = corzG(Y), we 
see that N 2 X and thus NX = G since X is maximal in G. In this situation, 7 = ND and 
we claim that D is a maximal subgroup of X. To see this, suppose D < U < X. Then 
R / = NU is a subgroup and 7 < IT/ < G since YUC\X=U9 and this contradicts the 
maximality of 7 in G. 

Since £) is maximal and of 7r-index in X, we know from Lemma 2.1(b) that 8(X-.D) 

is the permutation sign character of the action of D on the right cosets of D in X. This 
action, however, is permutation isomorphic to the action of D on the right cosets of 7 
in G. (Intersection of a coset of 7 with X gives the desired isomorphism.) Since 6(C: Y) is 
the permutation sign character of the action of 7 on the right cosets of 7 in G, we see 
that (8(G:Y))D is the permutation sign character of the action of D on these cosets. In this 
situation, we have (8(G:Y))D = 8(x.D) and assertions (a) and (b) follow. 

We can now assume that M is the core of 7 in G and similarly, it is the core of X. 
Working in G/M, therefore, we see thatX/Mand 7/Mare core-free maximal subgroups. 
They have 7r-index, and so they contain 07r/(G/A/), which is therefore trivial. It follows 
from Lemma 2.2 thatX/Mand 7/Mare conjugate, and thusXand 7 are conjugate in G. 
This is impossible, however, since XY = G, and this contradiction completes the proof 
of (a) and (b). 

The proof of (c) is now immediate because 

(0*°)X = {($(0:7)9)% = {(8{G:Y)0)D)X = fe)^)* = ( f e ) ^ 

where the penultimate equality follows from (a). • 
We turn now to the definition of the set D7r(G). If G is 7r-separable, we recall (for 

comparison) that B7r(G) is a superset of the set XK(G) of 7r-special characters. In fact, the 
7r-special characters of G are exactly those members of B7r(G) that have 7r-degree and 
every member of B^G) is induced from an appropriate 7r-special character of a subgroup 
of G. (See [7] for an exposition of this.) Given that 2 ^ 7r, the set D7r(G) is also a superset 
of Xm{G). By the definition given in [4], it consists of those irreducible characters of G 
that can be obtained via 7r-induction from 7r-special characters of subgroups of G. In 
other words, x £ Irr(G) lies in D7r(G) precisely when there exists a 7r-special character 6 
of some subgroup U C G such that 0*G — \-

Note that by the transitivity of 7r-induction, it is clear that if H C G and xjj G D^//) 
with V;7rG = X £ frr(G), then x £ DTT(G)- This proves the 'if part of Theorem E. 
(Theorem E is fully proved in [4], and we say no more about it here.) 

We can now prove Theorem D. 

PROOF OF THEOREM D. We are given \ £ D*(G) such that V> = XH is irreducible 
and our task is to show that tjj G D^//). By definition of D7r(G), we can write x = ®*G for 
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some 7r-special character 0 of some subgroup U C G. Since x is induced from a character 
of U and it restricts irreducibly to //, it follows that UH — G. By Lemma 2.3(c), we 
have ip = \H = (0UDHYH, and we know that this is irreducible. It follows that OUDH is 
irreducible, and thus it is 7r-special by Theorem A of [4]. By definition, therefore, ip lies 
in D^/f), as required. • 

By Corollary 7.2 of [4], the 7r-special characters of G are exactly those members of 
D7r(G) that have 7r-degree. For the remaining members of D7r(G) we shall need the fol­
lowing technical result, which is part of Lemma 7.7 of [4]. We quote it here without 
proof. 

LEMMA 2.4. Let G be ^-separable, where 2 $ 7r, and suppose that x £ D?r(G)- If 
X(l) is not a -n-number, then there exists N < G such that XN has ^-special irreducible 
constituents that are not invariant in G. • 

3. Lifting 7r-partial characters. In this section we prove Theorem B and its corol­
lary. 

PROOF OF THEOREM B. Given tp G l^G), we must produce a character x e D^G) 
such that x° = <£• There exists i/> G B7r(G) with -0° = ip and by definition of the set 
Bn(G) in [2] (or see the exposition in [7]), there exists a 7r-special character 7 of some 
subgroup W <ZG such that 7G = I/J. (As explained in [7], we can take the pair (W,l) to 
be a 'nucleus' for -0.) 

Now let x = lnG = (^7)G, where £ = <S(G:HO is a certain linear character of W such 
that 82 = 1 w If * £ G is a 7r-element, then since 2 ^ 7r, we know that x has odd order, 
and it follows that 

X(pc) = 7"G(x) = 7G(x) - VW = </>(-*) 

and thus x° — ^- Since </? is an irreducible 7r-partial character, it follows that x £ Irr(G) 
and hence by definition, x £ DTT(G). 

To complete the proof, we show by induction on \G\ that the map x v~^ X° is an 
injection from D7r(G) into I^G). Let x G D7r(G) and write <p = x°- We must prove that 
(̂  is irreducible and that if also £ G D7r(G) with £° = (p9 then £ = x- We suppose first 
that x(l) is a 7r-number. Then x is 7r-special, and hence x £ B7r(G). Also, since £° — </?, 
we have £(1) = x(l), and thus £ is also 7r-special and lies in B7r(G). But we know that 
restriction to 7r-elements defines a bijection from B^(G) to I^G), and we deduce that 
X = £ and that (f is irreducible, as desired. 

We can now assume that x(l) is not a 7r-number. By Lemma 2.4, there exists a sub­
group N< G such that an irreducible constituent 0 ofxN is 7r-special and is not invariant 
in G. Let T < G be the stabilizer of 0 in G and observe that T is also the stabilizer 
of 0°, which is an irreducible 7r-partial character of N. (This is because 0 G B7r(A0 and 
restriction to 7r-elements defines a bijection from B7r(A0 to In(N).) 

We have \ — a° f° r some uniquely determined Clifford correspondent a G lrr(r|0). 
If we write 6 = S^G-.T) and 0 = Sa, we see that ijf0 = aG = x, and since x £ DTT(G), we 
deduce from Theorem E that \jj G D ^ . Clearly, (^°)G = (f and 0° lies over 0° G !„(#). 
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By the inductive hypothesis, we know that ^° G l^(T), and since T is the stabilizer of 9° 
in G, the Clifford correspondence for 7r-partial characters guarantees that (p = (i/;0)G is 
irreducible, as desired. (See Theorem 5.3 of [8].) 

Given £ G D7r(G) with £° = ip, we know that 0° is a constituent of ipx = (£N)°, and 
so 9° is a constituent of /i°, where /x is some (ordinary) irreducible constituent of £#. 
But the irreducible constituents of £N all lie in D7r(A/). (As we mentioned earlier, this is 
Theorem 7.10 of [4].) However, N C. T < G and the inductive hypothesis guarantees 
that restriction to 7r-elements defines a bijection from D7r(AT) to l-n(N). Since both 9 and 
\i lie in D7r(AT) and 0° is known to be a constituent of/A it follows that 9 = /i, and thus 
0 lies under £ and we let /? G lrr(r|0) be the Clifford correspondent of £ with respect 
to 9. Thus /3G = £ and we have 77^ = £, where 77 = 5/?. Reasoning as in the previous 
paragraph, we deduce that 77 G D^J) and that 770 is the Clifford correspondent of (p with 
respect to 0°. It follows that if = ifr0, and thus 77 = T/J by the inductive hypothesis applied 
to T. Thus £ = 777rG = t/;7rG = x, and the proof is complete. • 

PROOF OF COROLLARY C. Given that \G\ is odd, we claim that BV(G) C D7r(G). If 
X G B7r(G), we know that x = 7G, where 7 is a 7r-special character of some subgroup 
W QG. But 5(G:W) = \w since \W\ is odd; thus x = TG, and hence x G D^G). Thus 
B7r(G) C D7r(G) as claimed. But by Theorem B, we have \DV(G)\ = ^(G)! = (B^G)!, 
and hence B^G) = D7r(G), as desired. • 

4. Supermonomial partial characters. In this section, we prove Theorem F. The 
principal nontrivial fact on which we rely is that for/?-solvable groups with/? ^ 2, mono­
mial irreducible characters of /?-power degree are necessarily supermonomial. This re­
sult, which is discussed in [8] and proved there as Theorem 10.1, is a relatively easy 
consequence of a deep result of E. C. Dade. The argument we use here to obtain Theo­
rem F from Theorem 10.1 is really the same as the proof of Theorem 10.2 in [8], which 
is essentially the odd-order case of Theorem F. 

We need the following easy consequence of Theorem B. 

LEMMA 4.1. Let H C G, where G is it-separable and 2 (j£ IT. Let \ G T>n(G) and 
suppose that x° = otG, where a G l*(H). Then \ = if for some character 77 G hr(H) 
such that if = a. 

PROOF. TO find 77, first choose V> G D^//) with xjj° = a. (This is possible by Theo­
rem B). Now {^Gf = aG = x° is irreducible, and thus ^G lies in D^G) by the easy 
part of Theorem E. Since also \ G D7r(G) and the map £ 1—» £° is injective on D7r(G), we 
deduce that ^G = \- We can now take 77 = b(G-.H)ip to complete the proof. • 

PROOF OF THEOREM F. We are given <p G lp(G), where G is/?-solvable and/? ^ 2. 
It is clear that if any lift of cp in Irr(G) is monomial, then (p must be monomial. We may 
assume, therefore, that (p is monomial, and our task is to show that ip is supermonomial 
and that its lift in DP(G) is also supermonomial. 
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Write (p — aG, where a is a linear /^-partial character of some subgroups C G, and 
assume that also (p = /?G, where 0 G lp(B) for some subgroup B C G. We must show 
that /? is monomial and we consider first, the case where (p(l) is a power of/?. 

We have x G DP(G) with x° = <f- Since aG = <p = /3G, it follows by Lemma 4.1 
that we can find -0 G Irr(^) and r\ G Irr(Z?) such that i/>G = x = ^G, where ijj° = a and 
770 = /?. In particular, ^(1) = <*(1) = 1, and hence x is a monomial character. Since 
X has/?-power degree, it follows by Theorem 10.1 of [8] that it is supermonomial, and 
hence 77 is monomial. We deduce that (3 = rf is monomial, as required. 

In the general case, where (p(l) may not be a/?-power, we can assume that /? is prim­
itive. By Corollary 5.5 of [8], we know that /?(1) is a power of/? and, of course a( l ) = 1 
is also a power of/?. In other words, in the language of Section 6 of [8], each of the pairs 
(A, a) and (B,(3) is a/?-inducing pair belonging to ip, and thus each of these pairs is a 
node of the graph Q{tp). By Theorem 6.2 of [8], therefore, if we replace the pair {A, a) 
by a suitable conjugate pair, we can assume that the two nodes (A, a) and (B, /?) lie in the 
same connected component of this graph. 

Recall that by the definition of the graph, nodes (U, //) and (V, v) are joined in Q(ip) 
if either U < Fand fiv = v or V < £/and i/u = \x. We claim that whenever nodes (U, //) 
and (V,i/) are joined, if either of the/?-partial characters \i or v is monomial, then the 
other is monomial too. To see this, assume that /i is monomial. In the case where U < V 
and fiv = z/, it is clear that v is monomial, and so we need consider only the situation 
where V < U and i/u = \i. To prove that v is monomial in this case, it suffices to show 
that the monomial /^-partial character /x of t/ is actually supermonomial. But \i(X) is a 
/?-power (since (U, /1) was assumed to be a/?-inducing pair for ip) and this is the case of 
the theorem we have already proved. Thus v is monomial, as claimed. 

Recall that the pairs (A, a) and (B,/3) lie in the same component of Q($>). Since a 
is linear, it is certainly monomial, and thus by the result of the previous paragraph, /? is 
monomial too, as required. 

Finally, we must prove that \ is supermonomial, where x G DP(G) and x° = (P-
Assuming that x = V>G> where V G Irr(7f) and H C G, we need to show that x/j is 
monomial. If we write /? = V>°, we see that /3G = (p and since y? is supermonomial, we 
know that (3 is monomial. 

Now write 77 = 6(G:H)ip, so that r^G = \ a n d 770 = V>° = /?• T n e n *7 ^ Pp(^0 by 
Theorem E, and since /? is monomial, it follows by Lemma 4.1 that 77 is monomial. We 
can thus write r\ = \H for some linear character A G Irr(AT), where K C //, and we see 
that V> = ((<5(G://))#A) is monomial, as desired. • 

5. One-prime M-groups. Fix an odd prime/?. We shall say that a/?-solvable group 
G is a DpM-group if every character x G Dp(G) is monomial. Of course, an M-group is 
automatically a D^M-group for every odd prime/?. (Note also that every group of order 
not divisible by/? is a D^M-group since D^(G) consists just of the principal character in 
this case.) 
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One of the principal outstanding conjectures about M-groups is that normal (and hence 
also subnormal) subgroups of odd-order M-groups must also be M-groups. We prove the 
corresponding assertion for D^M-groups, and from this we obtain Theorem A of the 
introduction. 

THEOREM 5.1. IfN <KJ G, where G is a DpM-group, then N is also a DpM-group. 

It follows that subnormal subgroups of M-groups must be D^M-groups for all odd 
primes;?. This imposes a severe restriction on the collection of groups that can be sub-
normally embedded in an M-group, but it does not settle the normal-subgroup conjecture 
since there do exist odd-order groups that are D^M-groups for all odd primes p, and yet 
are not M-groups. 

Theorem 5.1 is an easy consequence of the following stronger result. 

THEOREM 5.2. Let N <W G, where G is p-solvable for some odd prime p.Ifx^ 
T>p(G) is monomial, then every irreducible constituent of\N Is monomial. 

PROOF. Since all irreducible constituents of \s lie in DP(S) for all subnormal sub­
groups S of G, it suffices to prove the result in the case where N is a maximal normal 
subgroup of G. We assume this, therefore, and we let \jj be an irreducible constituent of 

Let T be the stabilizer in G of ip and let 77 G Irr(T | i/0 be the Clifford correspondent 
of x with respect to ijj. Then rf = x, and by Theorem F, x is supermonomial (since it 
is monomial). It follows that 77 is monomial and we can write 77 = AG for some linear 
character A of some subgroup of// C T. If we can show that r\x = 1/;, it will follow that 
V> = (A//rw)^5 as required. 

We know that r)N = eijj, where e is the multiplicity of ^ as a constituent of XN- Our 
task, therefore, is to show that this multiplicity is equal to 1. If \G : N\ = p, this is clear, 
and thus we can assume that \G : N\ is not divisible hyp. Write tp = x° and 9 = I/J°, and 
note that both cp and 6 are irreducible /7-partial characters. Also, the multiplicity of 0 as 
a constituent of cpN is 1 sincep does not divide \G : N\. (See, for example, Corollary 5.1 
of [8].) It follows that the multiplicity of ^ as a constituent of xw cannot exceed 1, and 
the proof is complete. • 

PROOF OF THEOREM 5.1. Let ^ € VP(N). To show that xjj is monomial, it suffices 
by Theorem 5.2 to find a character x G DP(G) that lies over ^. Now Q = ip° lies in lp(N) 
and it is easy to see that there exists ip G lp(G) such that 9 is a constituent of ipN. (This 
is Lemma 4.3 of [8].) By Theorem B, choose x G Dp(G) such that x° = if and observe 
that since TV is subnormal, all irreducible constituents of XN He in DP(N). Since 9 is a 
constituent of (XN)°, it follows by Theorem B that x/j must be a constituent of XN, and the 
proof is complete. • 

Recall that a primitive irreducible character of a 7r-separable group can be factored as 
a product of a ?r-special character and a V-special character. (This theorem was proved 
first in [1], and it is discussed in [7], where it appears as Theorem 2.4.) We can use this 
factorization of primitive characters to prove the following extension of Theorem A. 
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COROLLARY 5.3. Let N <w G, where G is a DpM-groupfor some odd prime p. If 
ip € Irr(iV) is primitive, then xjj(l) is not divisible by p. 

PROOF. Factor^ = a/3, where a is/?-specialand/3 is//-special. Since a is/?-special, 
it lies in DP(N), and hence it is monomial by Theorem 5.1. But a is a factor of a primitive 
character, and thus a is primitive, and hence is linear. We conclude that \p(l) = 13(1) is 
not divisible by/7, as required. • 

PROOF OF THEOREM A. We are given that N <w G, where G is an M-group, and 
thus N is a D^M-group for all odd primes/?. By Corollary 5.3, the degree of a primitive 
irreducible character ofN can be divisible by no odd prime, and thus it is a power of 2. • 

6. Examples and further remarks. We mentioned that in general, the function 
B7r( ) does not respect restriction to arbitrary subgroups. If \G\ is odd, however, and 
X £ Bn(G)9 then by Corollary 8.4 of [8], there is always a constituent of \H in Bn(H) for 
subgroups H C G. In particular, if we know that \H is irreducible, then it lies in B^//) . 
(This is the result that Theorem D generalizes.) If | G\ is even, however, then it is possible 
to have x € B7r(G) with \H irreducible, but with \H $ B^/f). This can even happen if 
X is 7r-special, as is shown in Example 8.2 of [4]. If x is 7r-special and 2 fi 7r, however, 
no such example can occur. We have been unable to decide the following, however. 

QUESTION 6.1. Let G be 7r-separable, where 2 $ n, and suppose x £ B7r(G). Sup­
pose H C G and that \H is irreducible. Must we have \H £ B^//) in this case? 

Of course, if it were always true that B7r(G) = D7r(G) for 7r-separable groups G with 
2 ^ 7r, then Question 6.1 would have an affirmative answer, by Theorem D. In fact, 
however, B7r(G) and Dn(G) are different, in general. 

EXAMPLE 6.2. Let IT = {3}. Then there exists a 7r-separable group G for which 
B„(G) ^ D,(G). 

PROOF. Let G be the semidirect product of the symmetric group on four symbols, 
acting on an elementary abelian group V of order 34, where the symmetric group per­
mutes a basis {vi, V2, V3, v4} for V in its natural action. Let A be the unique linear char­
acter of V such that A(vi) = A(v2) = 1, A(v3) = UJ and A(v4) = u, where a; is a fixed 
primitive cube root of unity. 

The stabilizer of A in S4 is exactly the transposition £ = (1,2), and thus V has index 
2 in the stabilizer T of A in G. We see that A has exactly two extensions a and (3 to T9 

and these are distinguished by the values a(t) = 1 and f3(t) = — 1. Write aG — \ and 
j3G = ip and observe that by the Clifford correspondence, these are distinct irreducible 
characters of G. 

We see that a0 = /3°, and thus x° = V>° £ W^1) by the Clifford correspondence 
for partial characters. Since x ^ and each is a lift of the same 7r-partial character, it 
suffices to show that x G B^G) and X/J e D7r(G). 

First, we consider x« It is easy to check that the pair (V, A) is maximal among TT-
factored subnormal pairs in G. (See Section 4 of [7] for the relevant definitions.) Since 
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T is the stabilizer of this pair and a E lrr(T) is 7r-special and lies over A, we deduce that 
X = ocG lies in B^G), as claimed. 

To see that I/J £ D^G), it suffices to show that a7^ = t/>, and for this purpose, we check 
that a8(G:T) — /?. It suffices, therefore, to verify that <5(G::T)(0 — —1. To compute <5(G:7> 
we choose a subgroup P such that T C P C G, where | G : P| = 3. Then \P : T\ = 4, and 
hence <5(p:r) = l r and <5(G:r)(0

 = £(G:P)(0 by Lemma 2.1(a) and (c). Furthermore, since 
P is maximal in G, we see by Lemma 2.1(b) that 8(G:P) is the permutation sign character 
of the action of P on the three right cosets of P in G. Since t is not in the core of P, the 
action of t is nontrivial, and thus it is an odd permutation. It follows that <5(G:P)(0 = — 1, 
as desired. • 

It is amusing to note that in general, the symmetric difference of the sets B7r(G) and 
Dn(G) consists of characters with degrees that are neither 7r-numbers nor 7r'-numbers. 
That a character with 7r-degree in either set must be in both is a consequence of the fact 
that such a character must be 7r-special. On the other hand, if x € B^G), then we know 
that x = 7G for some 7r-special character 7 of a subgroup W C G. If x has Tr'-degree, 
then W must have V-index, and thus 8{G-.W) is trivial and x 6 D7r(G). Our assertion now 
follows (using Theorem B). 

Finally, we consider the class of odd-order groups that can occur as normal (or sub­
normal) subgroups of M-groups. We know by Theorem 5.1 that such a group must be a 
DpM-group for every odd prime/?. If it were true that only M-groups had this property, 
this would prove the conjecture that odd-order normal subgroups of M-groups must be 
M-groups. Unfortunately, we have the following. 

EXAMPLE 6.3. There exists an odd-order group G of that is a D^M-group for every 
odd prime /?, but that is not an M-group. 

In fact, it is relatively easy to construct groups that are D^M-groups for all odd primes. 

LEMMA 6.4. Suppose that N <3 G, where N is a normal abelian Sylow q-subgroup 
ofG and G/N is a DpM-group for all odd primes p. Then G is a DpM-groupfor all odd 
primes p. 

PROOF. Let x € Dp(G). Then the irreducible constituents of xw lie in Dp(iV), and so 
if p ^ q9 these constituents are trivial and N C ker \. In this case, we can view \ as a 
character of G/N, and it is easy to see that x € DP(G/N). (We omit the details of this 
routine argument.) If p ^ q, therefore, x is monomial as a character of G/N and hence 
also as a character of G. 

We can suppose now that/? = q so that x = ^G for some ^-special character 6 of 
some subgroup H C G. Since 6 is ^-special, however, it restricts irreducibly to a Sylow 
g-subgroup of H, which is abelian. It follows that 9 is linear and thus x = (8(G:H)0)G is 
monomial, as required. • 

PROOF OF EXAMPLE 6.3. Choose any odd-order M-group H that has a subgroup K 
that is not an M-group. (Examples of this abound.) Next, choose an odd prime q not 
dividing \H\ and let N be an elementary abelian g-group of order q\H:K\. Let H act on N 
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by permuting a basis so that K is the full stabilizer of one of the basis vectors and let G 
be the semi-direct product of N by H. 

Since G/N is an M-group, it is certainly a D^M-group for all odd primes p. By 
Lemma 6.4, therefore, G is a D^M-group for all odd primes /?, and it suffices to show 
that G is not an M-group. 

There exists a linear character A of N whose stabilizer in H is exactly K, and so its 
stabilizer in G is T = NK. Since A extends to T and T/N is not an M-group, it is easy 
to see that T has a non-monomial irreducible character 0 lying over A. Also, \ = ®G ls 

irreducible by the Clifford correspondence, and we claim that x is not monomial. 
Suppose that x = &G for some linear character a of a subgroup X of G. We see that 

\G : X\ = x(l) is not divisible by q, and hence N C X. Since <*# lies under x, it is G-
conjugate to A, and so we can replace the pair (X, a) by a conjugate pair and suppose that 
ax — A. ThenX C T and aT G lrr(T) lies over A and under \. It follows that aT = 0, 
and this is a contradiction since 0 is not monomial. • 

We close with something only marginally related to the topic of this paper. In The­
orem E of [4], it was shown that if H C G, where G is 7r-separable and 2 $ it, and if 
ip G Irr(//) is ^-special and extends to G, then in fact, x/j has a 7r-special extension to G. 
It was asked in [4] whether or not this result might remain valid without the assumption 
that 2 ^ 7T. In fact, the answer is 'yes', and even more is true, both in the case where 
2 G 7r and where 2 $ it. 

COROLLARY 6.5. Let H C G, where G is it-separable, and suppose that 9 G \(H) 
extends to ip G ITT(G). 

(a) If 2 G 7r, f/*e« f/ie /(/? o/0 in B^H) extends to the lift of if in B7r(G). 
(b) If2 g it, then the lift of0 in Dn(H) extends to the lift of(p in D^G). 

PROOF. Suppose first that 2 G it and let \ € B7r(G) with x° = <p. Write ^ = \H 
and observe that ^° = 0, so that t/> is irreducible. By results of [6], there is a 'magic' 
field automorphism that fixes x> and so it also fixes I/J = XH- AS (V0° — 0 is irreducible, 
Lemma 3.3 of [6] guarantees that \j) G B^//) , as required. 

Assuming now that 2 ^ 7r, let x £ DTT(G) lift (p and again write ijj = x//- Then ijj° — 0, 
and so -0 is irreducible, and it follows that \fj G D^//) by Theorem D. • 

COROLLARY 6.6. Let H be it-separable and suppose 0 G 1̂ (77). Then 0 has a lift 
0 G Irr(//) swc/z £/*a£ wheneverH C G, where G is it-separable, 0 extends to a character 
ofGiff0 extends to a it-partial character ofG. 

PROOF. If 2 G TT, take 0 G B^//) and otherwise, take 0 G D^//) . • 
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